Pingyi Fan

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/2710098/pingyi-fan-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

26 187 2,390 40 h-index g-index citations papers 3,128 5.8 248 5.9 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
187	Joint Optimization of Trajectory, Task Offloading and CPU Control in UAV-assisted Wireless Powered Fog Computing Networks. <i>IEEE Transactions on Green Communications and Networking</i> , 2022 , 1-1	4	O
186	From MIM-Based GAN to Anomaly Detection: Event Probability Influence on Generative Adversarial Networks. <i>IEEE Internet of Things Journal</i> , 2022 , 1-1	10.7	0
185	Effective User Clustering and Power Control for Multi-Antenna Uplink NOMA Transmission. <i>IEEE Transactions on Wireless Communications</i> , 2022 , 1-1	9.6	
184	Decentralized Power Allocation for MIMO-NOMA Vehicular Edge Computing Based on Deep Reinforcement Learning. <i>IEEE Internet of Things Journal</i> , 2021 , 1-1	10.7	8
183	On the Coverage of UAV-Assisted SWIPT Networks with Nonlinear EH Model. <i>IEEE Transactions on Wireless Communications</i> , 2021 , 1-1	9.6	2
182	Joint Coordinated Beamforming and Power Splitting Ratio Optimization in MU-MISO SWIPT-enabled HetNets: A Multi-agent DDQN-based Approach. <i>IEEE Journal on Selected Areas in Communications</i> , 2021 , 1-1	14.2	4
181	Convergence Analysis and System Design for Federated Learning Over Wireless Networks. <i>IEEE Journal on Selected Areas in Communications</i> , 2021 , 39, 3622-3639	14.2	5
180	Soft Compression: An Approach to Shape Coding for Images. <i>IEEE Communications Letters</i> , 2021 , 25, 79	8 ₃ 8©1	2
179	Age of Information-Based Wireless Powered Communication Networks With Selfish Charging Nodes. <i>IEEE Journal on Selected Areas in Communications</i> , 2021 , 39, 1393-1411	14.2	8
178	An Edge Federated MARL Approach for Timeliness Maintenance in MEC Collaboration 2021,		1
177	A lossless compression method for multi-component medical images based on big data mining. <i>Scientific Reports</i> , 2021 , 11, 12372	4.9	1
176	AoI-Minimal Trajectory Planning and Data Collection in UAV-Assisted Wireless Powered IoT Networks. <i>IEEE Internet of Things Journal</i> , 2021 , 8, 1211-1223	10.7	55
175	Q-Learning-Based Adaptive Power Control in Wireless RF Energy Harvesting Heterogeneous Networks. <i>IEEE Systems Journal</i> , 2021 , 15, 1861-1872	4.3	5
174	. IEEE Internet of Things Journal, 2021 , 8, 4802-4815	10.7	2
173	. IEEE Internet of Things Journal, 2021 , 8, 2826-2841	10.7	2
172	Federated Multi-Agent Actor-Critic Learning for Age Sensitive Mobile Edge Computing. <i>IEEE Internet of Things Journal</i> , 2021 , 1-1	10.7	11
171	⊞AoI Penalty in Wireless Powered Status Update Networks. <i>IEEE Internet of Things Journal</i> , 2021 , 1-1	10.7	

(2020-2021)

170	Velocity-adaptive Access Scheme for MEC-assisted Platooning Networks: Access Fairness Via Data Freshness. <i>IEEE Internet of Things Journal</i> , 2021 , 1-1	10.7	5
169	Achievable Information Rate in Hybrid VLC-RF Networks With Lighting Energy Harvesting. <i>IEEE Transactions on Communications</i> , 2021 , 1-1	6.9	3
168	Worst-case Energy Efficiency in Secure SWIPT Networks with Rate-splitting ID and Power-splitting EH Receivers. <i>IEEE Transactions on Wireless Communications</i> , 2021 , 1-1	9.6	2
167	Interpretable Generative Adversarial Networks With Exponential Function. <i>IEEE Transactions on Signal Processing</i> , 2021 , 69, 3854-3867	4.8	O
166	Average AoI Minimization in UAV-assisted Data Collection with RF Wireless Power Transfer: A Deep Reinforcement Learning Scheme. <i>IEEE Internet of Things Journal</i> , 2021 , 1-1	10.7	2
165	UAV-Aided Wireless Power Transfer and Data Collection in Rician Fading. <i>IEEE Journal on Selected Areas in Communications</i> , 2021 , 39, 3097-3113	14.2	6
164	Soft Compression for Lossless Image Coding Based on Shape Recognition Entropy, 2021 , 23,	2.8	1
163	. IEEE Internet of Things Journal, 2020 , 7, 10897-10911	10.7	7
162	An Importance Aware Weighted Coding Theorem Using Message Importance Measure. <i>IEEE Communications Letters</i> , 2020 , 24, 1598-1601	3.8	O
161	. IEEE Transactions on Green Communications and Networking, 2020 , 4, 804-818	4	8
161 160	. IEEE Transactions on Green Communications and Networking, 2020, 4, 804-818 Secrecy Energy Efficiency in Multi-Antenna SWIPT Networks With Dual-Layer PS Receivers. IEEE Transactions on Wireless Communications, 2020, 19, 4290-4306	9.6	8
	Secrecy Energy Efficiency in Multi-Antenna SWIPT Networks With Dual-Layer PS Receivers. <i>IEEE</i>	9.6	
160	Secrecy Energy Efficiency in Multi-Antenna SWIPT Networks With Dual-Layer PS Receivers. <i>IEEE Transactions on Wireless Communications</i> , 2020 , 19, 4290-4306 Information-Energy Region for SWIPT Networks in Mobility Scenarios. <i>IEEE Transactions on</i>		4
160 159	Secrecy Energy Efficiency in Multi-Antenna SWIPT Networks With Dual-Layer PS Receivers. <i>IEEE Transactions on Wireless Communications</i> , 2020 , 19, 4290-4306 Information-Energy Region for SWIPT Networks in Mobility Scenarios. <i>IEEE Transactions on Vehicular Technology</i> , 2020 , 69, 7264-7280 Time-Dependent Performance Analysis of the 802.11p-Based Platooning Communications Under	6.8	4
160 159 158	Secrecy Energy Efficiency in Multi-Antenna SWIPT Networks With Dual-Layer PS Receivers. <i>IEEE Transactions on Wireless Communications</i> , 2020 , 19, 4290-4306 Information-Energy Region for SWIPT Networks in Mobility Scenarios. <i>IEEE Transactions on Vehicular Technology</i> , 2020 , 69, 7264-7280 Time-Dependent Performance Analysis of the 802.11p-Based Platooning Communications Under Disturbance. <i>IEEE Transactions on Vehicular Technology</i> , 2020 , 69, 15760-15773 Outage Probability and Throughput of Multirelay SWIPT-WPCN Networks With Nonlinear EH Model	6.8	4 4 9
160 159 158	Secrecy Energy Efficiency in Multi-Antenna SWIPT Networks With Dual-Layer PS Receivers. <i>IEEE Transactions on Wireless Communications</i> , 2020 , 19, 4290-4306 Information-Energy Region for SWIPT Networks in Mobility Scenarios. <i>IEEE Transactions on Vehicular Technology</i> , 2020 , 69, 7264-7280 Time-Dependent Performance Analysis of the 802.11p-Based Platooning Communications Under Disturbance. <i>IEEE Transactions on Vehicular Technology</i> , 2020 , 69, 15760-15773 Outage Probability and Throughput of Multirelay SWIPT-WPCN Networks With Nonlinear EH Model and Imperfect CSI. <i>IEEE Systems Journal</i> , 2020 , 14, 1206-1217	6.8 6.8 4.3	4 4 9
160 159 158 157	Secrecy Energy Efficiency in Multi-Antenna SWIPT Networks With Dual-Layer PS Receivers. <i>IEEE Transactions on Wireless Communications</i> , 2020 , 19, 4290-4306 Information-Energy Region for SWIPT Networks in Mobility Scenarios. <i>IEEE Transactions on Vehicular Technology</i> , 2020 , 69, 7264-7280 Time-Dependent Performance Analysis of the 802.11p-Based Platooning Communications Under Disturbance. <i>IEEE Transactions on Vehicular Technology</i> , 2020 , 69, 15760-15773 Outage Probability and Throughput of Multirelay SWIPT-WPCN Networks With Nonlinear EH Model and Imperfect CSI. <i>IEEE Systems Journal</i> , 2020 , 14, 1206-1217 . <i>IEEE Internet of Things Journal</i> , 2020 , 7, 1081-1097 Toward Big Data Processing in IoT: Path Planning and Resource Management of UAV Base Stations	6.8 6.8 4.3	4 4 9 15

152	Age-Energy Region in Wireless Powered Communication Networks 2020,		3
151	Max-Min Energy Balance in Wireless-Powered Hierarchical Fog-Cloud Computing Networks. <i>IEEE Transactions on Wireless Communications</i> , 2020 , 19, 7064-7080	9.6	14
150	2020,		3
149	Flexible Effective Sample Size Based on the Message Importance Measure. <i>IEEE Open Journal of Signal Processing</i> , 2020 , 1, 216-229	1.2	1
148	Wireless Powered Communication Networks Assisted by Multiple Fog Servers 2019,		3
147	Online Transmission Policy in Wireless Powered Networks with Urgency-aware Age of Information 2019 ,		5
146	2019,		6
145	Minor Probability Events Detection in Big Data: An Integrated Approach With Bayes Detection and MIM. <i>IEEE Communications Letters</i> , 2019 , 23, 418-421	3.8	6
144	Data Analysis on OutdoorIndoor Air Quality Variation: BuildingsIProducing Dynamic Filter Effects. <i>IEEE Systems Journal</i> , 2019 , 13, 4386-4397	4.3	3
143	Matching Users' Preference under Target Revenue Constraints in Data Recommendation Systems. <i>Entropy</i> , 2019 , 21,	2.8	3
142	Attention to the Variation of Probabilistic Events: Information Processing with Message Importance Measure. <i>Entropy</i> , 2019 , 21,	2.8	1
141	Timely Two-Way Data Exchanging in Unilaterally Powered Fog Computing Systems. <i>IEEE Access</i> , 2019 , 7, 21103-21117	3.5	11
140	. IEEE Internet of Things Journal, 2019 , 6, 5246-5264	10.7	22
139	Power Minimization in SWIPT Networks With Coexisting Power-Splitting and Time-Switching Users Under Nonlinear EH Model. <i>IEEE Internet of Things Journal</i> , 2019 , 6, 8853-8869	10.7	27
138	Importance of Small Probability Events in Big Data: Information Measures, Applications, and Challenges. <i>IEEE Access</i> , 2019 , 7, 100363-100382	3.5	5
137	Machine Learning Based Prediction and Classification of Computational Jobs in Cloud Computing Centers 2019 ,		4
136	Age-Based Utility Maximization for Wireless Powered Networks: A Stackelberg Game Approach 2019 ,		5
135	Towards Big Data Processing in IoT: Network Management for Online Edge Data Processing 2019 ,		2

134	Optimal Design of Wireless-Powered Hierarchical Fog-Cloud Computing Networks 2019,		2
133	Global Energy Efficiency in Secure MISO SWIPT Systems With Non-Linear Power-Splitting EH Model. <i>IEEE Journal on Selected Areas in Communications</i> , 2019 , 37, 216-232	14.2	60
132	Robust Transmit Beamforming With Artificial Redundant Signals for Secure SWIPT System Under Non-Linear EH Model. <i>IEEE Transactions on Wireless Communications</i> , 2018 , 17, 2218-2232	9.6	42
131	To Smart City: Public Safety Network Design for Emergency. <i>IEEE Access</i> , 2018 , 6, 1451-1460	3.5	18
130	Beyond Empirical Models: Pattern Formation Driven Placement of UAV Base Stations. <i>IEEE Transactions on Wireless Communications</i> , 2018 , 17, 3641-3655	9.6	42
129	Location-Aware ICI Reduction in MIMO-OFDM Downlinks for High-Speed Railway Communication Systems. <i>IEEE Transactions on Vehicular Technology</i> , 2018 , 67, 2958-2972	6.8	9
128	Uplink age of information of unilaterally powered two-way data exchanging systems 2018,		19
127	Differential Message Importance Measure: A New Approach to the Required Sampling Number in Big Data Structure Characterization. <i>IEEE Access</i> , 2018 , 6, 42851-42867	3.5	6
126	Recognizing Information Feature Variation: Message Importance Transfer Measure and Its Applications in Big Data. <i>Entropy</i> , 2018 , 20,	2.8	4
125	Optimal coordinated beamforming with artificial noise for secure SWIPT in multi-cell networks. <i>Eurasip Journal on Wireless Communications and Networking</i> , 2018 , 2018,	3.2	5
124	Coordinated Beamforming With Artificial Noise for Secure SWIPT Under Non-Linear EH Model: Centralized and Distributed Designs. <i>IEEE Journal on Selected Areas in Communications</i> , 2018 , 36, 1544-	1 583	28
123	Non-Parametric Message Importance Measure: Storage Code Design and Transmission Planning for Big Data. <i>IEEE Transactions on Communications</i> , 2018 , 66, 5181-5196	6.9	9
122	Secrecy Energy Efficiency in SWIPT Networks with Two-Layer Power-Splitting Receiver 2018,		1
121	SWIPT-Enabled NOMA Networks with Full-Duplex Relaying 2018 ,		4
120	Age of Information in Wireless Powered Networks in Low SNR Region for Future 5G. <i>Entropy</i> , 2018 , 20,	2.8	12
119	Age Upon Decisions with General Arrivals 2018 ,		3
118	Age of Information Upon Decisions 2018,		4
117	A Swarming Approach to Optimize the One-Hop Delay in Smart Driving Inter-Platoon Communications. <i>Sensors</i> , 2018 , 18,	3.8	13

116	A Switch to the Concern of User: Importance Coefficient in Utility Distribution and Message Importance Measure 2018 ,		2
115	Toward Traffic Patterns in High-Speed Railway Communication Systems: Power Allocation and Access Selection. <i>IEEE Transactions on Vehicular Technology</i> , 2018 , 67, 12273-12287	6.8	3
114	Velocity-Adaptive V2I Fair-Access Scheme Based on IEEE 802.11 DCF for Platooning Vehicles. <i>Sensors</i> , 2018 , 18,	3.8	14
113	SWIPT-Aware Fog Information Processing: Local Computing vs. Fog Offloading. <i>Sensors</i> , 2018 , 18,	3.8	18
112	Information Theory in Formation Control: An Error Analysis to Multi-Robot Formation. <i>Entropy</i> , 2018 , 20,	2.8	1
111	. IEEE Transactions on Vehicular Technology, 2017 , 66, 2981-2996	6.8	77
110	Capacity Region of Gaussian Multiple-Access Channels With Energy Harvesting and Energy Cooperation. <i>IEEE Access</i> , 2017 , 5, 1570-1578	3.5	10
109	. IEEE Access, 2017 , 5, 5936-5946	3.5	19
108	RF Energy Harvesting Wireless Powered Sensor Networks for Smart Cities. <i>IEEE Access</i> , 2017 , 5, 9348-9	93585	58
107	Position-Aided Large-Scale MIMO Channel Estimation for High-Speed Railway Communication Systems. <i>IEEE Transactions on Vehicular Technology</i> , 2017 , 66, 8964-8978	6.8	15
106	Mobile Service Amount Based Link Scheduling for High-Mobility Cooperative Vehicular Networks. <i>IEEE Transactions on Vehicular Technology</i> , 2017 , 66, 9521-9533	6.8	21
105	Service-Oriented Power Allocation for High-Speed Railway Wireless Communications. <i>IEEE Access</i> , 2017 , 5, 8343-8356	3.5	21
104	Towards 5G High Mobility: A Fairness-Adjustable Time-Domain Power Allocation Approach. <i>IEEE Access</i> , 2017 , 5, 11817-11831	3.5	13
103	Optimal Multicell Coordinated Beamforming for Downlink High-Speed Railway Communications. <i>IEEE Transactions on Vehicular Technology</i> , 2017 , 66, 9603-9608	6.8	16
102	Space-Time Network Coding With Multiple AF Relays Over Nakagami- \$m\$ Fading Channels. <i>IEEE Transactions on Vehicular Technology</i> , 2017 , 66, 6026-6036	6.8	7
101	Group Cooperation With Optimal Resource Allocation in Wireless Powered Communication Networks. <i>IEEE Transactions on Wireless Communications</i> , 2017 , 16, 3840-3853	9.6	76
100	Traffic Off-Loading With Energy-Harvesting Small Cells and Coded Content Caching. <i>IEEE Transactions on Communications</i> , 2017 , 65, 906-917	6.9	22
99	Resource Allocation in Wireless Powered Sensor Networks With Circuit Energy Consumption Constraints. <i>IEEE Access</i> , 2017 , 5, 22775-22782	3.5	14

(2016-2017)

98	SWIPT for MISO Wiretap Networks: Channel Uncertainties and Nonlinear Energy Harvesting Features 2017 ,		3	
97	Optimal Design of SWIPT Systems With Multiple Heterogeneous Users Under Non-linear Energy Harvesting Model. <i>IEEE Access</i> , 2017 , 5, 11479-11489	3.5	43	
96	Optimal Resource Allocation in Wireless Powered Communication Networks With User Cooperation. <i>IEEE Transactions on Wireless Communications</i> , 2017 , 16, 7936-7949	9.6	26	
95	. IEEE Access, 2017 , 5, 23032-23045	3.5	25	
94	. IEEE Transactions on Vehicular Technology, 2017 , 66, 9162-9176	6.8	4	
93	Optimal Beamforming and Power Splitting Design for SWIPT under Non-Linear Energy Harvesting Model 2017 ,		6	
92	Focusing on a probability element: Parameter selection of message importance measure in big data 2017 ,		9	
91	The Effect of Power Adjustment on Handover in High-Speed Railway Communication Networks. <i>IEEE Access</i> , 2017 , 5, 26237-26250	3.5	12	
90	. IEEE Access, 2017 , 5, 27538-27550	3.5	3	
89	Semi-centralized control for multi robot formation 2017,		6	
88	Amplifying Inter-Message Distance: On Information Divergence Measures in Big Data. <i>IEEE Access</i> , 2017 , 5, 24105-24119	3.5	9	
87	Non-parametric message important measure: Compressed storage design for big data in wireless communication systems 2017 ,		3	
86	Energy-Efficient 3D UAV-BS Placement versus Mobile Users' Density and Circuit Power 2017 ,		29	
85	Differential services in HSR communication systems: Power allocation and antenna selection 2017,		2	
84	Outage Probability of Energy Harvesting Relay-Aided Cooperative Networks Over Rayleigh Fading Channel. <i>IEEE Transactions on Vehicular Technology</i> , 2016 , 65, 972-978	6.8	76	
83	Outage Probability Analysis of Linear MANETs in Dual-Hop AF Systems With Noisy Relay and Interference-Limited Destination. <i>IEEE Transactions on Vehicular Technology</i> , 2016 , 65, 1795-1800	6.8	4	
82	Tracking angles of departure and arrival in a mobile millimeter wave channel 2016,		82	
81	Location-Aware Low Complexity ICI Reduction in OFDM Downlinks for High-Speed Railway Communication Systems with Distributed Antennas 2016 ,		6	

80	Remote Antenna Unit Selection Assisted Seamless Handover for High-Speed Railway Communications with Distributed Antennas 2016 ,		3
79	Optimum Transmission Policies for Energy Harvesting Sensor Networks Powered by a Mobile Control Center. <i>IEEE Transactions on Wireless Communications</i> , 2016 , 15, 6132-6145	9.6	27
78	Providing Services for the High-Speed Train and Local Users in the Same OFDMA System: Resource Allocation in the Downlink. <i>IEEE Transactions on Wireless Communications</i> , 2016 , 15, 1018-1030	9.6	8
77	Cooperation in 5G Heterogeneous Networking: Relay Scheme Combination and Resource Allocation. <i>IEEE Transactions on Communications</i> , 2016 , 64, 3430-3443	6.9	19
76	Energy-Efficient Resource Allocation in OFDM Relay Networks under Proportional Rate Constraints 2016 ,		8
75	Message Importance Measure and Its Application to Minority Subset Detection in Big Data 2016 ,		13
74	Evaluation Framework for User Experience in 5G Systems: On Systematic Rateless-Coded Transmissions. <i>IEEE Access</i> , 2016 , 4, 9108-9118	3.5	12
73	Smart Channel Sounder for 5G IoT: From Wireless Big Data to Active Communication. <i>IEEE Access</i> , 2016 , 4, 8888-8899	3.5	22
72	. IEEE Journal on Selected Areas in Communications, 2016 , 34, 1431-1447	14.2	61
71	Novel degree function over finite field for LT codes 2016,		3
70	Subcarrier grouping with environmental sensing for MIMO-OFDM systems over correlated double-selective fading channels. <i>Wireless Communications and Mobile Computing</i> , 2016 , 16, 2677-2689	1.9	2
69	Location-Aided Umbrella-Shaped Massive MIMO Beamforming Scheme with Transmit Diversity for High Speed Railway Communications 2016 ,		7
68	. IEEE Journal on Selected Areas in Communications, 2015 , 1-1	14.2	122
67	. IEEE Transactions on Vehicular Technology, 2015 , 64, 5775-5788	6.8	66
66	Energy harvesting sensor networks with a mobile control center: Optimal transmission policy 2015,		2
65	Hardware implementation on m parameter ML estimation of Nakagami-m fading channel 2015,		3
64	Power-space functions in high speed railway wireless communications. <i>Journal of Communications and Networks</i> , 2015 , 17, 231-240	4.1	30
63	On the cooperation gain in 5g heterogeneous networking systems 2015 ,		1

62	A hybrid DF and CF scheme with adaptive power allocation for half-duplex relay channel 2015,		2
61	Opportunistic Network Coding Scheme for Two-Way Relay Wireless Networks: A Sum-Rate Maximization Approach. <i>IEEE Transactions on Vehicular Technology</i> , 2015 , 64, 2732-2738	6.8	4
60	Downlink resource allocation for the high-speed train and local users in OFDMA systems 2015,		3
59	Service-based high-speed railway base station arrangement. Wireless Communications and Mobile Computing, 2015 , 15, 1681-1694	1.9	12
58	General hardware framework of Nakagami m parameter estimator for wireless fading channel 2015		4
57	Outage Performance of Space-Time Network Coding With Overhearing AF Relays. <i>IEEE Communications Letters</i> , 2015 , 19, 2234-2237	3.8	4
56	Position-based diversity and multiplexing analysis for high speed railway communications 2015,		7
55	High-Speed Railway Wireless Communications: Efficiency Versus Fairness. <i>IEEE Transactions on Vehicular Technology</i> , 2014 , 63, 925-930	6.8	58
54	Outage Probability of SpaceTime Network Coding Over Rayleigh Fading Channels. <i>IEEE Transactions on Vehicular Technology</i> , 2014 , 63, 1965-1970	6.8	16
53	Optimal Cooperative Beamforming Design for MIMO Decode-and-Forward Relay Channels. <i>IEEE Transactions on Signal Processing</i> , 2014 , 62, 1476-1489	4.8	31
52	Space-Time Network Coding With Overhearing Relays. <i>IEEE Transactions on Wireless Communications</i> , 2014 , 13, 3567-3582	9.6	22
51	Novel ML estimation of m parameter of the noisy Nakagami-m channel 2014 ,		5
50	Subband division for Gaussian relay channel 2014 ,		4
49	Providing Differentiated Services in Multiaccess Systems With and Without Queue State Information. <i>IEEE Transactions on Communications</i> , 2014 , 62, 4387-4400	6.9	4
48	Reliable information rate of signal-time coding for half-duplex additive white Gaussian noise relay networks. <i>Wireless Communications and Mobile Computing</i> , 2014 , 14, 37-55	1.9	2
47	How channel fadings affect the system service of high speed railway communications 2013,		1
46	Outage probability of space-time network coding with amplify-and-forward relays 2013,		6
45	Queueing analysis for block fading Rayleigh channels in the low SNR regime 2013,		5

44	Multicast for asymmetrical half-duplex butterfly network: A deterministic approach 2013,		2
43	Resource allocation for two-way relay networks with symmetric data rates: An information theoretic approach 2013,		7
42	Performance analysis for buffer-aided communication over block Rayleigh fading channels: queue length distribution, overflow probability, and bverflow rate. Wireless Communications and Mobile Computing, 2012, 12, 1581-1591	1.9	2
41	On the multicast throughput for half-duplex butterfly network using deterministic approach 2012 ,		1
40	Ebverflow rate: Buffer-aided information transmission over Nakagami-m fading channels 2012,		2
39	Doppler frequency offsets estimation and diversity reception scheme of high speed railway with multiple antennas on separated carriages 2012 ,		10
38	Joint subcarrier-pairing and resource allocation for two-way multi-relay OFDM networks 2012,		13
37	Doppler frequency offset estimation and diversity reception scheme of high-speed railway with multiple antennas on separated carriage. <i>Journal of Modern Transportation</i> , 2012 , 20, 227-233	3.7	20
36	Optimal beamforming for MIMO decode-and-forward relay channels 2012,		1
35	Understanding of transmission throughput and channel capacity in a systematic way 2011,		1
34	Global Proportional Fair Scheduling for Networks With Multiple Base Stations. <i>IEEE Transactions on Vehicular Technology</i> , 2011 , 60, 1867-1879	6.8	32
33	Joint Channel Probing and Proportional Fair Scheduling in Wireless Networks. <i>IEEE Transactions on Wireless Communications</i> , 2011 , 10, 3496-3505	9.6	3
32	Energy Detection Based Signal-Time Coding for AWGN Relay Networks 2011,		2
31	Cooperative multi-source-multi-destination transmission system with relay selection 2011 ,		1
30	End-to-End Delay Constrained Routing and Scheduling for Wireless Sensor Networks 2011,		9
29	The deterministic time-linearity of service provided by Rayleigh fading channels 2011,		3
28	Optimal Scheduling for Network Coding: Delay v.s. Efficiency 2010 ,		3
27	Achieving Network Wide Proportional Fairness: A Pricing Method 2010 ,		2

26	The Impact of Limited Information on Proportional Fair Scheduling in Wireless Networks 2010,		1
25	. IEEE Transactions on Vehicular Technology, 2010 , 59, 4564-4577	6.8	24
24	On the characteristics of queueing and scheduling at encoding nodes for network coding. <i>International Journal of Communication Systems</i> , 2009 , 22, 755-772	1.7	42
23	Joint processing of topology control and channel assignment in wireless ad hoc networks. <i>Wireless Communications and Mobile Computing</i> , 2009 , 9, 269-281	1.9	4
22	Throughput improvement and its tradeoff with the queuing delay in the diamond relay networks. Wireless Communications and Mobile Computing, 2009, 10, n/a-n/a	1.9	1
21	A Signal-Time Coding Approach to Relay Networks 2009 ,		2
20	An Optimal Antenna Assignment Strategy for Information Raining. <i>IEEE Transactions on Wireless Communications</i> , 2008 , 7, 1134-1139	9.6	5
19	On the Geometrical Characteristic of Wireless Ad-Hoc Networks and its Application in Network Performance Analysis. <i>IEEE Transactions on Wireless Communications</i> , 2007 , 6, 1256-1265	9.6	20
18	Maximum flow and network capacity of network coding for ad-hoc networks. <i>IEEE Transactions on Wireless Communications</i> , 2007 , 6, 4193-4198	9.6	10
17	An Algebraic Approach to Link Failures Based on Network Coding. <i>IEEE Transactions on Information Theory</i> , 2007 , 53, 775-779	2.8	4
16	Cross layer optimization of downlink power allocation in multi-user wireless communication systems. Frontiers of Electrical and Electronic Engineering in China: Selected Publications From Chinese Universities, 2007, 2, 381-387		
15	A Network Coding Unicast Strategy for Wireless Multi-Hop Networks 2007,		4
14	A Combination Scheme of Topology Control and Channel Assignment in Wireless Ad Hoc Networks 2007 ,		1
13	Flexible construction of irregular partitioned permutation LDPC codes with low, error floors. <i>IEEE Communications Letters</i> , 2005 , 9, 534-536	3.8	13
12	Performance of the combining received differential encoding transmit diversity with imperfect carrier recovery over correlated Nakagami fading channels. <i>Wireless Communications and Mobile Computing</i> , 2004 , 4, 475-482	1.9	
11	A noncoherent coded modulation for 16QAM. <i>IEEE Transactions on Communications</i> , 2001 , 49, 585-588	6.9	5
10	Joint turbo coding and modulated coding for channel with intersymbol interference. <i>IEEE Transactions on Consumer Electronics</i> , 2000 , 46, 390-394	4.8	
9	Multirate trellis coded modulation schemes in multimedia communications. <i>IEEE Transactions on Consumer Electronics</i> , 2000 , 46, 1034-1042	4.8	O

Design of interpolation filter for all digital receiver on the interpolation problem of full response modulation signals. *Journal of Electronics*, **1998**, 15, 150-157

7	A matrix algorithm for computing the free space distance of TCM signal sequences. <i>Journal of Electronics</i> , 1997 , 14, 328-335	
6	Queuing model and delay analysis on network coding	5
5	Analysis of maximum flow in random graphs for network coding	2
4	An FPGA implementation of a structured irregular LDPC decoder	1
3	Spatial reuse in IEEE 802.16 based wireless mesh networks	7
2	A neighbor-table-based multipath routing in ad hoc networks	4
1	Investigation of the time-offset-based QoS support with optical burst switching in WDM networks	2