
Elaine A Armelin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2710171/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	<scp>UV</scp> assisted photo reactive polyetherâ€polyesteramide resin for future applications in <scp>3D</scp> printing. Journal of Polymer Science, 2022, 60, 688-700.	3.8	6
2	Novel Biobased Epoxy Thermosets and Coatings from Poly(limonene carbonate) Oxide and Synthetic Hardeners. ACS Sustainable Chemistry and Engineering, 2022, 10, 2708-2719.	6.7	21
3	A Biosourced Epoxy Resin for Adhesive Thermoset Applications. ChemSusChem, 2022, 15, .	6.8	18
4	Dual-Responsive Polypropylene Meshes Actuating as Thermal and SERS Sensors. ACS Biomaterials Science and Engineering, 2022, 8, 3329-3340.	5.2	10
5	Green Nanocoatings Based on the Deposition of Zirconium Oxide: The Role of the Substrate. Materials, 2021, 14, 1043.	2.9	6
6	Polymer infiltrated ceramic networks with biocompatible adhesive and 3D-printed highly porous scaffolds. Additive Manufacturing, 2021, 39, 101850.	3.0	11
7	Plasmaâ€Functionalized Isotactic Polypropylene Assembled with Conducting Polymers for Bacterial Quantification by NADH Sensing. Advanced Healthcare Materials, 2021, 10, e2100425.	7.6	7
8	Aluminum Protection by Using Green Zirconium Oxide Layer and Organic Coating: An Efficient and Adherent Dual System. Sustainability, 2021, 13, 9688.	3.2	5
9	3D-Printed Polymer-Infiltrated Ceramic Network with Biocompatible Adhesive to Potentiate Dental Implant Applications. Materials, 2021, 14, 5513.	2.9	6
10	Atmospheric pressure plasma liquid assisted deposition of polydopamine/acrylate copolymer on zirconia (Y-TZP) ceramics: a biocompatible and adherent nanofilm. RSC Advances, 2021, 11, 17360-17368.	3.6	2
11	Spectroscopy investigations reveal unprecedented details in the corrosion of AISI 1012 UPN profiles installed in a modernist building of beginning of 20th century. Journal of Cultural Heritage, 2020, 42, 240-248.	3.3	2
12	Breaking-down the catalyst used for the electrophotosynthesis of amino acids by nitrogen and carbon fixation. Journal of Catalysis, 2020, 389, 646-656.	6.2	12
13	The effect of dodecylbenzenesulfonic acid molecules on poly(4,4-diphenylether-5,5-dibenzimidazole) films. Journal of Polymer Research, 2020, 27, 1.	2.4	0
14	Smart design for a flexible, functionalized and electroresponsive hybrid platform based on poly(3,4-ethylenedioxythiophene) derivatives to improve cell viability. Journal of Materials Chemistry B, 2020, 8, 8864-8877.	5.8	14
15	Toward the New Generation of Surgical Meshes with 4D Response: Soft, Dynamic, and Adaptable. Advanced Functional Materials, 2020, 30, 2004145.	14.9	22
16	Free-standing flexible and biomimetic hybrid membranes for ions and ATP transport. Journal of Membrane Science, 2020, 601, 117931.	8.2	5
17	Polypropylene mesh for hernia repair with controllable cell adhesion/de-adhesion properties. Journal of Materials Chemistry B, 2020, 8, 1049-1059.	5.8	29
18	An amphiphilic, heterografted polythiophene copolymer containing biocompatible/biodegradable side chains for use as an (electro)active surface in biomedical applications. Polymer Chemistry, 2019, 10, 5010-5022.	3.9	16

#	Article	IF	CITATIONS
19	Free-Standing Faradaic Motors Based on Biocompatible Nanoperforated Poly(lactic Acid) Layers and Electropolymerized Poly(3,4-ethylenedioxythiophene). ACS Applied Materials & Interfaces, 2019, 11, 29427-29435.	8.0	11
20	Electrochemical Sensor for Bacterial Metabolism Based on the Detection of NADH by Polythiophene Nanoparticles. Journal of Physical Chemistry C, 2019, 123, 22181-22190.	3.1	16
21	Corrosion-Induced Damage and Residual Strength of WC-Co,Ni Cemented Carbides: Influence of Microstructure and Corrosion Medium. Metals, 2019, 9, 1018.	2.3	14
22	The mechanism of adhesion and graft polymerization of a PNIPAAm thermoresponsive hydrogel to polypropylene meshes. Soft Matter, 2019, 15, 3432-3442.	2.7	24
23	Electrospun Conducting and Biocompatible Uniaxial and Core–Shell Fibers Having Poly(lactic acid), Poly(ethylene glycol), and Polyaniline for Cardiac Tissue Engineering. ACS Omega, 2019, 4, 3660-3672.	3.5	74
24	Perforated polyester nanomebranes as templates of electroactive and robust free-standing films. European Polymer Journal, 2019, 114, 213-222.	5.4	9
25	Polyaniline coated core-shell polyacrylates: Control of film formation and coating application for corrosion protection. Progress in Organic Coatings, 2019, 128, 40-51.	3.9	32
26	Hybrid organophosphonic-silane coating for corrosion protection of magnesium alloy AZ91: The influence of acid and alkali pre-treatments. Surface and Coatings Technology, 2019, 357, 728-739.	4.8	30
27	Hydroxyapatite with Permanent Electrical Polarization: Preparation, Characterization, and Response against Inorganic Adsorbates. ChemPhysChem, 2018, 19, 1746-1755.	2.1	21
28	Designing Stainless Steel Surfaces with Antiâ€Pitting Properties Applying Laser Ablation and Organofluorine Coatings. Advanced Engineering Materials, 2018, 20, 1700814.	3.5	12
29	Assembly of Conducting Polymer and Biohydrogel for the Release and Real-Time Monitoring of Vitamin K3. Gels, 2018, 4, 86.	4.5	8
30	Plasma surface modification of polymers for sensor applications. Journal of Materials Chemistry B, 2018, 6, 6515-6533.	5.8	43
31	Multifunctional coatings based on silicone matrix and propolis extract. Progress in Organic Coatings, 2018, 123, 223-231.	3.9	25
32	Amphiphilic polypyrrole-poly(Schiff base) copolymers with poly(ethylene glycol) side chains: synthesis, properties and applications. Polymer Chemistry, 2018, 9, 4218-4232.	3.9	20
33	Protective Coatings for Aluminum Alloy Based on Hyperbranched 1,4-Polytriazoles. ACS Applied Materials & Interfaces, 2017, 9, 4231-4243.	8.0	37
34	Influence of pH in the synthesis of ferric tannate pigment for application in antifouling coatings. Journal of Coatings Technology Research, 2017, 14, 945-953.	2.5	6
35	Corrosion rate evaluation by gravimetric and electrochemical techniques applied to the metallic reinforcing structures of a historic building. Journal of Cultural Heritage, 2017, 27, 153-163.	3.3	13
36	Plasma functionalized surface of commodity polymers for dopamine detection. Applied Surface Science, 2017, 399, 638-647.	6.1	16

#	Article	IF	CITATIONS
37	Dielectric response of vulcanized natural rubber containing BaTiO3 filler: The role of particle functionalization. European Polymer Journal, 2017, 97, 57-67.	5.4	36
38	The biocompatible polythiophene-g-polycaprolactone copolymer as an efficient dopamine sensor platform. Polymer Chemistry, 2017, 8, 6112-6122.	3.9	22
39	Improvement of insulation effectiveness of natural rubber by adding hydroxyl-functionalized barium titanate nanoparticles. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24, 2881-2889.	2.9	9
40	Poly(N-isopropylacrylamide) and Copolymers: A Review on Recent Progresses in Biomedical Applications. Gels, 2017, 3, 36.	4.5	268
41	Influence of ZnO and TiO2 Particle Sizes in the Mechanical and Dielectric Properties of Vulcanized Rubber. Materials Research, 2017, 20, 1082-1091.	1.3	17
42	Enhanced dielectric performance of a block copolymer-polythiophene nanocomposite. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 1896-1905.	2.1	5
43	Composites based on epoxy resins and poly(3â€ŧhiophene methyl acetate) nanoparticles: mechanical and electrical properties. Polymer Composites, 2016, 37, 734-745.	4.6	0
44	Current status and challenges of biohydrogels for applications as supercapacitors and secondary batteries. Journal of Materials Chemistry A, 2016, 4, 8952-8968.	10.3	89
45	Confinement of a \hat{l}^2 -barrel protein in nanoperforated free-standing nanomembranes for ion transport. Nanoscale, 2016, 8, 16922-16935.	5.6	16
46	Fibrin Association at Hybrid Biointerfaces Made of Clotâ€Binding Peptides and Polythiophene. Macromolecular Bioscience, 2016, 16, 1461-1474.	4.1	9
47	Nanometric polythiophene films with electrocatalytic activity for non-enzymatic detection of glucose. European Polymer Journal, 2016, 79, 132-139.	5.4	15
48	Towards sustainable solid-state supercapacitors: electroactive conducting polymers combined with biohydrogels. Journal of Materials Chemistry A, 2016, 4, 1792-1805.	10.3	97
49	Improvement of dielectric properties of natural rubber by adding perovskite nanoparticles. European Polymer Journal, 2016, 75, 210-222.	5.4	36
50	Insulating and semiconducting polymeric free-standing nanomembranes with biomedical applications. Journal of Materials Chemistry B, 2015, 3, 5904-5932.	5.8	48
51	Silane and epoxy coatings: A bilayer system to protect AA2024 alloy. Progress in Organic Coatings, 2015, 81, 47-57.	3.9	34
52	Modified tannin extracted from black wattle tree as an environmentally friendly antifouling pigment. Industrial Crops and Products, 2015, 65, 506-514.	5.2	49
53	Polypyrrole-Supported Membrane Proteins for Bio-Inspired Ion Channels. ACS Applied Materials & Interfaces, 2015, 7, 1632-1643.	8.0	20
54	Transport and antifouling properties of papain-based antifouling coatings. Applied Surface Science, 2015, 341, 75-85.	6.1	23

#	Article	IF	CITATIONS
55	The influence of organophosphonic acid and conducting polymer on the adhesion and protection of epoxy coating on aluminium alloy. Progress in Organic Coatings, 2015, 88, 181-190.	3.9	19
56	Improving the corrosion performance of hybrid sol–gel matrix by modification with phosphonic acid. Progress in Organic Coatings, 2015, 80, 49-58.	3.9	21
57	Smart Paint for anodic protection of steel. Progress in Organic Coatings, 2015, 78, 116-123.	3.9	19
58	Soluble polythiophenes as anticorrosive additives for marine epoxy paints. Materials and Corrosion - Werkstoffe Und Korrosion, 2015, 66, 23-30.	1.5	11
59	Marine-friendly antifouling coating based on the use of a fatty acid derivative as a pigment. Materials Research, 2014, 17, 720-727.	1.3	19
60	Sol–gel hybrid films based on organosilane and montmorillonite for corrosion inhibition of AA2024. Journal of Colloid and Interface Science, 2014, 426, 308-313.	9.4	37
61	A rational design for the selective detection of dopamine using conducting polymers. Physical Chemistry Chemical Physics, 2014, 16, 7850-7861.	2.8	43
62	Measuring the Proton Conductivity of Ion-Exchange Membranes Using Electrochemical Impedance Spectroscopy and Through-Plane Cell. Journal of Physical Chemistry B, 2014, 118, 1102-1112.	2.6	81
63	Electronic, electric and electrochemical properties of bioactive nanomembranes made of polythiophene:thermoplastic polyurethane. Polymer Chemistry, 2014, 5, 1248-1257.	3.9	24
64	Synthesis and evaluation of a PVDF–PT3MA–Zn2SiO4:Mn hybrid polymeric composite for optical device applications. Journal of Materials Chemistry C, 2014, 2, 2502.	5.5	10
65	How Organophosphonic Acid Promotes Silane Deposition onto Aluminum Surface: A Detailed Investigation on Adsorption Mechanism. Journal of Physical Chemistry C, 2014, 118, 17724-17736.	3.1	16
66	Incorporation of a Clot-Binding Peptide into Polythiophene: Properties of Composites for Biomedical Applications. ACS Applied Materials & Interfaces, 2014, 6, 11940-11954.	8.0	33
67	Selective Detection of Dopamine Combining Multilayers of Conducting Polymers with Gold Nanoparticles. Journal of Physical Chemistry B, 2014, 118, 4669-4682.	2.6	54
68	Hybrid nanofibers from biodegradable polylactide and polythiophene for scaffolds. RSC Advances, 2014, 4, 15245.	3.6	19
69	Thermoplastic Polyurethane:Polythiophene Nanomembranes for Biomedical and Biotechnological Applications. ACS Applied Materials & amp; Interfaces, 2014, 6, 9719-9732.	8.0	45
70	Detection of Dopamine Using Chemically Synthesized Multilayered Hollow Microspheres. Journal of Physical Chemistry B, 2014, 118, 4702-4709.	2.6	31
71	Sensitive thermal transitions of nanoscale polymer samples using the bimetallic effect: Application to ultra-thin polythiophene. Review of Scientific Instruments, 2013, 84, 053904.	1.3	11
72	An electroactive and biologically responsive hybrid conjugate based on chemical similarity. Polymer Chemistry, 2013, 4, 1412-1424.	3.9	28

#	Article	IF	CITATIONS
73	Novel Epoxy Coating Based on DMSO as a Green Solvent, Reducing Drastically the Volatile Organic Compound Content and Using Conducting Polymers As a Nontoxic Anticorrosive Pigment. ACS Sustainable Chemistry and Engineering, 2013, 1, 1609-1618.	6.7	56
74	Design of hybrid conjugates based on chemical similarity. RSC Advances, 2013, 3, 21069.	3.6	7
75	Bioactive nanomembranes of semiconductor polythiophene and thermoplastic polyurethane: thermal, nanostructural and nanomechanical properties. Polymer Chemistry, 2013, 4, 568-583.	3.9	29
76	A synergistic combination of tetraethylorthosilicate and multiphosphonic acid offers excellent corrosion protection to AA1100 aluminum alloy. Applied Surface Science, 2013, 273, 758-768.	6.1	61
77	Nanomembranes and Nanofibers from Biodegradable Conducting Polymers. Polymers, 2013, 5, 1115-1157.	4.5	90
78	Controlling the Morphology of Poly(<i>N</i> -cyanoethylpyrrole). Journal of Physical Chemistry B, 2012, 116, 5064-5070.	2.6	15
79	New Sulfonated Polystyrene and Styrene–Ethylene/Butylene–Styrene Block Copolymers for Applications in Electrodialysis. Journal of Physical Chemistry B, 2012, 116, 11767-11779.	2.6	63
80	Phosphonic acid/silica-based films: A potential treatment for corrosion protection. Corrosion Science, 2012, 60, 173-180.	6.6	43
81	Biodegradable free-standing nanomembranes of conducting polymer:polyester blends as bioactive platforms for tissue engineering. Journal of Materials Chemistry, 2012, 22, 585-594.	6.7	42
82	Preparation and characterization of semiconducting polymeric blends. Photochemical synthesis of poly(3-alkylthiophenes) using host microporous matrices of poly(vinylidene fluoride). Polymer Chemistry, 2012, 3, 1334.	3.9	24
83	Bioactive and electroactive response of flexible polythiophene:polyester nanomembranes for tissue engineering. Polymer Chemistry, 2012, 3, 979.	3.9	41
84	Ultraporous poly(3,4-ethylenedioxythiophene) for nanometric electrochemical supercapacitor. Thin Solid Films, 2012, 520, 4402-4409.	1.8	40
85	Evaluation of an environmentally friendly anticorrosive pigment for alkyd primer. Progress in Organic Coatings, 2012, 73, 321-329.	3.9	44
86	Ultrathin Films of Polypyrrole Derivatives for Dopamine Detection. Journal of Physical Chemistry C, 2011, 115, 14933-14941.	3.1	57
87	Electronic properties of poly(thiophene-3-methyl acetate). Journal of Polymer Research, 2011, 18, 1509-1517.	2.4	17
88	Microstructures of poly(N-methylpyrrole) and their interaction with morphine. Electrochimica Acta, 2011, 56, 5836-5843.	5.2	18
89	Partial replacement of metallic zinc dust in heavy duty protective coatings by conducting polymer. Progress in Organic Coatings, 2010, 69, 26-30.	3.9	61
90	Influence of the Doping Level on the Interactions between Poly(3,4â€ethylenedioxythiophene) and Plasmid DNA. Macromolecular Chemistry and Physics, 2010, 211, 1117-1126.	2.2	16

#	Article	IF	CITATIONS
91	Characterization and Properties of Poly[<i>N</i> 2 yanoethyl)pyrrole]. Macromolecular Chemistry and Physics, 2010, 211, 1663-1672.	2.2	19
92	Morphology and growing of nanometric multilayered films formed by alternated layers of poly(3,4-ethylenedioxythiophene) and poly(N-methylpyrrole). Thin Solid Films, 2010, 518, 4203-4210.	1.8	31
93	Transport of Metallic Ions through Polyaniline-Containing Composite Membranes. Journal of Chemical & Engineering Data, 2010, 55, 4801-4807.	1.9	17
94	Poly(2-thiophen-3-yl-malonic acid), a Polythiophene with Two Carboxylic Acids Per Repeating Unit. Journal of Physical Chemistry B, 2010, 114, 6281-6290.	2.6	33
95	Nanostructured conducting polymer for dopamine detection. Journal of Materials Chemistry, 2010, 20, 10652.	6.7	55
96	Anticorrosion performances of epoxy coatings modified with polyaniline: A comparison between the emeraldine base and salt forms. Progress in Organic Coatings, 2009, 65, 88-93.	3.9	128
97	Characterization and properties of a polythiophene with a malonic acid dimethyl ester side group. European Polymer Journal, 2009, 45, 2211-2221.	5.4	25
98	Polyaniline, polypyrrole and poly(3,4-ethylenedioxythiophene) as additives of organic coatings to prevent corrosion. Surface and Coatings Technology, 2009, 203, 3763-3769.	4.8	103
99	A comprehensive study of the interactions between DNA and poly(3,4-ethylenedioxythiophene). Polymer, 2009, 50, 1965-1974.	3.8	29
100	Structural and electronic properties of poly(3-thiophen-3-yl-acrylic acid). Polymer, 2008, 49, 1972-1980.	3.8	12
101	Copolymers of pyrrole and N-(hydroxypropyl)pyrrole: properties and interaction with DNA. Journal of Polymer Research, 2008, 15, 225-234.	2.4	10
102	Cellular Adhesion, Proliferation and Viability on Conducting Polymer Substrates. Macromolecular Bioscience, 2008, 8, 1144-1151.	4.1	62
103	Poly(3â€alkylthiophene)s as anticorrosive additive for paints: Influence of the main chain stereoregularity. Journal of Applied Polymer Science, 2008, 108, 3291-3297.	2.6	10
104	Cross-linking in polypyrrole and poly(N-methylpyrrole): Comparative experimental and theoretical studies. Polymer, 2008, 49, 1066-1075.	3.8	29
105	Properties of nanometric and submicrometric multilayered films of poly(3,4-ethylenedioxythiophene) and poly(N-methylpyrrole). European Polymer Journal, 2008, 44, 1323-1330.	5.4	35
106	Specific interactions in complexes formed by polythiophene derivatives bearing polar side groups and plasmid DNA. European Polymer Journal, 2008, 44, 3700-3707.	5.4	12
107	Hydrogen-Bonding Interactions in 2-Thiophen-3-ylmalonic Acid. Journal of Physical Chemistry A, 2008, 112, 10650-10656.	2.5	7
108	Corrosion protection with polyaniline and polypyrrole as anticorrosive additives for epoxy paint. Corrosion Science, 2008, 50, 721-728.	6.6	240

#	Article	IF	CITATIONS
109	Application of multilayered particles formed by poly(3,4â€ethylenedioxythiophene) and poly(<i>N</i> â€methylpyrrole) as antiâ€corrosive additives of conventional organic coatings. Materials and Corrosion - Werkstoffe Und Korrosion, 2007, 58, 867-872.	1.5	15
110	Copolymers of 3,4-Ethylenedioxythiophene and 3-Methylthiophene: Properties, Applications and Morphologies. Macromolecular Materials and Engineering, 2007, 292, 85-94.	3.6	21
111	Cellular adhesion and proliferation on poly(3,4-ethylenedioxythiophene): Benefits in the electroactivity of the conducting polymer. European Polymer Journal, 2007, 43, 2342-2349.	5.4	116
112	A theoretical study on the interaction between N-methylpyrrole and 3,4-ethylenedioxythiophene units in copolymer molecules. Polymer, 2007, 48, 6162-6169.	3.8	3
113	On the structural and electronic properties of poly(3-thiophen-3-yl-acrylic acid methyl ester). Polymer, 2007, 48, 6955-6964.	3.8	18
114	Study of epoxy and alkyd coatings modified with emeraldine base form of polyaniline. Progress in Organic Coatings, 2007, 58, 316-322.	3.9	47
115	Marine paint fomulations: Conducting polymers as anticorrosive additives. Progress in Organic Coatings, 2007, 59, 46-52.	3.9	125
116	Electrochemical characteristics of copolymers electrochemically synthesized from N-methylpyrrole and 3,4-ethylenedioxythiophene on steel electrodes: Comparison with homopolymers. Chemical Physics, 2006, 328, 299-306.	1.9	50
117	Electrochemical Synthesis of Poly(3,4-ethylenedioxythiophene) on Steel Electrodes: Properties and Characterization. Journal of Polymer Research, 2006, 13, 193-200.	2.4	108
118	A simple model to describe the thixotropic behavior of paints. Progress in Organic Coatings, 2006, 57, 229-235.	3.9	31
119	Application of electrochemically produced and oxidized poly(3,4-ethylenedioxythiophene) as anticorrosive additive for paints: Influence of the doping level. Journal of Applied Polymer Science, 2006, 102, 1592-1599.	2.6	39
120	On the use of conducting polymers to improve the resistance against corrosion of paints based on polyurethane resins. Materials and Corrosion - Werkstoffe Und Korrosion, 2006, 57, 683-688.	1.5	42
121	Application of a polythiophene derivative as anticorrosive additive for paints. Progress in Organic Coatings, 2005, 53, 217-224.	3.9	57
122	La modelización molecular como herramienta para el diseño de nuevos polÃmeros conductores. Polimeros, 2005, 15, 239-244.	0.7	3
123	Structural and electronic properties of 3,4-ethylenedioxythiophene, 3,4-ethylenedisulfanylfurane and thiophene oligomers: A theoretical investigation. Synthetic Metals, 2005, 149, 151-156.	3.9	50
124	Crystalline Structure of Poly(decamethylene sebacate). Repercussions on Lamellar Folding Surfaces. Macromolecules, 2002, 35, 3630-3635.	4.8	18
125	On the Crystalline Structure of Even Polyoxalamides. Macromolecules, 2002, 35, 8781-8787.	4.8	16
126	Study on the Degradability of Poly(ester amide)s Related to Nylons and Polyesters 6,10 or 12,10. Macromolecular Chemistry and Physics, 2002, 203, 48-58.	2.2	40

#	Article	IF	CITATIONS
127	Comparative degradation data of polyesters and related poly(ester amide)s derived from 1,4-butanediol, sebacic acid, and α-amino acids. Journal of Applied Polymer Science, 2002, 85, 1815-1824.	2.6	53
128	Structural Versatility of Oxalamide-Based Compounds:Â A Computational Study on the Isomerization of the Oxalamide Group and the Structural Preferences of the Polyoxalamides. Journal of Organic Chemistry, 2001, 66, 8076-8085.	3.2	14
129	N,N′-Bis(methoxycarbonylmethyl)terephthalamide. Acta Crystallographica Section C: Crystal Structure Communications, 2001, 57, 172-173.	0.4	4
130	DimethylN,N′-oxalamidodiethanoate. Acta Crystallographica Section C: Crystal Structure Communications, 2001, 57, 932-933.	0.4	3
131	Sequential poly(ester amide)s based on glycine, diols, and dicarboxylic acids: Thermal polyesterification versus interfacial polyamidation. Characterization of polymers containing stiff units. Journal of Polymer Science Part A, 2001, 39, 4283-4293.	2.3	81
132	Structure of poly(hexamethylene sebacate). Polymer, 2001, 42, 5695-5699.	3.8	27
133	Study on the degradability of poly(ester amide)s derived from the α-amino acids glycine, and ?-alanine containing a variable amide/ester ratio. Polymer, 2001, 42, 7923-7932.	3.8	58
134	Effect of the Environment on the Reactivity of 4′-Substituted Flavones and Isoflavones. Tetrahedron, 2000, 56, 5105-5111.	1.9	2
135	Computational studies in aqueous and chloroform solutions of complex organic solutes: distinctive effects of the solvent on solutes with small chemical differences. Chemical Physics, 1999, 241, 167-177.	1.9	0
136	Free energies of solvation for peptides and polypeptides using SCRF methods. Chemical Physics, 1998, 233, 85-96.	1.9	6
137	Biocompatibility and osseointegration properties of 3D-printed polymer infiltrated ceramic networks Â. , 0, , .		0
138	Use of poly(limonene-8,9-oxide carbonate) as a bio-based prepolymer for epoxy thermoset production Â. , 0, , .		0