List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2709788/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Superparamagnetic High-Magnetization Microspheres with an Fe ₃ O ₄ @SiO ₂ Core and Perpendicularly Aligned Mesoporous SiO ₂ Shell for Removal of Microcystins. Journal of the American Chemical Society, 2008, 130, 28-29.	13.7	1,588
2	Multifunctional Mesoporous Composite Microspheres with Well-Designed Nanostructure: A Highly Integrated Catalyst System. Journal of the American Chemical Society, 2010, 132, 8466-8473.	13.7	887
3	A Controllable Synthesis of Rich Nitrogenâ€Doped Ordered Mesoporous Carbon for CO ₂ Capture and Supercapacitors. Advanced Functional Materials, 2013, 23, 2322-2328.	14.9	861
4	Highly Waterâ€Ðispersible Biocompatible Magnetite Particles with Low Cytotoxicity Stabilized by Citrate Groups. Angewandte Chemie - International Edition, 2009, 48, 5875-5879.	13.8	856
5	A Low oncentration Hydrothermal Synthesis of Biocompatible Ordered Mesoporous Carbon Nanospheres with Tunable and Uniform Size. Angewandte Chemie - International Edition, 2010, 49, 7987-7991.	13.8	608
6	A Versatile Kinetics-Controlled Coating Method To Construct Uniform Porous TiO ₂ Shells for Multifunctional Core–Shell Structures. Journal of the American Chemical Society, 2012, 134, 11864-11867.	13.7	403
7	Large-pore ordered mesoporous materials templated from non-Pluronic amphiphilic block copolymers. Chemical Society Reviews, 2013, 42, 4054-4070.	38.1	403
8	Ordered Mesoporous Silicas and Carbons with Large Accessible Pores Templated from Amphiphilic Diblock Copolymer Poly(ethylene oxide)-b-polystyrene. Journal of the American Chemical Society, 2007, 129, 1690-1697.	13.7	377
9	Synthesis of Core/Shell Colloidal Magnetic Zeolite Microspheres for the Immobilization of Trypsin. Advanced Materials, 2009, 21, 1377-1382.	21.0	281
10	Hydrothermal Etching Assisted Crystallization: A Facile Route to Functional Yolk-Shell Titanate Microspheres with Ultrathin Nanosheets-Assembled Double Shells. Journal of the American Chemical Society, 2011, 133, 15830-15833.	13.7	278
11	New Insight into the Synthesis of Large-Pore Ordered Mesoporous Materials. Journal of the American Chemical Society, 2017, 139, 1706-1713.	13.7	274
12	Ordered Mesoporous Materials Based on Interfacial Assembly and Engineering. Advanced Materials, 2013, 25, 5129-5152.	21.0	254
13	Highly Ordered Mesoporous Tungsten Oxides with a Large Pore Size and Crystalline Framework for H ₂ S Sensing. Angewandte Chemie - International Edition, 2014, 53, 9035-9040.	13.8	250
14	An Interface Coassembly in Biliquid Phase: Toward Core–Shell Magnetic Mesoporous Silica Microspheres with Tunable Pore Size. Journal of the American Chemical Society, 2015, 137, 13282-13289.	13.7	239
15	Pt Nanoparticles Sensitized Ordered Mesoporous WO ₃ Semiconductor: Gas Sensing Performance and Mechanism Study. Advanced Functional Materials, 2018, 28, 1705268.	14.9	231
16	A General Chelate-Assisted Co-Assembly to Metallic Nanoparticles-Incorporated Ordered Mesoporous Carbon Catalysts for Fischer–Tropsch Synthesis. Journal of the American Chemical Society, 2012, 134, 17653-17660.	13.7	227
17	Recent Advances in Design of Functional Biocompatible Hydrogels for Bone Tissue Engineering. Advanced Functional Materials, 2021, 31, 2009432.	14.9	212
18	Nitrogen-doped ordered mesoporous carbons based on cyanamide as the dopant for supercapacitor. Carbon, 2015, 84, 335-346.	10.3	210

#	Article	IF	CITATIONS
19	Facile Synthesis of Hierarchically Porous Carbons from Dual Colloidal Crystal/Block Copolymer Template Approach. Chemistry of Materials, 2007, 19, 3271-3277.	6.7	207
20	Hierarchically Ordered Macro-/Mesoporous Silica Monolith: Tuning Macropore Entrance Size for Size-Selective Adsorption of Proteins. Chemistry of Materials, 2011, 23, 2176-2184.	6.7	200
21	Mesoporous Tungsten Oxides with Crystalline Framework for Highly Sensitive and Selective Detection of Foodborne Pathogens. Journal of the American Chemical Society, 2017, 139, 10365-10373.	13.7	200
22	Plasmolysis-Inspired Nanoengineering of Functional Yolk–Shell Microspheres with Magnetic Core and Mesoporous Silica Shell. Journal of the American Chemical Society, 2017, 139, 15486-15493.	13.7	187
23	One-step hydrothermal synthesis of ordered mesostructured carbonaceous monoliths with hierarchical porosities. Chemical Communications, 2008, , 2641.	4.1	177
24	Synthesis and microwave absorption of uniform hematite nanoparticles and their core-shell mesoporous silica nanocomposites. Journal of Materials Chemistry, 2009, 19, 6706.	6.7	174
25	Synthesis of orthogonally assembled 3D cross-stacked metal oxide semiconducting nanowires. Nature Materials, 2020, 19, 203-211.	27.5	172
26	Core-shell Ag@SiO2@mSiO2 mesoporous nanocarriers for metal-enhanced fluorescence. Chemical Communications, 2011, 47, 11618.	4.1	164
27	Synthesis of Ordered Mesoporous Silica with Tunable Morphologies and Pore Sizes via a Nonpolar Solvent-Assisted St¶ber Method. Chemistry of Materials, 2016, 28, 2356-2362.	6.7	159
28	Solvent Evaporation Induced Aggregating Assembly Approach to Three-Dimensional Ordered Mesoporous Silica with Ultralarge Accessible Mesopores. Journal of the American Chemical Society, 2011, 133, 20369-20377.	13.7	158
29	Preparation, Characterization, and Application of Multistimuli-Responsive Microspheres with Fluorescence-Labeled Magnetic Cores and Thermoresponsive Shells. Chemistry - A European Journal, 2005, 11, 6006-6013.	3.3	154
30	N-doped carbon hollow microspheres for metal-free quasi-solid-state full sodium-ion capacitors. Nano Energy, 2017, 41, 674-680.	16.0	153
31	A Micelle Fusion–Aggregation Assembly Approach to Mesoporous Carbon Materials with Rich Active Sites for Ultrasensitive Ammonia Sensing. Journal of the American Chemical Society, 2016, 138, 12586-12595.	13.7	152
32	Interfacial Assembly and Applications of Functional Mesoporous Materials. Chemical Reviews, 2021, 121, 14349-14429.	47.7	151
33	Ligandâ€Assisted Assembly Approach to Synthesize Largeâ€Pore Ordered Mesoporous Titania with Thermally Stable and Crystalline Framework. Advanced Energy Materials, 2011, 1, 241-248.	19.5	139
34	Radially oriented mesoporous TiO ₂ microspheres with single-crystal–like anatase walls for high-efficiency optoelectronic devices. Science Advances, 2015, 1, e1500166.	10.3	139
35	Organic-Dye-Coupled Magnetic Nanoparticles Encaged Inside Thermoresponsive PNIPAM Microcapsules. Small, 2005, 1, 737-743.	10.0	136
36	Nanoengineering of Core–Shell Magnetic Mesoporous Microspheres with Tunable Surface Roughness. Journal of the American Chemical Society, 2017, 139, 4954-4961.	13.7	135

#	Article	IF	CITATIONS
37	Ordered porous metal oxide semiconductors for gas sensing. Chinese Chemical Letters, 2018, 29, 405-416.	9.0	134
38	Magnetic yolk–shell mesoporous silica microspheres with supported Au nanoparticles as recyclable high-performance nanocatalysts. Journal of Materials Chemistry A, 2015, 3, 4586-4594.	10.3	129
39	Controlled Synthesis and Functionalization of Ordered Largeâ€Pore Mesoporous Carbons. Advanced Functional Materials, 2010, 20, 3658-3665.	14.9	127
40	An Aqueous Emulsion Route to Synthesize Mesoporous Carbon Vesicles and Their Nanocomposites. Advanced Materials, 2010, 22, 833-837.	21.0	117
41	Ultra-Large-Pore Mesoporous Carbons Templated from Poly(ethylene oxide)- <i>b</i> -Polystyrene Diblock Copolymer by Adding Polystyrene Homopolymer as a Pore Expander. Chemistry of Materials, 2008, 20, 7281-7286.	6.7	115
42	Designed Fabrication and Characterization of Three-Dimensionally Ordered Arrays of Core–Shell Magnetic Mesoporous Carbon Microspheres. ACS Applied Materials & Interfaces, 2015, 7, 5312-5319.	8.0	115
43	A versatile ethanol-mediated polymerization of dopamine for efficient surface modification and the construction of functional core–shell nanostructures. Journal of Materials Chemistry B, 2013, 1, 6085.	5.8	110
44	Mesoporous Carbon Single-Crystals from Organicâ^'Organic Self-Assembly. Journal of the American Chemical Society, 2007, 129, 7746-7747.	13.7	105
45	Mesoporous Silica Encapsulating Upconversion Luminescence Rare-Earth Fluoride Nanorods for Secondary Excitation. Langmuir, 2010, 26, 8850-8856.	3.5	105
46	Surfactant-templating strategy for ultrathin mesoporous TiO2 coating on flexible graphitized carbon supports for high-performance lithium-ion battery. Nano Energy, 2016, 25, 80-90.	16.0	103
47	Recent advances in amphiphilic block copolymer templated mesoporous metal-based materials: assembly engineering and applications. Chemical Society Reviews, 2020, 49, 1173-1208.	38.1	103
48	Design of Amphiphilic ABC Triblock Copolymer for Templating Synthesis of Large-Pore Ordered Mesoporous Carbons with Tunable Pore Wall Thickness. Chemistry of Materials, 2009, 21, 3996-4005.	6.7	102
49	Synthesis of Dualâ€Mesoporous Silica Using Nonâ€lonic Diblock Copolymer and Cationic Surfactant as Coâ€Templates. Angewandte Chemie - International Edition, 2012, 51, 6149-6153.	13.8	101
50	Tailored Mesoporous Inorganic Biomaterials: Assembly, Functionalization, and Drug Delivery Engineering. Advanced Materials, 2021, 33, e2005215.	21.0	100
51	Controllable Interfaceâ€Induced Coâ€Assembly toward Highly Ordered Mesoporous Pt@TiO ₂ /g ₃ N ₄ Heterojunctions with Enhanced Photocatalytic Performance. Advanced Functional Materials, 2018, 28, 1806214.	14.9	99
52	An Interface-Directed Coassembly Approach To Synthesize Uniform Large-Pore Mesoporous Silica Spheres. Journal of the American Chemical Society, 2014, 136, 1884-1892.	13.7	97
53	A Magneticâ€Field Guided Interface Coassembly Approach to Magnetic Mesoporous Silica Nanochains for Osteoclastâ€Targeted Inhibition and Heterogeneous Nanocatalysis. Advanced Materials, 2018, 30, e1707515.	21.0	96
54	Gas chromatography–mass spectrometry method for determination of phenylalanine and tyrosine in neonatal blood spots. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2002, 780, 407-413.	2.3	95

#	Article	IF	CITATIONS
55	Chelation-assisted soft-template synthesis of ordered mesoporous zinc oxides for low concentration gas sensing. Journal of Materials Chemistry A, 2016, 4, 15064-15071.	10.3	93
56	Thick wall mesoporous carbons with a large pore structure templated from a weakly hydrophobic PEO–PMMA diblock copolymer. Journal of Materials Chemistry, 2008, 18, 91-97.	6.7	91
57	sp ² -Hybridized Carbon-Containing Block Copolymer Templated Synthesis of Mesoporous Semiconducting Metal Oxides with Excellent Gas Sensing Property. Accounts of Chemical Research, 2019, 52, 714-725.	15.6	90
58	Ordered Mesoporous Alumina with Ultra-Large Pores as an Efficient Absorbent for Selective Bioenrichment. Chemistry of Materials, 2017, 29, 2211-2217.	6.7	89
59	Ordered Mesoporous Tin Oxide Semiconductors with Large Pores and Crystallized Walls for High-Performance Gas Sensing. ACS Applied Materials & Interfaces, 2018, 10, 1871-1880.	8.0	89
60	<p>A perspective on magnetic core–shell carriers for responsive and targeted drug delivery systems</p> . International Journal of Nanomedicine, 2019, Volume 14, 1707-1723.	6.7	86
61	A Resolâ€Assisted Coâ€Assembly Approach to Crystalline Mesoporous Niobia Spheres for Electrochemical Biosensing. Angewandte Chemie - International Edition, 2013, 52, 10505-10510.	13.8	85
62	Hierarchical Cu ₂ S Microsponges Constructed from Nanosheets for Efficient Photocatalysis. Small, 2013, 9, 2702-2708.	10.0	85
63	Magnetically responsive ordered mesoporous materials: A burgeoning family of functional composite nanomaterials. Chemical Physics Letters, 2011, 510, 1-13.	2.6	84
64	Hierarchical Branched Mesoporous TiO ₂ –SnO ₂ Nanocomposites with Wellâ€Defined n–n Heterojunctions for Highly Efficient Ethanol Sensing. Advanced Science, 2019, 6, 1902008.	11.2	84
65	Direct triblock-copolymer-templating synthesis of ordered nitrogen-containing mesoporous polymers. Journal of Colloid and Interface Science, 2010, 342, 579-585.	9.4	83
66	Core–Shell Magnetic Mesoporous Silica Microspheres with Large Mesopores for Enzyme Immobilization in Biocatalysis. ACS Applied Materials & Interfaces, 2019, 11, 10356-10363.	8.0	83
67	Facile Synthesis of Hierarchically Mesoporous Silica Particles with Controllable Cavity in Their Surfaces. Langmuir, 2010, 26, 702-708.	3.5	79
68	General Synthesis of Discrete Mesoporous Carbon Microspheres through a Confined Self-Assembly Process in Inverse Opals. ACS Nano, 2013, 7, 8706-8714.	14.6	79
69	Photoluminescence modification in upconversion rare-earth fluoride nanocrystal array constructed photonic crystals. Journal of Materials Chemistry, 2010, 20, 3895.	6.7	78
70	A template-catalyzed <i>in situ</i> polymerization and co-assembly strategy for rich nitrogen-doped mesoporous carbon. Journal of Materials Chemistry A, 2018, 6, 3162-3170.	10.3	77
71	Rational design of a stable peroxidase mimic for colorimetric detection of H2O2 and glucose: A synergistic CeO2/Zeolite Y nanocomposite. Journal of Colloid and Interface Science, 2019, 535, 425-435.	9.4	75
72	Mesoporous TiO ₂ Mesocrystals: Remarkable Defects-Induced Crystallite-Interface Reactivity and Their in Situ Conversion to Single Crystals. ACS Central Science, 2015, 1, 400-408.	11.3	74

#	Article	IF	CITATIONS
73	Amphiphilic Block Copolymer Templated Synthesis of Mesoporous Indium Oxides with Nanosheet-Assembled Pore Walls. Chemistry of Materials, 2016, 28, 7997-8005.	6.7	74
74	Rational Synthesis and Gas Sensing Performance of Ordered Mesoporous Semiconducting WO ₃ /NiO Composites. ACS Applied Materials & Interfaces, 2019, 11, 26268-26276.	8.0	74
75	Growth of Single-Crystal Mesoporous Carbons with <i>Im</i> 3Ì <i>m</i> Symmetry. Chemistry of Materials, 2010, 22, 4828-4833.	6.7	70
76	Oxygen-deficient WO _{3â^'x} @TiO _{2â^'x} core–shell nanosheets for efficient photoelectrochemical oxidation of neutral water solutions. Journal of Materials Chemistry A, 2017, 5, 14697-14706.	10.3	68
77	A Template Carbonization Strategy to Synthesize Ordered Mesoporous Silica Microspheres with Trapped Sulfonated Carbon Nanoparticles for Efficient Catalysis. Angewandte Chemie - International Edition, 2012, 51, 10368-10372.	13.8	66
78	Recyclable Fenton-like catalyst based on zeolite Y supported ultrafine, highly-dispersed Fe2O3 nanoparticles for removal of organics under mild conditions. Chinese Chemical Letters, 2019, 30, 324-330.	9.0	64
79	A versatile designed synthesis of magnetically separable nano-catalysts with well-defined core–shell nanostructures. Journal of Materials Chemistry A, 2014, 2, 6071-6074.	10.3	63
80	Controlled Synthesis of Ordered Mesoporous Carbon-Cobalt Oxide Nanocomposites with Large Mesopores and Graphitic Walls. Chemistry of Materials, 2016, 28, 7773-7780.	6.7	63
81	Magnetic yolk-shell structured anatase-based microspheres loaded with Au nanoparticles for heterogeneous catalysis. Nano Research, 2015, 8, 238-245.	10.4	62
82	Nanoscale zero-valent iron in mesoporous carbon (nZVI@C): stable nanoparticles for metal extraction and catalysis. Journal of Materials Chemistry A, 2017, 5, 4478-4485.	10.3	62
83	Rational Design of Multifunctional CuS Nanoparticleâ€PEG Composite Soft Hydrogel oated 3D Hard Polycaprolactone Scaffolds for Efficient Bone Regeneration. Advanced Functional Materials, 2022, 32,	14.9	62
84	Interfacial engineering of magnetic particles with porous shells: Towards magnetic core – Porous shell microparticles. Nano Today, 2016, 11, 464-482.	11.9	61
85	Synthesis of WO3@ZnWO4@ZnO-ZnO hierarchical nanocactus arrays for efficient photoelectrochemical water splitting. Nano Energy, 2017, 41, 543-551.	16.0	61
86	Hollow TiO2–X porous microspheres composed of well-crystalline nanocrystals for high-performance lithium-ion batteries. Nano Research, 2016, 9, 165-173.	10.4	60
87	Cementing Mesoporous ZnO with Silica for Controllable and Switchable Gas Sensing Selectivity. Chemistry of Materials, 2019, 31, 8112-8120.	6.7	58
88	High-performance H2 sensors with selectively hydrophobic micro-plate for self-aligned upload of Pd nanodots modified mesoporous In2O3 sensing-material. Sensors and Actuators B: Chemical, 2018, 267, 83-92.	7.8	55
89	Templated Fabrication of Core–Shell Magnetic Mesoporous Carbon Microspheres in 3-Dimensional Ordered Macroporous Silicas. Chemistry of Materials, 2014, 26, 3316-3321.	6.7	54
90	Plasmonic Silver Supercrystals with Ultrasmall Nanogaps for Ultrasensitive SERSâ€Based Molecule Detection. Advanced Optical Materials, 2015, 3, 404-411.	7.3	53

#	Article	IF	CITATIONS
91	Selfâ€Template Synthesis of Mesoporous Metal Oxide Spheres with Metalâ€Mediated Inner Architectures and Superior Sensing Performance. Advanced Functional Materials, 2018, 28, 1806144.	14.9	51
92	Monodisperse mesoporous TiO2 microspheres for dye sensitized solar cells. Nano Energy, 2016, 26, 16-25.	16.0	49
93	Mesoporous Materials–Based Electrochemical Biosensors from Enzymatic to Nonenzymatic. Small, 2021, 17, e1904022.	10.0	49
94	Highly dispersed Pt nanoparticles on ultrasmall EMT zeolite: A peroxidase-mimic nanoenzyme for detection of H2O2 or glucose. Journal of Colloid and Interface Science, 2020, 570, 300-311.	9.4	48
95	Synthesis of ZSM-5 aggregates made of zeolite nanocrystals through a simple solvent-free method. Microporous and Mesoporous Materials, 2017, 243, 112-118.	4.4	47
96	Local Delivery and Sustainedâ€Release of Nitric Oxide Donor Loaded in Mesoporous Silica Particles for Efficient Treatment of Primary Openâ€Angle Glaucoma. Advanced Healthcare Materials, 2018, 7, e1801047.	7.6	47
97	Ultrathin 2D NbWO ₆ Perovskite Semiconductor Based Gas Sensors with Ultrahigh Selectivity under Low Working Temperature. Advanced Materials, 2022, 34, e2104958.	21.0	46
98	Rationally Designed Dualâ€Mesoporous Transition Metal Oxides/Noble Metal Nanocomposites for Fabrication of Gas Sensors in Realâ€Time Detection of 3â€Hydroxyâ€2â€Butanone Biomarker. Advanced Functional Materials, 2022, 32, 2107439.	14.9	46
99	Controlled deposition of Pt nanoparticles on Fe ₃ O ₄ @carbon microspheres for efficient oxidation of 5-hydroxymethylfurfural. RSC Advances, 2016, 6, 51229-51237.	3.6	45
100	Amphiphilic Block Copolymers Directed Interface Coassembly to Construct Multifunctional Microspheres with Magnetic Core and Monolayer Mesoporous Aluminosilicate Shell. Advanced Materials, 2018, 30, e1800345.	21.0	45
101	A General and Straightforward Route to Noble Metalâ€Decorated Mesoporous Transitionâ€Metal Oxides with Enhanced Gas Sensing Performance. Small, 2019, 15, e1904240.	10.0	45
102	Advances in the Interfacial Assembly of Mesoporous Silica on Magnetite Particles. Angewandte Chemie - International Edition, 2020, 59, 15804-15817.	13.8	45
103	Noble Metal Nanoparticles Decorated Metal Oxide Semiconducting Nanowire Arrays Interwoven into 3D Mesoporous Superstructures for Low-Temperature Gas Sensing. ACS Central Science, 2021, 7, 1885-1897.	11.3	45
104	Hollow Mesoporous Carbon Nanospheres Loaded with Pt Nanoparticles for Colorimetric Detection of Ascorbic Acid and Glucose. ACS Applied Nano Materials, 2020, 3, 4586-4598.	5.0	44
105	Largeâ€Pore Mesoporous CeO ₂ –ZrO ₂ Solid Solutions with Inâ€Pore Confined Pt Nanoparticles for Enhanced CO Oxidation. Small, 2019, 15, e1903058.	10.0	43
106	Azobenzeneâ€Derived Surfactants as Phototriggered Recyclable Templates for the Synthesis of Ordered Mesoporous Silica Nanospheres. Advanced Materials, 2014, 26, 1782-1787.	21.0	42
107	Large-pore ordered mesoporous carbons with tunable structures and pore sizes templated from poly(ethylene oxide)-b-poly(methyl methacrylate). Solid State Sciences, 2011, 13, 784-792.	3.2	41
108	Tricomponent Coassembly Approach To Synthesize Ordered Mesoporous Carbon/Silica Nanocomposites and Their Derivative Mesoporous Silicas with Dual Porosities. Chemistry of Materials, 2014, 26, 2438-2444.	6.7	41

#	Article	IF	CITATIONS
109	Magnetic mesoporous nanospheres anchored with LyP-1 as an efficient pancreatic cancer probe. Biomaterials, 2017, 115, 9-18.	11.4	41
110	A Universal Labâ€onâ€Saltâ€Particle Approach to 2D Single‣ayer Ordered Mesoporous Materials. Advanced Materials, 2020, 32, e1906653.	21.0	41
111	Nonsacrificial Selfâ€Template Synthesis of Colloidal Magnetic Yolk–Shell Mesoporous Organosilicas for Efficient Oil/Water Interface Catalysis. Small, 2019, 15, e1805465.	10.0	40
112	Size-Controlled Au Nanoparticles Incorporating Mesoporous ZnO for Sensitive Ethanol Sensing. ACS Applied Materials & Interfaces, 2021, 13, 51933-51944.	8.0	40
113	Diagnosis of maple syrup urine disease by determination of I-valine, I-isoleucine, I-leucine and I-phenylalanine in neonatal blood spots by gas chromatography–mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2003, 792, 261-268.	2.3	39
114	A curing agent method to synthesize ordered mesoporous carbons from linear novolac phenolic resin polymers. Journal of Materials Chemistry, 2009, 19, 6536.	6.7	38
115	An Efficient Emulsionâ€Induced Interface Assembly Approach for Rational Synthesis of Mesoporous Carbon Spheres with Versatile Architectures. Advanced Functional Materials, 2020, 30, 2002488.	14.9	38
116	Rational synthesis of superparamagnetic core–shell structured mesoporous microspheres with large pore sizes. Journal of Materials Chemistry A, 2014, 2, 18322-18328.	10.3	37
117	Au Nanoparticles Decorated Mesoporous SiO ₂ –WO ₃ Hybrid Materials with Improved Pore Connectivity for Ultratrace Ethanol Detection at Low Operating Temperature. Small, 2020, 16, e2004772.	10.0	37
118	Interface Coassembly and Polymerization on Magnetic Colloids: Toward Core–Shell Functional Mesoporous Polymer Microspheres and Their Carbon Derivatives. Advanced Science, 2020, 7, 2000443.	11.2	37
119	Magnetic 3-D ordered macroporous silica templated from binary colloidal crystals and its application for effective removal of microcystin. Microporous and Mesoporous Materials, 2010, 130, 26-31.	4.4	36
120	Selectivity Enhancement in Dynamic Kinetic Resolution of Secondary Alcohols through Adjusting the Micro-Environment of Metal Complex Confined in Nanochannels: A Promising Strategy for Tandem Reactions. ACS Catalysis, 2015, 5, 27-33.	11.2	36
121	Semiconducting Metal Oxides for Gas Sensing. , 2019, , .		36
122	Pore Engineering of Mesoporous Tungsten Oxides for Ultrasensitive Gas Sensing. Advanced Materials Interfaces, 2019, 6, 1801269.	3.7	35
123	Mesoporous amorphous Al ₂ O ₃ /crystalline WO ₃ heterophase hybrids for electrocatalysis and gas sensing applications. Journal of Materials Chemistry A, 2019, 7, 21874-21883.	10.3	34
124	Self-template synthesis of mesoporous Au-SnO2 nanospheres for low-temperature detection of triethylamine vapor. Sensors and Actuators B: Chemical, 2022, 356, 131358.	7.8	34
125	Ordered mesoporous CoO/CeO2 heterostructures with highly crystallized walls and enhanced peroxidase-like bioactivity. Applied Materials Today, 2019, 15, 482-493.	4.3	33
126	Synthesis of Podlike Magnetic Mesoporous Silica Nanochains for Use as Enzyme Support and Nanostirrer in Biocatalysis. ACS Applied Materials & Interfaces, 2020, 12, 17901-17908.	8.0	33

#	Article	IF	CITATIONS
127	Preparation and characterization of core-shell polymer particles with protonizable shells prepared by oxyanionic polymerization. Journal of Polymer Science Part A, 2004, 42, 6081-6088.	2.3	32
128	A systematic investigation of the formation of ordered mesoporous silicas using poly(ethylene) Tj ETQq0 0 0 rgBT	- Overlock	10 Tf 50 70

129	Ligand exchange triggered controlled-release targeted drug delivery system based on core–shell superparamagnetic mesoporous microspheres capped with nanoparticles. Journal of Materials Chemistry, 2012, 22, 17677.	6.7	30
130	Synthesis of Bi2O2CO3/In(OH)3·xH2O nanocomposites for isopropanol sensor with excellent performances at low temperature. Sensors and Actuators B: Chemical, 2022, 361, 131715.	7.8	30
131	General Synthesis of Mixed Semiconducting Metal Oxide Hollow Spheres with Tunable Compositions for Low-Temperature Chemiresistive Sensing. ACS Applied Materials & Interfaces, 2019, 11, 35060-35067.	8.0	29
132	A simple approach to the synthesis of hollow microspheres with magnetite/silica hybrid walls. Journal of Colloid and Interface Science, 2009, 333, 329-334.	9.4	28
133	Ordered mesoporous silica/polyvinylidene fluoride composite membranes for effective removal of water contaminants. Journal of Materials Chemistry A, 2016, 4, 3850-3857.	10.3	28
134	3D Interconnected Mesoporous Alumina with Loaded Hemoglobin as a Highly Active Electrochemical Biosensor for H ₂ O ₂ . Advanced Healthcare Materials, 2018, 7, e1800149.	7.6	28
135	High performance lithium-sulfur batteries by facilely coating a conductive carbon nanotube or graphene layer. Chinese Chemical Letters, 2018, 29, 1777-1780.	9.0	28
136	Recent advance in synthesis and application of heteroatom zeolites. Chinese Chemical Letters, 2021, 32, 328-338.	9.0	28
137	Smart Cargo Delivery System based on Mesoporous Nanoparticles for Bone Disease Diagnosis and Treatment. Advanced Science, 2021, 8, e2004586.	11.2	28
138	Magnetic spherical cores partly coated with periodic mesoporous organosilica single crystals. Nanoscale, 2012, 4, 1647.	5.6	27
139	Scalable synthesis of mesoporous titania microspheres via spray-drying method. Journal of Colloid and Interface Science, 2016, 479, 150-159.	9.4	27
140	Hierarchical ordered macro/mesoporous titania with a highly interconnected porous structure for efficient photocatalysis. Journal of Materials Chemistry A, 2016, 4, 16446-16453.	10.3	27
141	A systematic investigation of the bio-toxicity of core-shell magnetic mesoporous silica microspheres using zebrafish model. Microporous and Mesoporous Materials, 2018, 265, 195-201.	4.4	27
142	A facile construction of bifunctional core-shell magnetic fluorescent Fe3O4@YVO4:Eu3+ microspheres for latent fingerprint detection. Journal of Colloid and Interface Science, 2022, 605, 425-431.	9.4	27
143	A Shear Stress Regulated Assembly Route to Silica Nanotubes and Their Closely Packed Hollow Mesostructures. Angewandte Chemie - International Edition, 2013, 52, 11603-11606.	13.8	26
144	Polymerization-Induced Colloid Assembly Route to Iron Oxide-Based Mesoporous Microspheres for Cas Serving and Featon Catalysis, ACS Applied Materials & app: Interfaces, 2018, 10, 13028-13039	8.0	26

#	Article	IF	CITATIONS
145	A fast on-demand preparation of injectable self-healing nanocomposite hydrogels for efficient osteoinduction. Chinese Chemical Letters, 2021, 32, 2159-2163.	9.0	26
146	Rational Design of Yolk–Shell CuO/Silicalite-1@mSiO ₂ Composites for a High-Performance Nonenzymatic Glucose Biosensor. Langmuir, 2018, 34, 7663-7672.	3.5	25
147	Facile synthesis of metal-polyphenol-formaldehyde coordination polymer colloidal nanoparticles with sub-50 nm for T1-weighted magnetic resonance imaging. Chinese Chemical Letters, 2021, 32, 842-848.	9.0	24
148	One-step synthesis of in-situ N-doped ordered mesoporous titania for enhanced gas sensing performance. Microporous and Mesoporous Materials, 2018, 270, 75-81.	4.4	23
149	Exposed metal oxide active sites on mesoporous titania channels: a promising design for low-temperature selective catalytic reduction of NO with NH ₃ . Chemical Communications, 2018, 54, 3783-3786.	4.1	23
150	An unusual example of morphology controlled periodic mesoporous organosilica single crystals. Journal of Materials Chemistry, 2010, 20, 6460.	6.7	22
151	Controlled synthesis of hydroxyapatite crystals templated by novel surfactants and their enhanced bioactivity. New Journal of Chemistry, 2011, 35, 663-671.	2.8	22
152	Quantified mass transfer and superior antiflooding performance of ordered macroâ€mesoporous electrocatalysts. AICHE Journal, 2018, 64, 2881-2889.	3.6	22
153	Controllable synthesis of highly crystallized mesoporous TiO2/WO3 heterojunctions for acetone gas sensing. Chinese Chemical Letters, 2020, 31, 1119-1123.	9.0	22
154	Hydrothermal synthesis of hierarchical SnO2 nanomaterials for high-efficiency detection of pesticide residue. Chinese Chemical Letters, 2021, 32, 1502-1506.	9.0	22
155	Ordered Mesoporous Carbonaceous Materials with Tunable Surface Property for Enrichment of Hexachlorobenzene. Langmuir, 2016, 32, 9922-9929.	3.5	21
156	A vesicle-aggregation-assembly approach to highly ordered mesoporous Î ³ -alumina microspheres with shifted double-diamond networks. Chemical Science, 2018, 9, 7705-7714.	7.4	20
157	A facile construction of heterostructured ZnO/Co3O4 mesoporous spheres and superior acetone sensing performance. Chinese Chemical Letters, 2021, 32, 1998-2004.	9.0	19
158	A novel approach to the construction of 3-D ordered macrostructures with polyhedral particles. Journal of Materials Chemistry, 2008, 18, 408-415.	6.7	18
159	Hydrothermal Synthesis and Photoluminescence of Hierarchical Lead Tungstate Superstructures: Effects of Reaction Temperature and Surfactants. European Journal of Inorganic Chemistry, 2010, 2010, 1736-1742.	2.0	18
160	Templated Synthesis of Shape ontrolled, Ordered TiO ₂ Cage Structures. Small, 2011, 7, 2037-2040.	10.0	18
161	Advances in Mesoporous Thin Films via Self-Assembly Process. Advanced Porous Materials, 2013, 1, 164-186.	0.3	18
162	Engineering Pore Walls of Mesoporous Tungsten Oxides via Ce Doping for the Development of High-Performance Smart Gas Sensors. Chemistry of Materials, 2022, 34, 2321-2332.	6.7	18

#	Article	IF	CITATIONS
163	Amphiphilic block copolymers directed synthesis of mesoporous nickel-based oxides with bimodal mesopores and nanocrystal-assembled walls. Chinese Chemical Letters, 2019, 30, 2003-2008.	9.0	17
164	Stepwise construction of Pt decorated oxygen-deficient mesoporous titania microspheres with core-shell structure and magnetic separability for efficient visible-light photocatalysis. Chinese Chemical Letters, 2020, 31, 1598-1602.	9.0	17
165	Structure Engineering of Yolk–Shell Magnetic Mesoporous Silica Microspheres with Broccoli‣ike Morphology for Efficient Catalysis and Enhanced Cellular Uptake. Small, 2021, 17, e2006925.	10.0	16
166	Synthesis of core–shell structured zeolite-A@mesoporous silica composites for butyraldehyde adsorption. Journal of Colloid and Interface Science, 2014, 428, 251-256.	9.4	15
167	Confined interfacial micelle aggregating assembly of ordered macro–mesoporous tungsten oxides for H ₂ S sensing. Nanoscale, 2020, 12, 20811-20819.	5.6	15
168	Sulfonic acid-functionalized core-shell Fe3O4@carbon microspheres as magnetically recyclable solid acid catalysts. Chinese Chemical Letters, 2021, 32, 2079-2085.	9.0	15
169	Versatile core–shell magnetic fluorescent mesoporous microspheres for multilevel latent fingerprints magnetoâ€optic information recognition. InformaÄnÃ-Materiály, 2022, 4, .	17.3	15
170	Homopolymer induced phase evolution in mesoporous silica from evaporation induced self-assembly process. Microporous and Mesoporous Materials, 2008, 116, 633-640.	4.4	14
171	Interface Assembly to Magnetic Mesoporous Organosilica Microspheres with Tunable Surface Roughness as Advanced Catalyst Carriers and Adsorbents. ACS Applied Materials & Interfaces, 2021, 13, 36138-36146.	8.0	14
172	Selfâ€Hybrid Transition Metal Oxide Nanosheets Synthesized by a Facile Programmable and Scalable Carbonateâ€Template Method. Small, 2021, 17, e2103176.	10.0	13
173	Prolonged use of nitric oxide donor sodium nitroprusside induces ocular hypertension in mice. Experimental Eye Research, 2021, 202, 108280.	2.6	11
174	A facile biliquid-interface co-assembly synthesis of mesoporous vesicles with large pore sizes. CrystEngComm, 2016, 18, 4343-4348.	2.6	10
175	Sensing Mechanism and Evaluation Criteria of Semiconducting Metal Oxides Gas Sensors. , 2019, , 23-51.		10
176	Advances in the Interfacial Assembly of Mesoporous Silica on Magnetite Particles. Angewandte Chemie, 2020, 132, 15936-15949.	2.0	9
177	General and Efficient Synthesis of Two-Dimensional Monolayer Mesoporous Materials with Diverse Framework Compositions. ACS Applied Materials & Interfaces, 2021, 13, 1222-1233.	8.0	9
178	One-dimensional nanochains consisting of magnetic core and mesoporous aluminosilicate for use as efficient nanocatalysts. Nano Research, 2021, 14, 4197-4203.	10.4	9
179	Controllable Multicomponent Coâ€Assembly Approach to Ordered Mesoporous Zirconia Supported with Wellâ€Dispersed Tungsten Oxide Clusters as Highâ€Performance Catalysts. ChemCatChem, 2021, 13, 2863-2872.	3.7	8
180	A "teardown―method to create large mesotunnels on the pore walls of ordered mesoporous silica. Journal of Colloid and Interface Science, 2008, 328, 338-343.	9.4	7

#	Article	IF	CITATIONS
181	Sensors: Pt Nanoparticles Sensitized Ordered Mesoporous WO ₃ Semiconductor: Gas Sensing Performance and Mechanism Study (Adv. Funct. Mater. 6/2018). Advanced Functional Materials, 2018, 28, 1870040.	14.9	7
182	Improved Treatment on Ocular Inflammation with Rationally Designed Thermoresponsive Nanocomposite Formulation. Advanced Therapeutics, 2021, 4, 2100088.	3.2	7
183	Polyphenol-Mediated Synthesis of Mesoporous Au–In ₂ O ₃ Nanospheres for Room-Temperature Detection of Triethylamine. ACS Applied Nano Materials, 2022, 5, 9688-9697.	5.0	7
184	Mesoporous Materials: Ordered Mesoporous Materials Based on Interfacial Assembly and Engineering (Adv. Mater. 37/2013). Advanced Materials, 2013, 25, 5128-5128.	21.0	6
185	Monodisperse mesoporous silica nanospheres with radially oriented mesochannels and their size effect on cell uptake. Microporous and Mesoporous Materials, 2013, 181, 248-253.	4.4	6
186	Advanced H ₂ -storage system fabricated through chemical layer deposition in a well-designed porous carbon scaffold. Journal of Materials Chemistry A, 2014, 2, 15168-15174.	10.3	6
187	Rational construction of self-assembly azobenzene derivative monolayers with photoswitchable surface properties. Chinese Chemical Letters, 2018, 29, 1661-1665.	9.0	5
188	Core–Shell Silicon@Mesoporous TiO ₂ Heterostructure: Towards Solarâ€Powered Photoelectrochemical Conversion. ChemNanoMat, 2016, 2, 647-651.	2.8	4
189	Sensors: Self-Template Synthesis of Mesoporous Metal Oxide Spheres with Metal-Mediated Inner Architectures and Superior Sensing Performance (Adv. Funct. Mater. 51/2018). Advanced Functional Materials, 2018, 28, 1870364.	14.9	4
190	Sensing Devices of Semiconducting Metal Oxides Gas Sensors. , 2019, , 153-173.		4
191	Cytotoxicity induced by new spiral mesoporous silica nanorods <i>via</i> specific surface area and ROS accumulation in HeLa cells. Materials Advances, 2020, 1, 3556-3564.	5.4	3
192	Synthesis and Characterization of Hierarchically Ordered Porous Carbon Based Energetic Nanocomposites. Advanced Porous Materials, 2014, 2, 31-36.	0.3	2
193	Semiconducting Metal Oxides: Composition and Sensing Performance. , 2019, , 77-103.		2
194	Applications of Semiconducting Metal Oxides Gas Sensors. , 2019, , 195-241.		1
195	Semiconducting Metal Oxides: Morphology and Sensing Performance. , 2019, , 53-75.		1
196	Semiconducting Metal Oxides: Microstructure and Sensing Performance. , 2019, , 105-135.		1
197	Self-aligned precise upload of Pd-modified mesoporous In <inf>2</inf> O <inf>3</inf> on suspended MEMS heating-plate for ultra-sensitive H <inf>2</inf> gas sensing. , 2017, , .		0
198	Understanding Semiconducting Metal Oxide Gas Sensors. , 2019, , 1-22.		0

Understanding Semiconducting Metal Oxide Gas Sensors. , 2019, , 1-22. 198

#	Article	IF	CITATIONS
199	Synthesis of Nanoporous Polystyrene Microspheres for Efficient Incorporation ofL-Menthol. Chinese Journal of Organic Chemistry, 2015, 35, 390.	1.3	0