
Wei Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2710180/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Unimolecular Nanoparticles toward More Precise Regulations of Selfâ€Assembled Superlattices in Soft Matter. Angewandte Chemie - International Edition, 2022, 61, .	13.8	13
2	Modulation of the Complex Spherical Packings through Rationally Doping a Discrete Homopolymer into a Discrete Block Copolymer: A Quantitative Study. Macromolecules, 2022, 55, 4331-4340.	4.8	16
3	Drug Delivery across Barriers to the Middle and Inner Ear. Advanced Functional Materials, 2021, 31, 2008701.	14.9	32
4	Geometryâ€Directed Selfâ€Assembly of Polymeric Molecular Frameworks. Angewandte Chemie, 2021, 133, 2052-2057.	2.0	1
5	Keeping Nanomedicine on Target. Nano Letters, 2021, 21, 3-5.	9.1	13
6	Geometryâ€Directed Selfâ€Assembly of Polymeric Molecular Frameworks. Angewandte Chemie - International Edition, 2021, 60, 2024-2029.	13.8	12
7	Morphological Variation of an LB Film of Giant Amphiphiles Composed of Poly(ethylene oxide) and Hydrophobically Modified POSS. Langmuir, 2021, 37, 4294-4301.	3.5	11
8	Permeation of polyethylene glycols across the tympanic membrane. Giant, 2021, 6, 100057.	5.1	4
9	Ordered Mesoporous Silica Pyrolyzed from Single-Source Self-Assembled Organic–Inorganic Giant Surfactants. Journal of the American Chemical Society, 2021, 143, 12935-12942.	13.7	28
10	Rational Route Toward the Frank–Kasper Z Phase: Effect of Precise Geometrical Tuning on the Supramolecular Assembly of Giant Shape Amphiphiles. Macromolecules, 2021, 54, 7777-7785.	4.8	12
11	Phase Behaviors of Giant Surfactants with Different Numbers of Fluorinated Polyhedral Oligomeric Silsesquioxane "Heads―and One Poly(ethylene oxide) "Tail―at the Air–Water Interface. Langmuir, 20 37, 11084-11092.	2 B, 5	5
12	Delivery of local anaesthetics by a self-assembled supramolecular system mimicking their interactions with a sodium channel. Nature Biomedical Engineering, 2021, 5, 1099-1109.	22.5	30
13	Towards achieving a large-area and defect-free nano-line pattern via controlled self-assembly by sequential annealing. Giant, 2021, 8, 100078.	5.1	13
14	Hot Clue Gun Releasing Biocompatible Tissue Adhesive. Advanced Functional Materials, 2020, 30, 1900998.	14.9	45
15	Hierarchical Structure with an Unusual Honeycomb Fullerene Scaffold by a Fullerene–Triphenylene Shape Amphiphile. Macromolecules, 2020, 53, 6056-6062.	4.8	5
16	Discrete Block Copolymers for Self-Assembly. ACS Central Science, 2020, 6, 1278-1280.	11.3	2
17	Light-triggered release of conventional local anesthetics from a macromolecular prodrug for on-demand local anesthesia. Nature Communications, 2020, 11, 2323.	12.8	40
18	Magnifying the Structural Components of Biomembranes: A Prototype for the Study of the Selfâ€Assembly of Giant Lipids. Angewandte Chemie, 2020, 132, 5264-5272.	2.0	6

Wei Zhang

#	Article	IF	CITATIONS
19	Modularly Constructed Polyhedral Oligomeric Silsesquioxane-Based Giant Molecules for Unconventional Nanostructure Fabrication. ACS Applied Nano Materials, 2020, 3, 2952-2958.	5.0	15
20	Magnifying the Structural Components of Biomembranes: A Prototype for the Study of the Selfâ€Assembly of Giant Lipids. Angewandte Chemie - International Edition, 2020, 59, 5226-5234.	13.8	30
21	Functionalized Multiarmed Polycaprolactones as Biocompatible Tissue Adhesives. ACS Applied Materials & Interfaces, 2020, 12, 17314-17320.	8.0	19
22	Fine-tuned order-order phase transitions in giant surfactants via interfacial engineering. Giant, 2020, 1, 100002.	5.1	17
23	Engineering self-assembly of giant molecules in the condensed state based on molecular nanoparticles. Soft Matter, 2019, 15, 7108-7116.	2.7	11
24	ldentification of a Frank–Kasper Z phase from shape amphiphile self-assembly. Nature Chemistry, 2019, 11, 899-905.	13.6	114
25	Sequence isomeric giant surfactants with distinct self-assembly behaviors in solution. Chemical Communications, 2019, 55, 636-639.	4.1	18
26	Cooperative Soft-Cluster Glass in Giant Molecular Clusters. Macromolecules, 2019, 52, 4341-4348.	4.8	29
27	Reaction: Precision Macromolecules for Self-Assembly. CheM, 2019, 5, 492-493.	11.7	9
28	Analysis of monodisperse, sequence-defined, and POSS-functionalized polyester copolymers by MALDI tandem mass spectrometry. European Journal of Mass Spectrometry, 2019, 25, 164-174.	1.0	8
29	Multilevel Manipulation of Supramolecular Structures of Giant Molecules via Macromolecular Composition and Sequence. ACS Macro Letters, 2018, 7, 635-640.	4.8	31
30	Hierarchically ordered structures of disk-cube triads containing hexa-peri-hexabenzocoronene and polyhedral oligomeric silsesquioxane. Soft Matter, 2018, 14, 6774-6782.	2.7	8
31	Hierarchical self-assembly of zwitterionic dendrimer–anionic surfactant complexes into multiple stimuli-responsive dynamic nanotubes. Nanoscale, 2018, 10, 1411-1419.	5.6	9
32	A Noncrystallization Approach toward Uniform Thylakoids-like 2D "Nano-coins―and Their Grana-like 3D Suprastructures. Journal of the American Chemical Society, 2017, 139, 5883-5889.	13.7	52
33	Sequenceâ€Mandated, Distinct Assembly of Giant Molecules. Angewandte Chemie - International Edition, 2017, 56, 15014-15019.	13.8	57
34	Hierarchical Self-Organization of AB _{<i>n</i>} Dendron-like Molecules into a Supramolecular Lattice Sequence. ACS Central Science, 2017, 3, 860-867.	11.3	69
35	Polyhedral oligomeric silsesquioxane meets "click―chemistry: Rational design and facile preparation of functional hybrid materials. Polymer, 2017, 125, 303-329.	3.8	123
36	Topologically Directed Assemblies of Semiconducting Sphere–Rod Conjugates. Journal of the American Chemical Society, 2017, 139, 18616-18622.	13.7	51

Wei Zhang

#	Article	IF	CITATIONS
37	Rationally Controlling the Self-Assembly Behavior of Triarmed POSS–Organic Hybrid Macromolecules: From Giant Surfactants to Macroions. Macromolecules, 2017, 50, 5042-5050.	4.8	34
38	Geometry induced sequence of nanoscale Frank–Kasper and quasicrystal mesophases in giant surfactants. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 14195-14200.	7.1	201
39	Manipulation of Self-Assembled Nanostructure Dimensions in Molecular Janus Particles. ACS Nano, 2016, 10, 6585-6596.	14.6	79
40	Rational controlled morphological transitions in the self-assembled multi-headed giant surfactants in solution. Chemical Communications, 2016, 52, 8687-8690.	4.1	34
41	Toward Controlled Hierarchical Heterogeneities in Giant Molecules with Precisely Arranged Nano Building Blocks. ACS Central Science, 2016, 2, 48-54.	11.3	76
42	Selective assemblies of giant tetrahedra via precisely controlled positional interactions. Science, 2015, 348, 424-428.	12.6	338
43	Molecular Structural Basis for Stereocomplex Formation of Polylactide Enantiomers in Dilute Solution. ACS Macro Letters, 2015, 4, 1264-1267.	4.8	32
44	Asymmetric Giant "Bolaform-like―Surfactants: Precise Synthesis, Phase Diagram, and Crystallization-Induced Phase Separation. Macromolecules, 2014, 47, 4622-4633.	4.8	46
45	Tuning "thiol-ene―reactions toward controlled symmetry breaking in polyhedral oligomeric silsesquioxanes. Chemical Science, 2014, 5, 1046-1053.	7.4	61
46	Molecular Weight Effect on the Efficiency of Polymer Solar Cells. ACS Applied Materials & Interfaces, 2013, 5, 12163-12167.	8.0	111
47	Solution-Processed Ultrasensitive Polymer Photodetectors with High External Quantum Efficiency and Detectivity. ACS Applied Materials & amp; Interfaces, 2012, 4, 3701-3705.	8.0	57
48	Solution-processed near-infrared polymer photodetectors with an inverted device structure. Organic Electronics, 2012, 13, 2929-2934.	2.6	45
49	Jacketed homopolymer with bipolar dendritic side groups and its applications in electroluminescent devices. Journal of Polymer Science Part A, 2012, 50, 581-589.	2.3	8
50	Synthesis and characterization of electrophosphorescent jacketed conjugated polymers. Journal of Polymer Science Part A, 2012, 50, 3895-3903.	2.3	12
51	Dendron-Jacketed Electrophosphorescent Copolymers: Improved Efficiency and Tunable Emission Color by Partial Energy Transfer. Macromolecules, 2011, 44, 9556-9564.	4.8	21
52	Supramolecular Linear Heterojunction Composed of Graphite-Like Semiconducting Nanotubular Segments. Science, 2011, 334, 340-343.	12.6	397
53	Jacketed Polymers with Dendritic Carbazole Side Groups and Their Applications in Blue Light-Emitting Diodes. Macromolecules, 2010, 43, 8468-8478.	4.8	35
54	Unimolecular Nanoparticles toward more Precise Regulations of Selfâ€assembled Superlattices in Soft Matter. Angewandte Chemie, 0, , .	2.0	2