
Pierre Cauchy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2710327/publications.pdf Version: 2024-02-01

DIEDDE CALICHY

#	Article	IF	CITATIONS
1	Multilayer omics analysis reveals a non-classical retinoic acid signaling axis that regulates hematopoietic stem cell identity. Cell Stem Cell, 2022, 29, 131-148.e10.	5.2	40
2	Sequences to Differences in Gene Expression: Analysis of RNA-Seq Data. Methods in Molecular Biology, 2022, , 279-318.	0.4	2
3	ZFP451-mediated SUMOylation of SATB2 drives embryonic stem cell differentiation. Genes and Development, 2021, 35, 1142-1160.	2.7	9
4	Interactions between lineageâ€associated transcription factors govern haematopoietic progenitor states. EMBO Journal, 2020, 39, e104983.	3.5	20
5	Repetitive Elements Trigger RIG-I-like Receptor Signaling that Regulates the Emergence of Hematopoietic Stem and Progenitor Cells. Immunity, 2020, 53, 934-951.e9.	6.6	43
6	ERBB2b mRNA isoform encodes a nuclear variant of the ERBB2 oncogene in breast cancer. Journal of Cellular Biochemistry, 2020, 121, 4870-4886.	1.2	0
7	EBF1-deficient bone marrow stroma elicits persistent changes in HSC potential. Nature Immunology, 2020, 21, 261-273.	7.0	30
8	High WBP5 expression correlates with elevation of HOX genes levels and is associated with inferior survival in patients with acute myeloid leukaemia. Scientific Reports, 2020, 10, 3505.	1.6	10
9	Subtype-specific regulatory network rewiring in acute myeloid leukemia. Nature Genetics, 2019, 51, 151-162.	9.4	140
10	Global long terminal repeat activation participates in establishing the unique gene expression programme of classical Hodgkin lymphoma. Leukemia, 2019, 33, 1463-1474.	3.3	19
11	Dependence on Myb expression is attenuated in myeloid leukaemia with N-terminal CEBPA mutations. Life Science Alliance, 2019, 2, e201800207.	1.3	6
12	2HybridTools, a handy software to facilitate clone identification and mutation mapping from yeast two-hybrid screening. PeerJ, 2019, 7, e7245.	0.9	0
13	Dynamic EBF1 occupancy directs sequential epigenetic and transcriptional events in B-cell programming. Genes and Development, 2018, 32, 96-111.	2.7	76
14	A metabolic interplay coordinated by HLX regulates myeloid differentiation and AML through partly overlapping pathways. Nature Communications, 2018, 9, 3090.	5.8	21
15	Fine-Tuning Mybl2 Is Required for Proper Mesenchymal-to-Epithelial Transition during Somatic Reprogramming. Cell Reports, 2018, 24, 1496-1511.e8.	2.9	18
16	Two possible modes of pioneering associated with combinations of H2A.Z and p300/CBP at nucleosome-occupied enhancers. Transcription, 2017, 8, 179-184.	1.7	7
17	RUNX1-ETO and RUNX1-EVI1 Differentially Reprogram the Chromatin Landscape in t(8;21) and t(3;21) AML. Cell Reports, 2017, 19, 1654-1668.	2.9	46
18	Chromatin priming elements establish immunological memory in T cells without activating transcription. BioEssays, 2017, 39, 1600184.	1.2	25

PIERRE CAUCHY

#	Article	IF	CITATIONS
19	Integration of Kinase and Calcium Signaling at the Level of Chromatin Underlies Inducible Gene Activation in T Cells. Journal of Immunology, 2017, 199, 2652-2667.	0.4	51
20	Prognostic significance of high GFI1 expression in AML of normal karyotype and its association with a FLT3-ITD signature. Scientific Reports, 2017, 7, 11148.	1.6	16
21	T Cell Receptor and Cytokine Signaling Can Function at Different Stages to Establish and Maintain Transcriptional Memory and Enable T Helper Cell Differentiation. Frontiers in Immunology, 2017, 8, 204.	2.2	25
22	LMO2 is required for TAL1 DNA binding activity and initiation of definitive haematopoiesis at the haemangioblast stage. Nucleic Acids Research, 2017, 45, 9874-9888.	6.5	22
23	Cooperative binding of AP-1 and TEAD4 modulates the balance between vascular smooth muscle and hemogenic cell fate. Development (Cambridge), 2016, 143, 4324-4340.	1.2	43
24	A threshold level of NFATc1 activity facilitates thymocyte differentiation and opposes notch-driven leukaemia development. Nature Communications, 2016, 7, 11841.	5.8	23
25	Pasha: a versatile R package for piling chromatin HTS data. Bioinformatics, 2016, 32, 2528-2530.	1.8	21
26	Inducible chromatin priming is associated with the establishment of immunological memory in T cells. EMBO Journal, 2016, 35, 515-535.	3.5	92
27	Dynamic Gene Regulatory Networks Drive Hematopoietic Specification and Differentiation. Developmental Cell, 2016, 36, 572-587.	3.1	213
28	Dynamic recruitment of Ets1 to both nucleosome-occupied and -depleted enhancer regions mediates a transcriptional program switch during early T-cell differentiation. Nucleic Acids Research, 2016, 44, 3567-3585.	6.5	39
29	Wellington-bootstrap: differential DNase-seq footprinting identifies cell-type determining transcription factors. BMC Genomics, 2015, 16, 1000.	1.2	49
30	Cytokine and proinflammatory gene expression in classical Hodgkin lymphoma: Its more than NF-κB!. Cytokine, 2015, 72, 115-117.	1.4	0
31	The RUNX1–PU.1 axis in the control of hematopoiesis. International Journal of Hematology, 2015, 101, 319-329.	0.7	78
32	Transcription-Dependent Generation of a Specialized Chromatin Structure at the TCRÎ ² Locus. Journal of Immunology, 2015, 194, 3432-3443.	0.4	10
33	Chronic FLT3-ITD Signaling in Acute Myeloid Leukemia Is Connected to a Specific Chromatin Signature. Cell Reports, 2015, 12, 821-836.	2.9	63
34	Polycomb Protein EED is Required for Silencing of Pluripotency Genes upon ESC Differentiation. Stem Cell Reviews and Reports, 2015, 11, 50-61.	5.6	31
35	A multi-centre phase 2 study of azacitidine in chronic myelomonocytic leukaemia. Leukemia, 2014, 28, 1570-1572.	3.3	34
36	Wellington: a novel method for the accurate identification of digital genomic footprints from DNase-seq data. Nucleic Acids Research, 2014, 42, 11272-11272.	6.5	3

PIERRE CAUCHY

#	Article	IF	CITATIONS
37	Identification of a Dynamic Core Transcriptional Network in t(8;21) AML that Regulates Differentiation Block and Self-Renewal. Cell Reports, 2014, 8, 1974-1988.	2.9	106
38	Mapping of transcription factor motifs in active chromatin identifies IRF5 as key regulator in classical Hodgkin lymphoma. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E4513-22.	3.3	53
39	Wellington: a novel method for the accurate identification of digital genomic footprints from DNase-seq data. Nucleic Acids Research, 2013, 41, e201-e201.	6.5	196
40	CpG islands and GC content dictate nucleosome depletion in a transcription-independent manner at mammalian promoters. Genome Research, 2012, 22, 2399-2408.	2.4	197
41	Depletion of RUNX1/ETO in t(8;21) AML cells leads to genome-wide changes in chromatin structure and transcription factor binding. Leukemia, 2012, 26, 1829-1841.	3.3	161
42	Processing ChIP-Chip Data: From the Scanner to the Browser. Methods in Molecular Biology, 2011, 719, 251-268.	0.4	2
43	Transcription initiation platforms and GTF recruitment at tissue-specific enhancers and promoters. Nature Structural and Molecular Biology, 2011, 18, 956-963.	3.6	296
44	CoCAS: a ChIP-on-chip analysis suite. Bioinformatics, 2009, 25, 954-955.	1.8	25