Yonghui Deng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2709788/publications.pdf

Version: 2024-02-01

199 papers 18,852 citations

72 h-index 132 g-index

204 all docs

204 docs citations

times ranked

204

18938 citing authors

#	Article	IF	CITATIONS
1	A facile construction of bifunctional core-shell magnetic fluorescent Fe3O4@YVO4:Eu3+ microspheres for latent fingerprint detection. Journal of Colloid and Interface Science, 2022, 605, 425-431.	5.0	27
2	Ultrathin 2D NbWO ₆ Perovskite Semiconductor Based Gas Sensors with Ultrahigh Selectivity under Low Working Temperature. Advanced Materials, 2022, 34, e2104958.	11.1	46
3	Rationally Designed Dualâ€Mesoporous Transition Metal Oxides/Noble Metal Nanocomposites for Fabrication of Gas Sensors in Realâ€Time Detection of 3â€Hydroxyâ€2â€Butanone Biomarker. Advanced Functional Materials, 2022, 32, 2107439.	7.8	46
4	Self-template synthesis of mesoporous Au-SnO2 nanospheres for low-temperature detection of triethylamine vapor. Sensors and Actuators B: Chemical, 2022, 356, 131358.	4.0	34
5	Versatile core–shell magnetic fluorescent mesoporous microspheres for multilevel latent fingerprints magnetoâ€optic information recognition. InformaÄnÃ-Materiály, 2022, 4, .	8.5	15
6	Engineering Pore Walls of Mesoporous Tungsten Oxides via Ce Doping for the Development of High-Performance Smart Gas Sensors. Chemistry of Materials, 2022, 34, 2321-2332.	3.2	18
7	Synthesis of Bi2O2CO3/In(OH)3·xH2O nanocomposites for isopropanol sensor with excellent performances at low temperature. Sensors and Actuators B: Chemical, 2022, 361, 131715.	4.0	30
8	Rational Design of Multifunctional CuS Nanoparticleâ€PEG Composite Soft Hydrogelâ€Coated 3D Hard Polycaprolactone Scaffolds for Efficient Bone Regeneration. Advanced Functional Materials, 2022, 32, .	7.8	62
9	Polyphenol-Mediated Synthesis of Mesoporous Au–In ₂ O ₃ Nanospheres for Room-Temperature Detection of Triethylamine. ACS Applied Nano Materials, 2022, 5, 9688-9697.	2.4	7
10	Recent advance in synthesis and application of heteroatom zeolites. Chinese Chemical Letters, 2021, 32, 328-338.	4.8	28
11	Sulfonic acid-functionalized core-shell Fe3O4@carbon microspheres as magnetically recyclable solid acid catalysts. Chinese Chemical Letters, 2021, 32, 2079-2085.	4.8	15
12	Hydrothermal synthesis of hierarchical SnO2 nanomaterials for high-efficiency detection of pesticide residue. Chinese Chemical Letters, 2021, 32, 1502-1506.	4.8	22
13	Tailored Mesoporous Inorganic Biomaterials: Assembly, Functionalization, and Drug Delivery Engineering. Advanced Materials, 2021, 33, e2005215.	11.1	100
14	A fast on-demand preparation of injectable self-healing nanocomposite hydrogels for efficient osteoinduction. Chinese Chemical Letters, 2021, 32, 2159-2163.	4.8	26
15	General and Efficient Synthesis of Two-Dimensional Monolayer Mesoporous Materials with Diverse Framework Compositions. ACS Applied Materials & Samp; Interfaces, 2021, 13, 1222-1233.	4.0	9
16	Prolonged use of nitric oxide donor sodium nitroprusside induces ocular hypertension in mice. Experimental Eye Research, 2021, 202, 108280.	1.2	11
17	A facile construction of heterostructured ZnO/Co3O4 mesoporous spheres and superior acetone sensing performance. Chinese Chemical Letters, 2021, 32, 1998-2004.	4.8	19
18	Mesoporous Materials–Based Electrochemical Biosensors from Enzymatic to Nonenzymatic. Small, 2021, 17, e1904022.	5.2	49

#	Article	IF	CITATIONS
19	Facile synthesis of metal-polyphenol-formaldehyde coordination polymer colloidal nanoparticles with sub-50 nm for T1-weighted magnetic resonance imaging. Chinese Chemical Letters, 2021, 32, 842-848.	4.8	24
20	Recent Advances in Design of Functional Biocompatible Hydrogels for Bone Tissue Engineering. Advanced Functional Materials, 2021, 31, 2009432.	7.8	212
21	Structure Engineering of Yolk–Shell Magnetic Mesoporous Silica Microspheres with Broccoliâ€Like Morphology for Efficient Catalysis and Enhanced Cellular Uptake. Small, 2021, 17, e2006925.	5.2	16
22	One-dimensional nanochains consisting of magnetic core and mesoporous aluminosilicate for use as efficient nanocatalysts. Nano Research, 2021, 14, 4197-4203.	5.8	9
23	Smart Cargo Delivery System based on Mesoporous Nanoparticles for Bone Disease Diagnosis and Treatment. Advanced Science, 2021, 8, e2004586.	5.6	28
24	Controllable Multicomponent Coâ€Assembly Approach to Ordered Mesoporous Zirconia Supported with Wellâ€Dispersed Tungsten Oxide Clusters as Highâ€Performance Catalysts. ChemCatChem, 2021, 13, 2863-2872.	1.8	8
25	Size-Controlled Au Nanoparticles Incorporating Mesoporous ZnO for Sensitive Ethanol Sensing. ACS Applied Materials & Samp; Interfaces, 2021, 13, 51933-51944.	4.0	40
26	Improved Treatment on Ocular Inflammation with Rationally Designed Thermoresponsive Nanocomposite Formulation. Advanced Therapeutics, 2021, 4, 2100088.	1.6	7
27	Interface Assembly to Magnetic Mesoporous Organosilica Microspheres with Tunable Surface Roughness as Advanced Catalyst Carriers and Adsorbents. ACS Applied Materials & Diterfaces, 2021, 13, 36138-36146.	4.0	14
28	Selfâ€Hybrid Transition Metal Oxide Nanosheets Synthesized by a Facile Programmable and Scalable Carbonateâ€Template Method. Small, 2021, 17, e2103176.	5.2	13
29	Interfacial Assembly and Applications of Functional Mesoporous Materials. Chemical Reviews, 2021, 121, 14349-14429.	23.0	151
30	Noble Metal Nanoparticles Decorated Metal Oxide Semiconducting Nanowire Arrays Interwoven into 3D Mesoporous Superstructures for Low-Temperature Gas Sensing. ACS Central Science, 2021, 7, 1885-1897.	5.3	45
31	Advances in the Interfacial Assembly of Mesoporous Silica on Magnetite Particles. Angewandte Chemie - International Edition, 2020, 59, 15804-15817.	7.2	45
32	Advances in the Interfacial Assembly of Mesoporous Silica on Magnetite Particles. Angewandte Chemie, 2020, 132, 15936-15949.	1.6	9
33	Controllable synthesis of highly crystallized mesoporous TiO2/WO3 heterojunctions for acetone gas sensing. Chinese Chemical Letters, 2020, 31, 1119-1123.	4.8	22
34	Stepwise construction of Pt decorated oxygen-deficient mesoporous titania microspheres with core-shell structure and magnetic separability for efficient visible-light photocatalysis. Chinese Chemical Letters, 2020, 31, 1598-1602.	4.8	17
35	Synthesis of orthogonally assembled 3D cross-stacked metal oxide semiconducting nanowires. Nature Materials, 2020, 19, 203-211.	13.3	172
36	Au Nanoparticles Decorated Mesoporous SiO ₂ â€"WO ₃ Hybrid Materials with Improved Pore Connectivity for Ultratrace Ethanol Detection at Low Operating Temperature. Small, 2020, 16, e2004772.	5.2	37

#	Article	IF	CITATIONS
37	Confined interfacial micelle aggregating assembly of ordered macro–mesoporous tungsten oxides for H ₂ S sensing. Nanoscale, 2020, 12, 20811-20819.	2.8	15
38	Synthesis of Podlike Magnetic Mesoporous Silica Nanochains for Use as Enzyme Support and Nanostirrer in Biocatalysis. ACS Applied Materials & Samp; Interfaces, 2020, 12, 17901-17908.	4.0	33
39	Highly dispersed Pt nanoparticles on ultrasmall EMT zeolite: A peroxidase-mimic nanoenzyme for detection of H2O2 or glucose. Journal of Colloid and Interface Science, 2020, 570, 300-311.	5.0	48
40	An Efficient Emulsionâ€Induced Interface Assembly Approach for Rational Synthesis of Mesoporous Carbon Spheres with Versatile Architectures. Advanced Functional Materials, 2020, 30, 2002488.	7.8	38
41	A Universal Labâ€onâ€Saltâ€Particle Approach to 2D Singleâ€Layer Ordered Mesoporous Materials. Advanced Materials, 2020, 32, e1906653.	11.1	41
42	Recent advances in amphiphilic block copolymer templated mesoporous metal-based materials: assembly engineering and applications. Chemical Society Reviews, 2020, 49, 1173-1208.	18.7	103
43	Interface Coassembly and Polymerization on Magnetic Colloids: Toward Core–Shell Functional Mesoporous Polymer Microspheres and Their Carbon Derivatives. Advanced Science, 2020, 7, 2000443.	5.6	37
44	Hollow Mesoporous Carbon Nanospheres Loaded with Pt Nanoparticles for Colorimetric Detection of Ascorbic Acid and Glucose. ACS Applied Nano Materials, 2020, 3, 4586-4598.	2.4	44
45	Cytotoxicity induced by new spiral mesoporous silica nanorods $\langle i \rangle$ via $\langle i \rangle$ specific surface area and ROS accumulation in HeLa cells. Materials Advances, 2020, 1, 3556-3564.	2.6	3
46	Recyclable Fenton-like catalyst based on zeolite Y supported ultrafine, highly-dispersed Fe2O3 nanoparticles for removal of organics under mild conditions. Chinese Chemical Letters, 2019, 30, 324-330.	4.8	64
47	Largeâ€Pore Mesoporous CeO ₂ –ZrO ₂ Solid Solutions with Inâ€Pore Confined Pt Nanoparticles for Enhanced CO Oxidation. Small, 2019, 15, e1903058.	5.2	43
48	Rational Synthesis and Gas Sensing Performance of Ordered Mesoporous Semiconducting WO ₃ /NiO Composites. ACS Applied Materials & https://www.acception.com/acception/sub/sub/sub/sub/sub/sub/sub/sub/sub/sub	4.0	74
49	A General and Straightforward Route to Noble Metalâ€Decorated Mesoporous Transitionâ€Metal Oxides with Enhanced Gas Sensing Performance. Small, 2019, 15, e1904240.	5.2	45
50	Hierarchical Branched Mesoporous TiO ₂ â€"SnO ₂ Nanocomposites with Wellâ€Defined nâ€"n Heterojunctions for Highly Efficient Ethanol Sensing. Advanced Science, 2019, 6, 1902008.	5.6	84
51	General Synthesis of Mixed Semiconducting Metal Oxide Hollow Spheres with Tunable Compositions for Low-Temperature Chemiresistive Sensing. ACS Applied Materials & Samp; Interfaces, 2019, 11, 35060-35067.	4.0	29
52	Mesoporous amorphous Al ₂ O ₃ /crystalline WO ₃ heterophase hybrids for electrocatalysis and gas sensing applications. Journal of Materials Chemistry A, 2019, 7, 21874-21883.	5.2	34
53	Cementing Mesoporous ZnO with Silica for Controllable and Switchable Gas Sensing Selectivity. Chemistry of Materials, 2019, 31, 8112-8120.	3.2	58
54	Sensing Devices of Semiconducting Metal Oxides Gas Sensors. , 2019, , 153-173.		4

#	Article	IF	Citations
55	Semiconducting Metal Oxides for Gas Sensing. , 2019, , .		36
56	Applications of Semiconducting Metal Oxides Gas Sensors. , 2019, , 195-241.		1
57	Understanding Semiconducting Metal Oxide Gas Sensors. , 2019, , 1-22.		0
58	Sensing Mechanism and Evaluation Criteria of Semiconducting Metal Oxides Gas Sensors., 2019,, 23-51.		10
59	Semiconducting Metal Oxides: Morphology and Sensing Performance. , 2019, , 53-75.		1
60	Semiconducting Metal Oxides: Composition and Sensing Performance., 2019,, 77-103.		2
61	Semiconducting Metal Oxides: Microstructure and Sensing Performance., 2019, , 105-135.		1
62	Ordered mesoporous CoO/CeO2 heterostructures with highly crystallized walls and enhanced peroxidase-like bioactivity. Applied Materials Today, 2019, 15, 482-493.	2.3	33
63	Nonsacrificial Selfâ€∓emplate Synthesis of Colloidal Magnetic Yolk–Shell Mesoporous Organosilicas for Efficient Oil/Water Interface Catalysis. Small, 2019, 15, e1805465.	5.2	40
64	sp ² -Hybridized Carbon-Containing Block Copolymer Templated Synthesis of Mesoporous Semiconducting Metal Oxides with Excellent Gas Sensing Property. Accounts of Chemical Research, 2019, 52, 714-725.	7.6	90
65	<p>A perspective on magnetic core–shell carriers for responsive and targeted drug delivery systems</p> . International Journal of Nanomedicine, 2019, Volume 14, 1707-1723.	3.3	86
66	Amphiphilic block copolymers directed synthesis of mesoporous nickel-based oxides with bimodal mesopores and nanocrystal-assembled walls. Chinese Chemical Letters, 2019, 30, 2003-2008.	4.8	17
67	Core–Shell Magnetic Mesoporous Silica Microspheres with Large Mesopores for Enzyme Immobilization in Biocatalysis. ACS Applied Materials & Interfaces, 2019, 11, 10356-10363.	4.0	83
68	Pore Engineering of Mesoporous Tungsten Oxides for Ultrasensitive Gas Sensing. Advanced Materials Interfaces, 2019, 6, 1801269.	1.9	35
69	Rational design of a stable peroxidase mimic for colorimetric detection of H2O2 and glucose: A synergistic CeO2/Zeolite Y nanocomposite. Journal of Colloid and Interface Science, 2019, 535, 425-435.	5.0	75
70	Quantified mass transfer and superior antiflooding performance of ordered macroâ€mesoporous electrocatalysts. AICHE Journal, 2018, 64, 2881-2889.	1.8	22
71	3D Interconnected Mesoporous Alumina with Loaded Hemoglobin as a Highly Active Electrochemical Biosensor for H ₂ O ₂ . Advanced Healthcare Materials, 2018, 7, e1800149.	3.9	28
72	One-step synthesis of in-situ N-doped ordered mesoporous titania for enhanced gas sensing performance. Microporous and Mesoporous Materials, 2018, 270, 75-81.	2.2	23

#	Article	IF	CITATIONS
73	High-performance H2 sensors with selectively hydrophobic micro-plate for self-aligned upload of Pd nanodots modified mesoporous In2O3 sensing-material. Sensors and Actuators B: Chemical, 2018, 267, 83-92.	4.0	55
74	Sensors: Pt Nanoparticles Sensitized Ordered Mesoporous WO ₃ Semiconductor: Gas Sensing Performance and Mechanism Study (Adv. Funct. Mater. 6/2018). Advanced Functional Materials, 2018, 28, 1870040.	7.8	7
75	A systematic investigation of the bio-toxicity of core-shell magnetic mesoporous silica microspheres using zebrafish model. Microporous and Mesoporous Materials, 2018, 265, 195-201.	2.2	27
76	Ordered Mesoporous Tin Oxide Semiconductors with Large Pores and Crystallized Walls for High-Performance Gas Sensing. ACS Applied Materials & Samp; Interfaces, 2018, 10, 1871-1880.	4.0	89
77	A template-catalyzed <i>in situ</i> polymerization and co-assembly strategy for rich nitrogen-doped mesoporous carbon. Journal of Materials Chemistry A, 2018, 6, 3162-3170.	5.2	77
78	Polymerization-Induced Colloid Assembly Route to Iron Oxide-Based Mesoporous Microspheres for Gas Sensing and Fenton Catalysis. ACS Applied Materials & Samp; Interfaces, 2018, 10, 13028-13039.	4.0	26
79	Exposed metal oxide active sites on mesoporous titania channels: a promising design for low-temperature selective catalytic reduction of NO with NH ₃ . Chemical Communications, 2018, 54, 3783-3786.	2.2	23
80	Ordered porous metal oxide semiconductors for gas sensing. Chinese Chemical Letters, 2018, 29, 405-416.	4.8	134
81	Pt Nanoparticles Sensitized Ordered Mesoporous WO ₃ Semiconductor: Gas Sensing Performance and Mechanism Study. Advanced Functional Materials, 2018, 28, 1705268.	7.8	231
82	Sensors: Self-Template Synthesis of Mesoporous Metal Oxide Spheres with Metal-Mediated Inner Architectures and Superior Sensing Performance (Adv. Funct. Mater. 51/2018). Advanced Functional Materials, 2018, 28, 1870364.	7.8	4
83	Local Delivery and Sustainedâ€Release of Nitric Oxide Donor Loaded in Mesoporous Silica Particles for Efficient Treatment of Primary Openâ€Angle Glaucoma. Advanced Healthcare Materials, 2018, 7, e1801047.	3.9	47
84	Selfâ€Template Synthesis of Mesoporous Metal Oxide Spheres with Metalâ€Mediated Inner Architectures and Superior Sensing Performance. Advanced Functional Materials, 2018, 28, 1806144.	7.8	51
85	Controllable Interfaceâ€Induced Coâ€Assembly toward Highly Ordered Mesoporous Pt@TiO ₂ /gâ€C ₃ N ₄ Heterojunctions with Enhanced Photocatalytic Performance. Advanced Functional Materials, 2018, 28, 1806214.	7.8	99
86	High performance lithium-sulfur batteries by facilely coating a conductive carbon nanotube or graphene layer. Chinese Chemical Letters, 2018, 29, 1777-1780.	4.8	28
87	Rational construction of self-assembly azobenzene derivative monolayers with photoswitchable surface properties. Chinese Chemical Letters, 2018, 29, 1661-1665.	4.8	5
88	A Magneticâ€Field Guided Interface Coassembly Approach to Magnetic Mesoporous Silica Nanochains for Osteoclastâ€Targeted Inhibition and Heterogeneous Nanocatalysis. Advanced Materials, 2018, 30, e1707515.	11.1	96
89	Amphiphilic Block Copolymers Directed Interface Coassembly to Construct Multifunctional Microspheres with Magnetic Core and Monolayer Mesoporous Aluminosilicate Shell. Advanced Materials, 2018, 30, e1800345.	11.1	45
90	A vesicle-aggregation-assembly approach to highly ordered mesoporous \hat{I}^3 -alumina microspheres with shifted double-diamond networks. Chemical Science, 2018, 9, 7705-7714.	3.7	20

#	Article	IF	Citations
91	Rational Design of Yolk–Shell CuO/Silicalite-1@mSiO ₂ Composites for a High-Performance Nonenzymatic Glucose Biosensor. Langmuir, 2018, 34, 7663-7672.	1.6	25
92	Nanoscale zero-valent iron in mesoporous carbon (nZVI@C): stable nanoparticles for metal extraction and catalysis. Journal of Materials Chemistry A, 2017, 5, 4478-4485.	5.2	62
93	New Insight into the Synthesis of Large-Pore Ordered Mesoporous Materials. Journal of the American Chemical Society, 2017, 139, 1706-1713.	6.6	274
94	Ordered Mesoporous Alumina with Ultra-Large Pores as an Efficient Absorbent for Selective Bioenrichment. Chemistry of Materials, 2017, 29, 2211-2217.	3.2	89
95	Nanoengineering of Core–Shell Magnetic Mesoporous Microspheres with Tunable Surface Roughness. Journal of the American Chemical Society, 2017, 139, 4954-4961.	6.6	135
96	Synthesis of ZSM-5 aggregates made of zeolite nanocrystals through a simple solvent-free method. Microporous and Mesoporous Materials, 2017, 243, 112-118.	2.2	47
97	Oxygen-deficient WO _{3â^'x} @TiO _{2â^'x} coreâ€"shell nanosheets for efficient photoelectrochemical oxidation of neutral water solutions. Journal of Materials Chemistry A, 2017, 5, 14697-14706.	5.2	68
98	Synthesis of WO3@ZnWO4@ZnO-ZnO hierarchical nanocactus arrays for efficient photoelectrochemical water splitting. Nano Energy, 2017, 41, 543-551.	8.2	61
99	N-doped carbon hollow microspheres for metal-free quasi-solid-state full sodium-ion capacitors. Nano Energy, 2017, 41, 674-680.	8.2	153
100	Plasmolysis-Inspired Nanoengineering of Functional Yolk–Shell Microspheres with Magnetic Core and Mesoporous Silica Shell. Journal of the American Chemical Society, 2017, 139, 15486-15493.	6.6	187
101	Mesoporous Tungsten Oxides with Crystalline Framework for Highly Sensitive and Selective Detection of Foodborne Pathogens. Journal of the American Chemical Society, 2017, 139, 10365-10373.	6.6	200
102	Magnetic mesoporous nanospheres anchored with LyP-1 as an efficient pancreatic cancer probe. Biomaterials, 2017, 115, 9-18.	5.7	41
103	Self-aligned precise upload of Pd-modified mesoporous In <inf>2</inf> 0 <inf>3</inf> 0 n suspended MEMS heating-plate for ultra-sensitive H <inf>2</inf> gas sensing. , 2017, , .		0
104	Core–Shell Silicon@Mesoporous TiO ₂ Heterostructure: Towards Solarâ€Powered Photoelectrochemical Conversion. ChemNanoMat, 2016, 2, 647-651.	1.5	4
105	Scalable synthesis of mesoporous titania microspheres via spray-drying method. Journal of Colloid and Interface Science, 2016, 479, 150-159.	5.0	27
106	Monodisperse mesoporous TiO2 microspheres for dye sensitized solar cells. Nano Energy, 2016, 26, 16-25.	8.2	49
107	Surfactant-templating strategy for ultrathin mesoporous TiO2 coating on flexible graphitized carbon supports for high-performance lithium-ion battery. Nano Energy, 2016, 25, 80-90.	8.2	103
108	Controlled deposition of Pt nanoparticles on Fe ₃ O ₄ @carbon microspheres for efficient oxidation of 5-hydroxymethylfurfural. RSC Advances, 2016, 6, 51229-51237.	1.7	45

#	Article	IF	CITATIONS
109	Ordered Mesoporous Carbonaceous Materials with Tunable Surface Property for Enrichment of Hexachlorobenzene. Langmuir, 2016, 32, 9922-9929.	1.6	21
110	Interfacial engineering of magnetic particles with porous shells: Towards magnetic core – Porous shell microparticles. Nano Today, 2016, 11, 464-482.	6.2	61
111	Controlled Synthesis of Ordered Mesoporous Carbon-Cobalt Oxide Nanocomposites with Large Mesopores and Graphitic Walls. Chemistry of Materials, 2016, 28, 7773-7780.	3.2	63
112	A Micelle Fusion–Aggregation Assembly Approach to Mesoporous Carbon Materials with Rich Active Sites for Ultrasensitive Ammonia Sensing. Journal of the American Chemical Society, 2016, 138, 12586-12595.	6.6	152
113	Chelation-assisted soft-template synthesis of ordered mesoporous zinc oxides for low concentration gas sensing. Journal of Materials Chemistry A, 2016, 4, 15064-15071.	5.2	93
114	Hierarchical ordered macro/mesoporous titania with a highly interconnected porous structure for efficient photocatalysis. Journal of Materials Chemistry A, 2016, 4, 16446-16453.	5.2	27
115	Amphiphilic Block Copolymer Templated Synthesis of Mesoporous Indium Oxides with Nanosheet-Assembled Pore Walls. Chemistry of Materials, 2016, 28, 7997-8005.	3.2	74
116	Ordered mesoporous silica/polyvinylidene fluoride composite membranes for effective removal of water contaminants. Journal of Materials Chemistry A, 2016, 4, 3850-3857.	5.2	28
117	Hollow TiO2–X porous microspheres composed of well-crystalline nanocrystals for high-performance lithium-ion batteries. Nano Research, 2016, 9, 165-173.	5 . 8	60
118	Synthesis of Ordered Mesoporous Silica with Tunable Morphologies and Pore Sizes via a Nonpolar Solvent-Assisted Stöber Method. Chemistry of Materials, 2016, 28, 2356-2362.	3.2	159
119	A facile biliquid-interface co-assembly synthesis of mesoporous vesicles with large pore sizes. CrystEngComm, 2016, 18, 4343-4348.	1.3	10
120	Radially oriented mesoporous TiO ₂ microspheres with single-crystal–like anatase walls for high-efficiency optoelectronic devices. Science Advances, 2015, 1, e1500166.	4.7	139
121	Designed Fabrication and Characterization of Three-Dimensionally Ordered Arrays of Core–Shell Magnetic Mesoporous Carbon Microspheres. ACS Applied Materials & 1, 5312-5319.	4.0	115
122	Magnetic yolk–shell mesoporous silica microspheres with supported Au nanoparticles as recyclable high-performance nanocatalysts. Journal of Materials Chemistry A, 2015, 3, 4586-4594.	5 . 2	129
123	Magnetic yolk-shell structured anatase-based microspheres loaded with Au nanoparticles for heterogeneous catalysis. Nano Research, 2015, 8, 238-245.	5. 8	62
124	An Interface Coassembly in Biliquid Phase: Toward Core–Shell Magnetic Mesoporous Silica Microspheres with Tunable Pore Size. Journal of the American Chemical Society, 2015, 137, 13282-13289.	6.6	239
125	Plasmonic Silver Supercrystals with Ultrasmall Nanogaps for Ultrasensitive SERSâ€Based Molecule Detection. Advanced Optical Materials, 2015, 3, 404-411.	3.6	53
126	Mesoporous TiO ₂ Mesocrystals: Remarkable Defects-Induced Crystallite-Interface Reactivity and Their in Situ Conversion to Single Crystals. ACS Central Science, 2015, 1, 400-408.	5. 3	74

#	Article	IF	Citations
127	Nitrogen-doped ordered mesoporous carbons based on cyanamide as the dopant for supercapacitor. Carbon, 2015, 84, 335-346.	5.4	210
128	Selectivity Enhancement in Dynamic Kinetic Resolution of Secondary Alcohols through Adjusting the Micro-Environment of Metal Complex Confined in Nanochannels: A Promising Strategy for Tandem Reactions. ACS Catalysis, 2015, 5, 27-33.	5 . 5	36
129	Synthesis of Nanoporous Polystyrene Microspheres for Efficient Incorporation of L-Menthol. Chinese Journal of Organic Chemistry, 2015, 35, 390.	0.6	0
130	Azobenzeneâ€Derived Surfactants as Phototriggered Recyclable Templates for the Synthesis of Ordered Mesoporous Silica Nanospheres. Advanced Materials, 2014, 26, 1782-1787.	11.1	42
131	A versatile designed synthesis of magnetically separable nano-catalysts with well-defined core–shell nanostructures. Journal of Materials Chemistry A, 2014, 2, 6071-6074.	5.2	63
132	Templated Fabrication of Core–Shell Magnetic Mesoporous Carbon Microspheres in 3-Dimensional Ordered Macroporous Silicas. Chemistry of Materials, 2014, 26, 3316-3321.	3.2	54
133	Tricomponent Coassembly Approach To Synthesize Ordered Mesoporous Carbon/Silica Nanocomposites and Their Derivative Mesoporous Silicas with Dual Porosities. Chemistry of Materials, 2014, 26, 2438-2444.	3.2	41
134	Synthesis of core–shell structured zeolite-A@mesoporous silica composites for butyraldehyde adsorption. Journal of Colloid and Interface Science, 2014, 428, 251-256.	5.0	15
135	Advanced H ₂ -storage system fabricated through chemical layer deposition in a well-designed porous carbon scaffold. Journal of Materials Chemistry A, 2014, 2, 15168-15174.	5.2	6
136	Rational synthesis of superparamagnetic core–shell structured mesoporous microspheres with large pore sizes. Journal of Materials Chemistry A, 2014, 2, 18322-18328.	5.2	37
137	An Interface-Directed Coassembly Approach To Synthesize Uniform Large-Pore Mesoporous Silica Spheres. Journal of the American Chemical Society, 2014, 136, 1884-1892.	6.6	97
138	Highly Ordered Mesoporous Tungsten Oxides with a Large Pore Size and Crystalline Framework for H ₂ S Sensing. Angewandte Chemie - International Edition, 2014, 53, 9035-9040.	7.2	250
139	Synthesis and Characterization of Hierarchically Ordered Porous Carbon Based Energetic Nanocomposites. Advanced Porous Materials, 2014, 2, 31-36.	0.3	2
140	Ordered Mesoporous Materials Based on Interfacial Assembly and Engineering. Advanced Materials, 2013, 25, 5129-5152.	11.1	254
141	A Shear Stress Regulated Assembly Route to Silica Nanotubes and Their Closely Packed Hollow Mesostructures. Angewandte Chemie - International Edition, 2013, 52, 11603-11606.	7.2	26
142	General Synthesis of Discrete Mesoporous Carbon Microspheres through a Confined Self-Assembly Process in Inverse Opals. ACS Nano, 2013, 7, 8706-8714.	7.3	79
143	A Resolâ€Assisted Coâ€Assembly Approach to Crystalline Mesoporous Niobia Spheres for Electrochemical Biosensing. Angewandte Chemie - International Edition, 2013, 52, 10505-10510.	7.2	85
144	A versatile ethanol-mediated polymerization of dopamine for efficient surface modification and the construction of functional core–shell nanostructures. Journal of Materials Chemistry B, 2013, 1, 6085.	2.9	110

#	Article	IF	CITATIONS
145	Mesoporous Materials: Ordered Mesoporous Materials Based on Interfacial Assembly and Engineering (Adv. Mater. 37/2013). Advanced Materials, 2013, 25, 5128-5128.	11.1	6
146	Large-pore ordered mesoporous materials templated from non-Pluronic amphiphilic block copolymers. Chemical Society Reviews, 2013, 42, 4054-4070.	18.7	403
147	Monodisperse mesoporous silica nanospheres with radially oriented mesochannels and their size effect on cell uptake. Microporous and Mesoporous Materials, 2013, 181, 248-253.	2.2	6
148	Hierarchical Cu $<$ sub $>$ 2 $<$ /sub $>$ S Microsponges Constructed from Nanosheets for Efficient Photocatalysis. Small, 2013, 9, 2702-2708.	5.2	85
149	A Controllable Synthesis of Rich Nitrogenâ€Doped Ordered Mesoporous Carbon for CO ₂ Capture and Supercapacitors. Advanced Functional Materials, 2013, 23, 2322-2328.	7.8	861
150	A systematic investigation of the formation of ordered mesoporous silicas using poly(ethylene) Tj ETQq0 0 0 rgB1	√Qyerlocl	₹ 10 Tf 50 54
151	Advances in Mesoporous Thin Films via Self-Assembly Process. Advanced Porous Materials, 2013, 1, 164-186.	0.3	18
152	A General Chelate-Assisted Co-Assembly to Metallic Nanoparticles-Incorporated Ordered Mesoporous Carbon Catalysts for Fischer–Tropsch Synthesis. Journal of the American Chemical Society, 2012, 134, 17653-17660.	6.6	227
153	A Template Carbonization Strategy to Synthesize Ordered Mesoporous Silica Microspheres with Trapped Sulfonated Carbon Nanoparticles for Efficient Catalysis. Angewandte Chemie - International Edition, 2012, 51, 10368-10372.	7.2	66
154	Ligand exchange triggered controlled-release targeted drug delivery system based on core–shell superparamagnetic mesoporous microspheres capped with nanoparticles. Journal of Materials Chemistry, 2012, 22, 17677.	6.7	30
155	Magnetic spherical cores partly coated with periodic mesoporous organosilica single crystals. Nanoscale, 2012, 4, 1647.	2.8	27
156	A Versatile Kinetics-Controlled Coating Method To Construct Uniform Porous TiO ₂ Shells for Multifunctional Core–Shell Structures. Journal of the American Chemical Society, 2012, 134, 11864-11867.	6.6	403
157	Synthesis of Dualâ€Mesoporous Silica Using Nonâ€lonic Diblock Copolymer and Cationic Surfactant as Coâ€Templates. Angewandte Chemie - International Edition, 2012, 51, 6149-6153.	7.2	101
158	Controlled synthesis of hydroxyapatite crystals templated by novel surfactants and their enhanced bioactivity. New Journal of Chemistry, 2011, 35, 663-671.	1.4	22
159	Hydrothermal Etching Assisted Crystallization: A Facile Route to Functional Yolk-Shell Titanate Microspheres with Ultrathin Nanosheets-Assembled Double Shells. Journal of the American Chemical Society, 2011, 133, 15830-15833.	6.6	278
160	Core-shell Ag@SiO2@mSiO2 mesoporous nanocarriers for metal-enhanced fluorescence. Chemical Communications, 2011, 47, 11618.	2.2	164
161	Hierarchically Ordered Macro-/Mesoporous Silica Monolith: Tuning Macropore Entrance Size for Size-Selective Adsorption of Proteins. Chemistry of Materials, 2011, 23, 2176-2184.	3.2	200
162	Solvent Evaporation Induced Aggregating Assembly Approach to Three-Dimensional Ordered Mesoporous Silica with Ultralarge Accessible Mesopores. Journal of the American Chemical Society, 2011, 133, 20369-20377.	6.6	158

#	Article	IF	Citations
163	Large-pore ordered mesoporous carbons with tunable structures and pore sizes templated from poly(ethylene oxide)-b-poly(methyl methacrylate). Solid State Sciences, 2011, 13, 784-792.	1.5	41
164	Templated Synthesis of Shapeâ€Controlled, Ordered TiO ₂ Cage Structures. Small, 2011, 7, 2037-2040.	5.2	18
165	Ligandâ€Assisted Assembly Approach to Synthesize Largeâ€Pore Ordered Mesoporous Titania with Thermally Stable and Crystalline Framework. Advanced Energy Materials, 2011, 1, 241-248.	10.2	139
166	Magnetically responsive ordered mesoporous materials: A burgeoning family of functional composite nanomaterials. Chemical Physics Letters, 2011, 510, 1-13.	1.2	84
167	Hydrothermal Synthesis and Photoluminescence of Hierarchical Lead Tungstate Superstructures: Effects of Reaction Temperature and Surfactants. European Journal of Inorganic Chemistry, 2010, 2010, 1736-1742.	1.0	18
168	Controlled Synthesis and Functionalization of Ordered Largeâ€Pore Mesoporous Carbons. Advanced Functional Materials, 2010, 20, 3658-3665.	7.8	127
169	An Aqueous Emulsion Route to Synthesize Mesoporous Carbon Vesicles and Their Nanocomposites. Advanced Materials, 2010, 22, 833-837.	11.1	117
170	A Lowâ€Concentration Hydrothermal Synthesis of Biocompatible Ordered Mesoporous Carbon Nanospheres with Tunable and Uniform Size. Angewandte Chemie - International Edition, 2010, 49, 7987-7991.	7.2	608
171	Direct triblock-copolymer-templating synthesis of ordered nitrogen-containing mesoporous polymers. Journal of Colloid and Interface Science, 2010, 342, 579-585.	5.0	83
172	Magnetic 3-D ordered macroporous silica templated from binary colloidal crystals and its application for effective removal of microcystin. Microporous and Mesoporous Materials, 2010, 130, 26-31.	2.2	36
173	Mesoporous Silica Encapsulating Upconversion Luminescence Rare-Earth Fluoride Nanorods for Secondary Excitation. Langmuir, 2010, 26, 8850-8856.	1.6	105
174	Growth of Single-Crystal Mesoporous Carbons with <i>Im</i> 3ì <i>m</i> Symmetry. Chemistry of Materials, 2010, 22, 4828-4833.	3.2	70
175	An unusual example of morphology controlled periodic mesoporous organosilica single crystals. Journal of Materials Chemistry, 2010, 20, 6460.	6.7	22
176	Facile Synthesis of Hierarchically Mesoporous Silica Particles with Controllable Cavity in Their Surfaces. Langmuir, 2010, 26, 702-708.	1.6	79
177	Photoluminescence modification in upconversion rare-earth fluoride nanocrystal array constructed photonic crystals. Journal of Materials Chemistry, 2010, 20, 3895.	6.7	78
178	Multifunctional Mesoporous Composite Microspheres with Well-Designed Nanostructure: A Highly Integrated Catalyst System. Journal of the American Chemical Society, 2010, 132, 8466-8473.	6.6	887
179	Synthesis of Core/Shell Colloidal Magnetic Zeolite Microspheres for the Immobilization of Trypsin. Advanced Materials, 2009, 21, 1377-1382.	11.1	281
180	Highly Waterâ€Dispersible Biocompatible Magnetite Particles with Low Cytotoxicity Stabilized by Citrate Groups. Angewandte Chemie - International Edition, 2009, 48, 5875-5879.	7.2	856

#	Article	IF	CITATIONS
181	A simple approach to the synthesis of hollow microspheres with magnetite/silica hybrid walls. Journal of Colloid and Interface Science, 2009, 333, 329-334.	5.0	28
182	Design of Amphiphilic ABC Triblock Copolymer for Templating Synthesis of Large-Pore Ordered Mesoporous Carbons with Tunable Pore Wall Thickness. Chemistry of Materials, 2009, 21, 3996-4005.	3.2	102
183	A curing agent method to synthesize ordered mesoporous carbons from linear novolac phenolic resin polymers. Journal of Materials Chemistry, 2009, 19, 6536.	6.7	38
184	Synthesis and microwave absorption of uniform hematite nanoparticles and their core-shell mesoporous silica nanocomposites. Journal of Materials Chemistry, 2009, 19, 6706.	6.7	174
185	A "teardown―method to create large mesotunnels on the pore walls of ordered mesoporous silica. Journal of Colloid and Interface Science, 2008, 328, 338-343.	5.0	7
186	Homopolymer induced phase evolution in mesoporous silica from evaporation induced self-assembly process. Microporous and Mesoporous Materials, 2008, 116, 633-640.	2.2	14
187	Superparamagnetic High-Magnetization Microspheres with an Fe ₃ O ₄ @SiO ₂ Core and Perpendicularly Aligned Mesoporous SiO ₂ Shell for Removal of Microcystins. Journal of the American Chemical Society, 2008, 130. 28-29.	6.6	1,588
188	A novel approach to the construction of 3-D ordered macrostructures with polyhedral particles. Journal of Materials Chemistry, 2008, 18, 408-415.	6.7	18
189	One-step hydrothermal synthesis of ordered mesostructured carbonaceous monoliths with hierarchical porosities. Chemical Communications, 2008, , 2641.	2.2	177
190	Ultra-Large-Pore Mesoporous Carbons Templated from Poly(ethylene oxide)- <i>b</i> -Ci>b-Ci -Ci -Ci -Ci 	3.2	115
191	Thick wall mesoporous carbons with a large pore structure templated from a weakly hydrophobic PEO–PMMA diblock copolymer. Journal of Materials Chemistry, 2008, 18, 91-97.	6.7	91
192	Ordered Mesoporous Silicas and Carbons with Large Accessible Pores Templated from Amphiphilic Diblock Copolymer Poly(ethylene oxide)-b-polystyrene. Journal of the American Chemical Society, 2007, 129, 1690-1697.	6.6	377
193	Facile Synthesis of Hierarchically Porous Carbons from Dual Colloidal Crystal/Block Copolymer Template Approach. Chemistry of Materials, 2007, 19, 3271-3277.	3.2	207
194	Mesoporous Carbon Single-Crystals from Organicâ^'Organic Self-Assembly. Journal of the American Chemical Society, 2007, 129, 7746-7747.	6.6	105
195	Preparation, Characterization, and Application of Multistimuli-Responsive Microspheres with Fluorescence-Labeled Magnetic Cores and Thermoresponsive Shells. Chemistry - A European Journal, 2005, 11, 6006-6013.	1.7	154
196	Organic-Dye-Coupled Magnetic Nanoparticles Encaged Inside Thermoresponsive PNIPAM Microcapsules. Small, 2005, 1, 737-743.	5.2	136
197	Preparation and characterization of core-shell polymer particles with protonizable shells prepared by oxyanionic polymerization. Journal of Polymer Science Part A, 2004, 42, 6081-6088.	2.5	32
198	Diagnosis of maple syrup urine disease by determination of l-valine, l-isoleucine, l-leucine and l-phenylalanine in neonatal blood spots by gas chromatography–mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2003, 792, 261-268.	1.2	39

#	Article	IF	CITATIONS
199	Gas chromatography–mass spectrometry method for determination of phenylalanine and tyrosine in neonatal blood spots. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2002, 780, 407-413.	1.2	95