List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2710032/publications.pdf Version: 2024-02-01

TAKESHI NODA

#	Article	IF	CITATIONS
1	Acetylation of the influenza A virus polymerase subunit PA in the Nâ€ŧerminal domain positively regulates its endonuclease activity. FEBS Journal, 2022, 289, 231-245.	2.2	9
2	Migration of Influenza Virus Nucleoprotein into the Nucleolus Is Essential for Ribonucleoprotein Complex Formation. MBio, 2022, 13, .	1.8	4
3	Contribution of RNA-RNA Interactions Mediated by the Genome Packaging Signals for the Selective Genome Packaging of Influenza A Virus. Journal of Virology, 2022, 96, JVI0164121.	1.5	8
4	Structural insight into Marburg virus nucleoprotein–RNA complex formation. Nature Communications, 2022, 13, 1191.	5.8	11
5	Cyclin J–CDK complexes limit innate immune responses by reducing proinflammatory changes in macrophage metabolism. Science Signaling, 2022, 15, eabm5011.	1.6	4
6	Structure of theÂbile acid transporterÂand HBV receptor NTCP. Nature, 2022, 606, 1021-1026.	13.7	45
7	Cell response analysis in SARS-CoV-2 infected bronchial organoids. Communications Biology, 2022, 5, .	2.0	39
8	Selective Genome Packaging Mechanisms of Influenza A Viruses. Cold Spring Harbor Perspectives in Medicine, 2021, 11, a038497.	2.9	12
9	Optimal Expression of the Envelope Glycoprotein of Orthobornaviruses Determines the Production of Mature Virus Particles. Journal of Virology, 2021, 95, .	1.5	4
10	Cryo-EM Structure of the Prostaglandin E Receptor EP4 Coupled to G Protein. Structure, 2021, 29, 252-260.e6.	1.6	32
11	Protective Face Mask Filter Capable of Inactivating SARS-CoV-2, and Methicillin-Resistant Staphylococcus aureus and Staphylococcus epidermidis. Polymers, 2021, 13, 207.	2.0	56
12	Amplification-free RNA detection with CRISPR–Cas13. Communications Biology, 2021, 4, 476.	2.0	119
13	Modeling SARS-CoV-2 infection and its individual differences with ACE2-expressing human iPS cells. IScience, 2021, 24, 102428.	1.9	9
14	Ultrastructure of influenza virus ribonucleoprotein complexes during viral RNA synthesis. Communications Biology, 2021, 4, 858.	2.0	13
15	Resistance of SARS-CoV-2 variants to neutralization by antibodies induced in convalescent patients with COVID-19. Cell Reports, 2021, 36, 109385.	2.9	23
16	CP100356 Hydrochloride, a P-Glycoprotein Inhibitor, Inhibits Lassa Virus Entry: Implication of a Candidate Pan-Mammarenavirus Entry Inhibitor. Viruses, 2021, 13, 1763.	1.5	2
17	Antimicrobial Face Shield: Next Generation of Facial Protective Equipment against SARS-CoV-2 and Multidrug-Resistant Bacteria. International Journal of Molecular Sciences, 2021, 22, 9518.	1.8	16
18	Antiviral Face Mask Functionalized with Solidified Hand Soap: Low-Cost Infection Prevention Clothing against Enveloped Viruses Such as SARS-CoV-2. ACS Omega, 2021, 6, 23495-23503.	1.6	36

#	Article	IF	CITATIONS
19	A novel aqueous extract from rice fermented with Aspergillus oryzae and Saccharomyces cerevisiae possesses an anti-influenza A virus activity. PLoS ONE, 2021, 16, e0244885.	1.1	4
20	Non-Woven Infection Prevention Fabrics Coated with Biobased Cranberry Extracts Inactivate Enveloped Viruses Such as SARS-CoV-2 and Multidrug-Resistant Bacteria. International Journal of Molecular Sciences, 2021, 22, 12719.	1.8	19
21	<i>In vitro</i> vRNA–vRNA interactions in the H1N1 influenza A virus genome. Microbiology and Immunology, 2020, 64, 202-209.	0.7	8
22	Influenza A virus NS1 optimises virus infectivity by enhancing genome packaging in a dsRNA-binding dependent manner. Virology Journal, 2020, 17, 107.	1.4	4
23	Extracellular nanovesicles for packaging of CRISPR-Cas9 protein and sgRNA to induce therapeutic exon skipping. Nature Communications, 2020, 11, 1334.	5.8	197
24	Serine-Arginine Protein Kinase 1 Regulates Ebola Virus Transcription. MBio, 2020, 11, .	1.8	25
25	The Integrity of the YxxL Motif of Ebola Virus VP24 Is Important for the Transport of Nucleocapsid-Like Structures and for the Regulation of Viral RNA Synthesis. Journal of Virology, 2020, 94, .	1.5	11
26	N4BP1 restricts HIV-1 and its inactivation by MALT1 promotes viral reactivation. Nature Microbiology, 2019, 4, 1532-1544.	5.9	61
27	Generation of a purely clonal defective interfering influenza virus. Microbiology and Immunology, 2019, 63, 164-171.	0.7	8
28	Local structural changes of the influenza A virus ribonucleoprotein complex by single mutations in the specific residues involved in efficient genome packaging. Virology, 2019, 531, 126-140.	1.1	9
29	Microtubule-dependent transport of arenavirus matrix protein demonstrated using live-cell imaging microscopy. Microscopy (Oxford, England), 2019, 68, 450-456.	0.7	4
30	A live-cell imaging system for visualizing the transport of Marburg virus nucleocapsid-like structures. Virology Journal, 2019, 16, 159.	1.4	3
31	G Protein Pathway Suppressor 1 Promotes Influenza Virus Polymerase Activity by Activating the NF-κB Signaling Pathway. MBio, 2019, 10, .	1.8	11
32	Lung-Derived Exosomal miR-483-3p Regulates the Innate Immune Response to Influenza Virus Infection. Journal of Infectious Diseases, 2018, 217, 1372-1382.	1.9	60
33	Influenza C and D Viruses Package Eight Organized Ribonucleoprotein Complexes. Journal of Virology, 2018, 92, .	1.5	39
34	Importance of the 1+7 configuration of ribonucleoprotein complexes for influenza A virus genome packaging. Nature Communications, 2018, 9, 54.	5.8	50
35	Influenza A virus nucleoprotein is acetylated by histone acetyltransferases PCAF and GCN5. Journal of Biological Chemistry, 2018, 293, 7126-7138.	1.6	41
36	Syrian Hamster as an Animal Model for the Study of Human Influenza Virus Infection. Journal of Virology, 2018, 92, .	1.5	63

#	Article	IF	CITATIONS
37	Cryo-EM structure of the Ebola virus nucleoprotein–RNA complex at 3.6Âà resolution. Nature, 2018, 563, 137-140.	13.7	94
38	A Defect in Influenza A Virus Particle Assembly Specific to Primary Human Macrophages. MBio, 2018, 9, .	1.8	8
39	Epstein–Barr Virus Acquires Its Final Envelope on Intracellular Compartments With Golgi Markers. Frontiers in Microbiology, 2018, 9, 454.	1.5	23
40	Electron Microscopy of Ebola Virus-Infected Cells. Methods in Molecular Biology, 2017, 1628, 243-250.	0.4	5
41	Establishment of a human hepatocellular cell line capable of maintaining long-term replication of hepatitis B virus. International Immunology, 2017, 29, 109-120.	1.8	5
42	Broad-spectrum antiviral agents: secreted phospholipase A2 targets viral envelope lipid bilayers derived from the endoplasmic reticulum membrane. Scientific Reports, 2017, 7, 15931.	1.6	38
43	Structure and assembly of the Ebola virus nucleocapsid. Nature, 2017, 551, 394-397.	13.7	185
44	N-terminally truncated POM121C inhibits HIV-1 replication. PLoS ONE, 2017, 12, e0182434.	1.1	14
45	Phosphorylation of the HIV-1 capsid by MELK triggers uncoating to promote viral cDNA synthesis. PLoS Pathogens, 2017, 13, e1006441.	2.1	27
46	Complete and Incomplete Genome Packaging of Influenza A and B Viruses. MBio, 2016, 7, .	1.8	57
47	Modelling Ebola virus dynamics: Implications for therapy. Antiviral Research, 2016, 135, 62-73.	1.9	26
48	Crystal Structure of Marburg Virus VP40 Reveals a Broad, Basic Patch for Matrix Assembly and a Requirement of the N-Terminal Domain for Immunosuppression. Journal of Virology, 2016, 90, 1839-1848.	1.5	33
49	Actin-Modulating Protein Cofilin Is Involved in the Formation of Measles Virus Ribonucleoprotein Complex at the Perinuclear Region. Journal of Virology, 2015, 89, 10524-10531.	1.5	15
50	Influenza Virus-Host Interactome Screen as a Platform for Antiviral Drug Development. Cell Host and Microbe, 2014, 16, 795-805.	5.1	239
51	A Novel Functional Site in the PB2 Subunit of Influenza A Virus Essential for Acetyl-CoA Interaction, RNA Polymerase Activity, and Viral Replication. Journal of Biological Chemistry, 2014, 289, 24980-24994.	1.6	19
52	Disease Severity Is Associated with Differential Gene Expression at the Early and Late Phases of Infection in Nonhuman Primates Infected with Different H5N1 Highly Pathogenic Avian Influenza Viruses. Journal of Virology, 2014, 88, 8981-8997.	1.5	45
53	Characterization of H7N9 influenza A viruses isolated from humans. Nature, 2013, 501, 551-555.	13.7	371
54	Configuration of Viral Ribonucleoprotein Complexes within the Influenza A Virion. Journal of Virology, 2013, 87, 12879-12884.	1.5	44

#	Article	IF	CITATIONS
55	The Genome-Packaging Signal of the Influenza A Virus Genome Comprises a Genome Incorporation Signal and a Genome-Bundling Signal. Journal of Virology, 2013, 87, 11316-11322.	1.5	84
56	The microtubule motor protein KIF13A is involved in intracellular trafficking of the Lassa virus matrix protein Z. Cellular Microbiology, 2013, 15, 315-334.	1.1	12
57	Three-dimensional analysis of ribonucleoprotein complexes in influenza A virus. Nature Communications, 2012, 3, 639.	5.8	145
58	Packaging of influenza virus genome: Robustness of selection. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 8797-8798.	3.3	29
59	Structural dissection of Ebola virus and its assembly determinants using cryo-electron tomography. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 4275-4280.	3.3	210
60	Strand-specific real-time RT-PCR for distinguishing influenza vRNA, cRNA, and mRNA. Journal of Virological Methods, 2011, 173, 1-6.	1.0	234
61	Ultracentrifugation deforms unfixed influenza A virions. Journal of General Virology, 2011, 92, 2485-2493.	1.3	30
62	The Importance of the NP: VP35 Ratio in Ebola Virus Nucleocapsid Formation. Journal of Infectious Diseases, 2011, 204, S878-S883.	1.9	43
63	Native Morphology of Influenza Virions. Frontiers in Microbiology, 2011, 2, 269.	1.5	66
64	Characterization of the Ebola virus nucleoprotein-RNA complex. Journal of General Virology, 2010, 91, 1478-1483.	1.3	84
65	Emergence and pandemic potential of swine-origin H1N1 influenza virus. Nature, 2009, 459, 931-939.	13.7	1,327
66	In vitro and in vivo characterization of new swine-origin H1N1 influenza viruses. Nature, 2009, 460, 1021-1025.	13.7	1,002
67	Generation of biologically contained Ebola viruses. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 1129-1133.	3.3	113
68	Mapping of the VP40-Binding Regions of the Nucleoprotein of Ebola Virus. Journal of Virology, 2007, 81, 3554-3562.	1.5	72
69	Regions in Ebola Virus VP24 That Are Important for Nucleocapsid Formation. Journal of Infectious Diseases, 2007, 196, S247-S250.	1.9	56
70	Ebola Virus (EBOV) VP24 Inhibits Transcription and Replication of the EBOV Genome. Journal of Infectious Diseases, 2007, 196, S284-S290.	1.9	104
71	Functional Mapping of the Nucleoprotein of Ebola Virus. Journal of Virology, 2006, 80, 3743-3751.	1.5	148
72	Architecture of ribonucleoprotein complexes in influenza A virus particles. Nature, 2006, 439, 490-492.	13.7	352

#	Article	IF	CITATIONS
73	Assembly and Budding of Ebolavirus. PLoS Pathogens, 2006, 2, e99.	2.1	158
74	Cellular Factors Required for Lassa Virus Budding. Journal of Virology, 2006, 80, 4191-4195.	1.5	143
75	Hierarchy among Viral RNA (vRNA) Segments in Their Role in vRNA Incorporation into Influenza A Virions. Journal of Virology, 2006, 80, 2318-2325.	1.5	165
76	The Cytoplasmic Tail of the Influenza A Virus M2 Protein Plays a Role in Viral Assembly. Journal of Virology, 2006, 80, 5233-5240.	1.5	144
77	Interaction between Filovirus Proteins and Host Cell Membrane. Membrane, 2005, 30, 68-72.	0.0	0
78	Nucleocapsid-like Structures of Ebola Virus Reconstructed Using Electron Tomography. Journal of Veterinary Medical Science, 2005, 67, 325-328.	0.3	38
79	Importance of both the Coding and the Segment-Specific Noncoding Regions of the Influenza A Virus NS Segment for Its Efficient Incorporation into Virions. Journal of Virology, 2005, 79, 3766-3774.	1.5	165
80	Ebola Virus VP40 Late Domains Are Not Essential for Viral Replication in Cell Culture. Journal of Virology, 2005, 79, 10300-10307.	1.5	80
81	Production of Novel Ebola Virus-Like Particles from cDNAs: an Alternative to Ebola Virus Generation by Reverse Genetics. Journal of Virology, 2004, 78, 999-1005.	1.5	117
82	Exploitation of Nucleic Acid Packaging Signals To Generate a Novel Influenza Virus-Based Vector Stably Expressing Two Foreign Genes. Journal of Virology, 2003, 77, 10575-10583.	1.5	160
83	Ebola Virus VP40 Drives the Formation of Virus-Like Filamentous Particles Along with GP. Journal of Virology, 2002, 76, 4855-4865.	1.5	322