Li-Jun Wan

List of Publications by Citations

Source: https://exaly.com/author-pdf/2708916/li-jun-wan-publications-by-citations.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

640 218 55,198 114 h-index g-index papers citations 61,238 8.04 690 9.1 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
640	Lithium-sulfur batteries: electrochemistry, materials, and prospects. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 13186-200	16.4	1989
639	Nanostructured Materials for Electrochemical Energy Conversion and Storage Devices. <i>Advanced Materials</i> , 2008 , 20, 2878-2887	24	1893
638	Self-Assembled 3D Flowerlike Iron Oxide Nanostructures and Their Application in Water Treatment. <i>Advanced Materials</i> , 2006 , 18, 2426-2431	24	1425
637	Smaller sulfur molecules promise better lithium-sulfur batteries. <i>Journal of the American Chemical Society</i> , 2012 , 134, 18510-3	16.4	1317
636	Understanding the High Activity of Fe-N-C Electrocatalysts in Oxygen Reduction: Fe/Fe3C Nanoparticles Boost the Activity of Fe-N(x). <i>Journal of the American Chemical Society</i> , 2016 , 138, 3570-8	16.4	1219
635	Carbon Coated Fe3O4 Nanospindles as a Superior Anode Material for Lithium-Ion Batteries. <i>Advanced Functional Materials</i> , 2008 , 18, 3941-3946	15.6	1119
634	Binding SnO2 nanocrystals in nitrogen-doped graphene sheets as anode materials for lithium-ion batteries. <i>Advanced Materials</i> , 2013 , 25, 2152-7	24	951
633	Tin-Nanoparticles Encapsulated in Elastic Hollow Carbon Spheres for High-Performance Anode Material in Lithium-Ion Batteries. <i>Advanced Materials</i> , 2008 , 20, 1160-1165	24	938
632	Self-assembled vanadium pentoxide (V2O5) hollow microspheres from nanorods and their application in lithium-ion batteries. <i>Angewandte Chemie - International Edition</i> , 2005 , 44, 4391-5	16.4	782
631	Acute toxicological effects of copper nanoparticles in vivo. <i>Toxicology Letters</i> , 2006 , 163, 109-20	4.4	691
630	Pt hollow nanospheres: facile synthesis and enhanced electrocatalysts. <i>Angewandte Chemie - International Edition</i> , 2004 , 43, 1540-3	16.4	631
629	Cobalt in Nitrogen-Doped Graphene as Single-Atom Catalyst for High-Sulfur Content Lithium-Sulfur Batteries. <i>Journal of the American Chemical Society</i> , 2019 , 141, 3977-3985	16.4	626
628	LiFePO4 Nanoparticles Embedded in a Nanoporous Carbon Matrix: Superior Cathode Material for Electrochemical Energy-Storage Devices. <i>Advanced Materials</i> , 2009 , 21, 2710-2714	24	597
627	Rutile-TiO2 nanocoating for a high-rate Li4Ti5O12 anode of a lithium-ion battery. <i>Journal of the American Chemical Society</i> , 2012 , 134, 7874-9	16.4	551
626	Electronic and Morphological Dual Modulation of Cobalt Carbonate Hydroxides by Mn Doping toward Highly Efficient and Stable Bifunctional Electrocatalysts for Overall Water Splitting. <i>Journal of the American Chemical Society</i> , 2017 , 139, 8320-8328	16.4	546
625	Space-confinement-induced synthesis of pyridinic- and pyrrolic-nitrogen-doped graphene for the catalysis of oxygen reduction. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 11755-9	16.4	538
624	Mass production and high photocatalytic activity of ZnS nanoporous nanoparticles. <i>Angewandte Chemie - International Edition</i> , 2005 , 44, 1269-73	16.4	511

(2016-2012)

623	Nanocarbon networks for advanced rechargeable lithium batteries. <i>Accounts of Chemical Research</i> , 2012 , 45, 1759-69	24.3	488	
622	Zn-Cu-In-Se Quantum Dot Solar Cells with a Certified Power Conversion Efficiency of 11.6%. <i>Journal of the American Chemical Society</i> , 2016 , 138, 4201-9	16.4	476	
621	Pomegranate-like N,P-Doped Mo2C@C Nanospheres as Highly Active Electrocatalysts for Alkaline Hydrogen Evolution. <i>ACS Nano</i> , 2016 , 10, 8851-60	16.7	451	
620	A high-energy room-temperature sodium-sulfur battery. <i>Advanced Materials</i> , 2014 , 26, 1261-5	24	446	
619	A Flexible Solid Electrolyte Interphase Layer for Long-Life Lithium Metal Anodes. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 1505-1509	16.4	438	
618	Controllable pt nanoparticle deposition on carbon nanotubes as an anode catalyst for direct methanol fuel cells. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 22212-6	3.4	434	
617	Improving the electrode performance of Ge through Ge@C core-shell nanoparticles and graphene networks. <i>Journal of the American Chemical Society</i> , 2012 , 134, 2512-5	16.4	411	
616	3D Flowerlike Ceria Micro/Nanocomposite Structure and Its Application for Water Treatment and CO Removal. <i>Chemistry of Materials</i> , 2007 , 19, 1648-1655	9.6	410	
615	Self-Assembled Nanocomposite of Silicon Nanoparticles Encapsulated in Graphene through Electrostatic Attraction for Lithium-Ion Batteries. <i>Advanced Energy Materials</i> , 2012 , 2, 1086-1090	21.8	401	
614	Watermelon-Inspired Si/C Microspheres with Hierarchical Buffer Structures for Densely Compacted Lithium-Ion Battery Anodes. <i>Advanced Energy Materials</i> , 2017 , 7, 1601481	21.8	397	
613	Facile synthesis of silicon nanoparticles inserted into graphene sheets as improved anode materials for lithium-ion batteries. <i>Chemical Communications</i> , 2012 , 48, 2198-200	5.8	379	
612	Nanostructured polyaniline-decorated Pt/C@PANI core-shell catalyst with enhanced durability and activity. <i>Journal of the American Chemical Society</i> , 2012 , 134, 13252-5	16.4	373	
611	Cascade anchoring strategy for general mass production of high-loading single-atomic metal-nitrogen catalysts. <i>Nature Communications</i> , 2019 , 10, 1278	17.4	368	
610	MoS2/CdS Nanosheets-on-Nanorod Heterostructure for Highly Efficient Photocatalytic H2 Generation under Visible Light Irradiation. <i>ACS Applied Materials & Description of the Photocatalytic H2</i>	9.5	358	
609	Sulfur Encapsulated in Graphitic Carbon Nanocages for High-Rate and Long-Cycle Lithium-Sulfur Batteries. <i>Advanced Materials</i> , 2016 , 28, 9539-9544	24	341	
608	A Sandwich-Like Hierarchically Porous Carbon/Graphene Composite as a High-Performance Anode Material for Sodium-Ion Batteries. <i>Advanced Energy Materials</i> , 2014 , 4, 1301584	21.8	341	
607	Mono dispersed SnO2 nanoparticles on both sides of single layer graphene sheets as anode materials in Li-ion batteries. <i>Journal of Materials Chemistry</i> , 2010 , 20, 5462		338	
606	Suppressing the P2-O2 Phase Transition of Na0.67 Mn0.67 Ni0.33 O2 by Magnesium Substitution for Improved Sodium-Ion Batteries. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 7445-9	16.4	330	

605	Stable Li Plating/Stripping Electrochemistry Realized by a Hybrid Li Reservoir in Spherical Carbon Granules with 3D Conducting Skeletons. <i>Journal of the American Chemical Society</i> , 2017 , 139, 5916-5922	<u>.</u> 16.4	329
604	Reshaping Lithium Plating/Stripping Behavior via Bifunctional Polymer Electrolyte for Room-Temperature Solid Li Metal Batteries. <i>Journal of the American Chemical Society</i> , 2016 , 138, 15825	-15 8 28	329
603	On-surface synthesis of single-layered two-dimensional covalent organic frameworks via solid-vapor interface reactions. <i>Journal of the American Chemical Society</i> , 2013 , 135, 10470-4	16.4	322
602	Hierarchically structured cobalt oxide (Co3O4): the morphology control and its potential in sensors. Journal of Physical Chemistry B, 2006 , 110, 15858-63	3.4	320
601	Uniform Lithium Nucleation/Growth Induced by Lightweight Nitrogen-Doped Graphitic Carbon Foams for High-Performance Lithium Metal Anodes. <i>Advanced Materials</i> , 2018 , 30, 1706216	24	315
600	Self-Templated Fabrication of MoNi /MoO Nanorod Arrays with Dual Active Components for Highly Efficient Hydrogen Evolution. <i>Advanced Materials</i> , 2017 , 29, 1703311	24	300
599	Subzero-Temperature Cathode for a Sodium-Ion Battery. <i>Advanced Materials</i> , 2016 , 28, 7243-8	24	299
598	Dendrite-Free Li-Metal Battery Enabled by a Thin Asymmetric Solid Electrolyte with Engineered Layers. <i>Journal of the American Chemical Society</i> , 2018 , 140, 82-85	16.4	299
597	Carbon-Nanotube-Decorated Nano-LiFePO4 @C Cathode Material with Superior High-Rate and Low-Temperature Performances for Lithium-Ion Batteries. <i>Advanced Energy Materials</i> , 2013 , 3, 1155-11	60 ^{1.8}	294
596	Three-dimensional self-organization of supramolecular self-assembled porphyrin hollow hexagonal nanoprisms. <i>Journal of the American Chemical Society</i> , 2005 , 127, 17090-5	16.4	287
595	A room-temperature reactive-template route to mesoporous ZnGa2O4 with improved photocatalytic activity in reduction of CO2. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 6400-4	16.4	286
594	Se-Doping Activates FeOOH for Cost-Effective and Efficient Electrochemical Water Oxidation. Journal of the American Chemical Society, 2019 , 141, 7005-7013	16.4	279
593	Synthesis of MoS2 nanosheet-graphene nanosheet hybrid materials for stable lithium storage. <i>Chemical Communications</i> , 2013 , 49, 1838-40	5.8	276
592	Highly Dispersed RuO2 Nanoparticles on Carbon Nanotubes: Facile Synthesis and Enhanced Supercapacitance Performance. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 2448-2451	3.8	274
591	Gold hollow nanospheres: tunable surface plasmon resonance controlled by interior-cavity sizes. Journal of Physical Chemistry B, 2005 , 109, 7795-800	3.4	274
590	Cu-Si nanocable arrays as high-rate anode materials for lithium-ion batteries. <i>Advanced Materials</i> , 2011 , 23, 4415-20	24	266
589	High-Capacity Cathode Material with High Voltage for Li-Ion Batteries. <i>Advanced Materials</i> , 2018 , 30, 1705575	24	256
588	Introducing Dual Functional CNT Networks into CuO Nanomicrospheres toward Superior Electrode Materials for Lithium-Ion Batteries. <i>Chemistry of Materials</i> , 2008 , 20, 3617-3622	9.6	255

(2006-2012)

587	Ionothermal synthesis of sulfur-doped porous carbons hybridized with graphene as superior anode materials for lithium-ion batteries. <i>Chemical Communications</i> , 2012 , 48, 10663-5	5.8	252
586	Free-Standing Hollow Carbon Fibers as High-Capacity Containers for Stable Lithium Metal Anodes. <i>Joule</i> , 2017 , 1, 563-575	27.8	243
585	Molecular Orientation and Ordered Structure of Benzenethiol Adsorbed on Gold(111). <i>Journal of Physical Chemistry B</i> , 2000 , 104, 3563-3569	3.4	242
584	Facile synthesis of MoS2@CMK-3 nanocomposite as an improved anode material for lithium-ion batteries. <i>Nanoscale</i> , 2012 , 4, 5868-71	7.7	225
583	Synthesis of monodispersed wurtzite structure CuInSe2 nanocrystals and their application in high-performance organic-inorganic hybrid photodetectors. <i>Journal of the American Chemical Society</i> , 2010 , 132, 12218-21	16.4	221
582	Designing Air-Stable O3-Type Cathode Materials by Combined Structure Modulation for Na-Ion Batteries. <i>Journal of the American Chemical Society</i> , 2017 , 139, 8440-8443	16.4	219
581	Superior radical polymer cathode material with a two-electron process redox reaction promoted by graphene. <i>Energy and Environmental Science</i> , 2012 , 5, 5221-5225	35.4	207
580	Crystallinity-Modulated Electrocatalytic Activity of a Nickel(II) Borate Thin Layer on Ni B for Efficient Water Oxidation. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 6572-6577	16.4	206
579	Extended Electrochemical Window of Solid Electrolytes via Heterogeneous Multilayered Structure for High-Voltage Lithium Metal Batteries. <i>Advanced Materials</i> , 2019 , 31, e1807789	24	205
578	Controlling the Compositional Chemistry in Single Nanoparticles for Functional Hollow Carbon Nanospheres. <i>Journal of the American Chemical Society</i> , 2017 , 139, 13492-13498	16.4	202
577	Fabricating and controlling molecular self-organization at solid surfaces: studies by scanning tunneling microscopy. <i>Accounts of Chemical Research</i> , 2006 , 39, 334-42	24.3	202
576	Fe2O3 Nanostructures: Inorganic Salt-Controlled Synthesis and Their Electrochemical Performance toward Lithium Storage. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 16824-16829	3.8	200
575	Anisotropic photoresponse properties of single micrometer-sized GeSe nanosheet. <i>Advanced Materials</i> , 2012 , 24, 4528-33	24	196
574	Research progress regarding Si-based anode materials towards practical application in high energy density Li-ion batteries. <i>Materials Chemistry Frontiers</i> , 2017 , 1, 1691-1708	7.8	193
573	Engineering Hollow Carbon Architecture for High-Performance K-Ion Battery Anode. <i>Journal of the American Chemical Society</i> , 2018 , 140, 7127-7134	16.4	186
572	Degradation Chemistry and Stabilization of Exfoliated Few-Layer Black Phosphorus in Water. Journal of the American Chemical Society, 2018 , 140, 7561-7567	16.4	185
57 ¹	Symbiotic Coaxial Nanocables: Facile Synthesis and an Efficient and Elegant Morphological Solution to the Lithium Storage Problem. <i>Chemistry of Materials</i> , 2010 , 22, 1908-1914	9.6	185
570	Electrochemical sensor for detecting ultratrace nitroaromatic compounds using mesoporous SiO2-modified electrode. <i>Analytical Chemistry</i> , 2006 , 78, 1967-71	7.8	184

569	Embedding Pt Nanocrystals in N-Doped Porous Carbon/Carbon Nanotubes toward Highly Stable Electrocatalysts for the Oxygen Reduction Reaction. <i>ACS Catalysis</i> , 2015 , 5, 2903-2909	13.1	182
568	Electrochemical (de)lithiation of 1D sulfur chains in Li-S batteries: a model system study. <i>Journal of the American Chemical Society</i> , 2015 , 137, 2215-8	16.4	179
567	Space-Confinement-Induced Synthesis of Pyridinic- and Pyrrolic-Nitrogen-Doped Graphene for the Catalysis of Oxygen Reduction. <i>Angewandte Chemie</i> , 2013 , 125, 11971-11975	3.6	174
566	Atomic Structure of Adsorbed Sulfate on Rh(111) in Sulfuric Acid Solution. <i>The Journal of Physical Chemistry</i> , 1995 , 99, 9507-9513		174
565	Insight into the Effect of Oxygen Vacancy Concentration on the Catalytic Performance of MnO2. <i>ACS Catalysis</i> , 2015 , 5, 4825-4832	13.1	171
564	SnO2-Based Hierarchical Nanomicrostructures: Facile Synthesis and Their Applications in Gas Sensors and Lithium-Ion Batteries. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 14213-14219	3.8	171
563	Graphene-like single-layered covalent organic frameworks: synthesis strategies and application prospects. <i>Advanced Materials</i> , 2014 , 26, 6912-20	24	170
562	Template-Induced Inclusion Structures with Copper(II) Phthalocyanine and Coronene as Guests in Two-Dimensional Hydrogen-Bonded Host Networks. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 5161-51	∂5 ⁴	168
561	GeSe Thin-Film Solar Cells Fabricated by Self-Regulated Rapid Thermal Sublimation. <i>Journal of the American Chemical Society</i> , 2017 , 139, 958-965	16.4	167
560	In-situ plasticized polymer electrolyte with double-network for flexible solid-state lithium-metal batteries. <i>Energy Storage Materials</i> , 2018 , 10, 85-91	19.4	165
559	Construction and repair of highly ordered 2D covalent networks by chemical equilibrium regulation. <i>Chemical Communications</i> , 2012 , 48, 2943-5	5.8	163
558	Rational design of anode materials based on Group IVA elements (Si, Ge, and Sn) for lithium-ion batteries. <i>Chemistry - an Asian Journal</i> , 2013 , 8, 1948-58	4.5	163
557	Lithium-Schwefel-Batterien: Elektrochemie, Materialien und Perspektiven. <i>Angewandte Chemie</i> , 2013 , 125, 13426-13441	3.6	163
556	Electrospray Synthesis of Silicon/Carbon Nanoporous Microspheres as Improved Anode Materials for Lithium-Ion Batteries. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 14148-14154	3.8	163
555	Surface confined metallosupramolecular architectures: formation and scanning tunneling microscopy characterization. <i>Accounts of Chemical Research</i> , 2009 , 42, 249-59	24.3	163
554	Engineering Janus Interfaces of Ceramic Electrolyte via Distinct Functional Polymers for Stable High-Voltage Li-Metal Batteries. <i>Journal of the American Chemical Society</i> , 2019 , 141, 9165-9169	16.4	161
553	Characterization of surface property of poly(lactide-co-glycolide) after oxygen plasma treatment. <i>Biomaterials</i> , 2004 , 25, 4777-83	15.6	159
552	Recent developments in electrode materials for potassium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 4334-4352	13	155

(2018-2018)

551	Polar Solvent Induced Lattice Distortion of Cubic CsPbI Nanocubes and Hierarchical Self-Assembly into Orthorhombic Single-Crystalline Nanowires. <i>Journal of the American Chemical Society</i> , 2018 , 140, 11705-11715	16.4	154
550	Mass Production and High Photocatalytic Activity of ZnS Nanoporous Nanoparticles. <i>Angewandte Chemie</i> , 2005 , 117, 1295-1299	3.6	154
549	Electrospun silicon nanoparticle/porous carbon hybrid nanofibers for lithium-ion batteries. <i>Small</i> , 2013 , 9, 2684-8	11	153
548	Mitigating Voltage Decay of Li-Rich Cathode Material via Increasing Ni Content for Lithium-Ion Batteries. <i>ACS Applied Materials & Discourse Materials</i> (2016), 8, 20138-46	9.5	151
547	In-Situ Loading of Noble Metal Nanoparticles on Hydroxyl-Group-Rich Titania Precursor and Their Catalytic Applications. <i>Chemistry of Materials</i> , 2007 , 19, 4557-4562	9.6	151
546	General Space-Confined On-Substrate Fabrication of Thickness-Adjustable Hybrid Perovskite Single-Crystalline Thin Films. <i>Journal of the American Chemical Society</i> , 2016 , 138, 16196-16199	16.4	145
545	Microscopic Investigation of Grain Boundaries in Organolead Halide Perovskite Solar Cells. <i>ACS Applied Materials & Applied & </i>	9.5	145
544	Synergism of Al-containing solid electrolyte interphase layer and Al-based colloidal particles for stable lithium anode. <i>Nano Energy</i> , 2017 , 36, 411-417	17.1	143
543	Facile synthesis of nanoporous anatase spheres and their environmental applications. <i>Chemical Communications</i> , 2008 , 1184-6	5.8	139
542	Antioxidative function and biodistribution of [Gd@C82(OH)22]n nanoparticles in tumor-bearing mice. <i>Biochemical Pharmacology</i> , 2006 , 71, 872-81	6	138
541	Well-dispersed bi-component-active CoO/CoFe2O4 nanocomposites with tunable performances as anode materials for lithium-ion batteries. <i>Chemical Communications</i> , 2012 , 48, 410-2	5.8	137
540	Direct evidence of molecular aggregation and degradation mechanism of organic light-emitting diodes under joule heating: an STM and photoluminescence study. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 1675-82	3.4	137
539	Mitigating Interfacial Potential Drop of Cathode-Solid Electrolyte via Ionic Conductor Layer To Enhance Interface Dynamics for Solid Batteries. <i>Journal of the American Chemical Society</i> , 2018 , 140, 6767-6770	16.4	137
538	Efficient 3D conducting networks built by graphene sheets and carbon nanoparticles for high-performance silicon anode. <i>ACS Applied Materials & amp; Interfaces</i> , 2012 , 4, 2824-8	9.5	133
537	Robust Expandable Carbon Nanotube Scaffold for Ultrahigh-Capacity Lithium-Metal Anodes. <i>Advanced Materials</i> , 2018 , 30, e1800884	24	132
536	Confined Synthesis of Two-Dimensional Covalent Organic Framework Thin Films within Superspreading Water Layer. <i>Journal of the American Chemical Society</i> , 2018 , 140, 12152-12158	16.4	131
535	Biodegradable, Hydrogen Peroxide, and Glutathione Dual Responsive Nanoparticles for Potential Programmable Paclitaxel Release. <i>Journal of the American Chemical Society</i> , 2018 , 140, 7373-7376	16.4	129
534	Air-Stable In-Plane Anisotropic GeSe for Highly Polarization-Sensitive Photodetection in Short Wave Region. <i>Journal of the American Chemical Society</i> , 2018 , 140, 4150-4156	16.4	125

533	In Situ One-Step Method for Preparing Carbon Nanotubes and Pt Composite Catalysts and Their Performance for Methanol Oxidation. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 11174-11179	3.8	125
532	A robust composite of SnO2 hollow nanospheres enwrapped by graphene as a high-capacity anode material for lithium-ion batteries. <i>Journal of Materials Chemistry</i> , 2012 , 22, 17456		123
531	Pt Hollow Nanospheres: Facile Synthesis and Enhanced Electrocatalysts. <i>Angewandte Chemie</i> , 2004 , 116, 1566-1569	3.6	121
530	Surface Stabilized Porphyrin and Phthalocyanine Two-Dimensional Network Connected by Hydrogen Bonds. <i>Journal of Physical Chemistry B</i> , 2001 , 105, 10838-10841	3.4	118
529	Controllable AuPt bimetallic hollow nanostructures. <i>Chemical Communications</i> , 2004 , 1496-7	5.8	117
528	Better lithium-ion batteries with nanocable-like electrode materials. <i>Energy and Environmental Science</i> , 2011 , 4, 1634	35.4	114
527	Oriented Covalent Organic Framework Film on Graphene for Robust Ambipolar Vertical Organic Field-Effect Transistor. <i>Chemistry of Materials</i> , 2017 , 29, 4367-4374	9.6	113
526	Rational design and electron transfer kinetics of MoS2/CdS nanodots-on-nanorods for efficient visible-light-driven hydrogen generation. <i>Nano Energy</i> , 2016 , 28, 319-329	17.1	113
525	High-safety lithium-sulfur battery with prelithiated Si/C anode and ionic liquid electrolyte. <i>Electrochimica Acta</i> , 2013 , 91, 58-61	6.7	113
524	Orientational Phase Transition in a Pyridine Adlayer on Gold(111) in Aqueous Solution Studied by in Situ Infrared Spectroscopy and Scanning Tunneling Microscopy. <i>Langmuir</i> , 1998 , 14, 6992-6998	4	113
523	Core-shell structured TiO2@polydopamine for highly active visible-light photocatalysis. <i>Chemical Communications</i> , 2016 , 52, 7122-5	5.8	113
522	Infrared Absorption Enhancement for CO Adsorbed on Au Films in Perchloric Acid Solutions and Effects of Surface Structure Studied by Cyclic Voltammetry, Scanning Tunneling Microscopy, and Surface-Enhanced IR Spectroscopy. <i>Journal of Physical Chemistry B</i> , 1999 , 103, 2460-2466	3.4	112
521	ITO@Cu2S tunnel junction nanowire arrays as efficient counter electrode for quantum-dot-sensitized solar cells. <i>Nano Letters</i> , 2014 , 14, 365-72	11.5	111
520	Photoacoustic Imaging Guided Near-Infrared Photothermal Therapy Using Highly Water-Dispersible Single-Walled Carbon Nanohorns as Theranostic Agents. <i>Advanced Functional Materials</i> , 2014 , 24, 6621	-6628	111
519	Hierarchical Nanowire Arrays as Three-Dimensional Fractal Nanobiointerfaces for High Efficient Capture of Cancer Cells. <i>Nano Letters</i> , 2016 , 16, 766-72	11.5	109
518	Globally homochiral assembly of two-dimensional molecular networks triggered by co-absorbers. <i>Nature Communications</i> , 2013 , 4, 1389	17.4	109
517	Wurtzite Cu2ZnSnSe4 nanocrystals for high-performance organicIhorganic hybrid photodetectors. <i>NPG Asia Materials</i> , 2012 , 4, e2-e2	10.3	109
516	Facile Synthesis of Mesoporous TiO2© Nanosphere as an Improved Anode Material for Superior High Rate 1.5 V Rechargeable Li Ion Batteries Containing LiFePO4© Cathode. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 10308-10313	3.8	109

(2016-2006)

515	Insights into the mechanism of methanol-to-olefin conversion at zeolites with systematically selected framework structures. <i>Angewandte Chemie - International Edition</i> , 2006 , 45, 6512-5	16.4	106
514	Specific aptamer-protein interaction studied by atomic force microscopy. <i>Analytical Chemistry</i> , 2003 , 75, 2112-6	7.8	106
513	Spin-coated silicon nanoparticle/graphene electrode as a binder-free anode for high-performance lithium-ion batteries. <i>Nano Research</i> , 2012 , 5, 845-853	10	105
512	Room Temperature Ionic Liquids Assisted Green Synthesis of Nanocrystalline Porous SnO2 and Their Gas Sensor Behaviors. <i>Crystal Growth and Design</i> , 2008 , 8, 4165-4172	3.5	105
511	Ordered Nillu Nanowire Array with Enhanced Coercivity. Chemistry of Materials, 2003, 15, 664-667	9.6	105
510	In Situ Scanning Tunneling Microscopy of Benzene, Naphthalene, and Anthracene Adsorbed on Cu(111) in Solution. <i>Langmuir</i> , 1997 , 13, 7173-7179	4	104
509	In situ scanning tunneling microscopy of adsorbed sulfate on well-defined Pd(111) in sulfuric acid solution. <i>Journal of Electroanalytical Chemistry</i> , 2000 , 484, 189-193	4.1	102
508	Formation of Halogen Bond-Based 2D Supramolecular Assemblies by Electric Manipulation. <i>Journal of the American Chemical Society</i> , 2015 , 137, 6128-31	16.4	100
507	TiO2-Based Composite Nanotube Arrays Prepared via Layer-by-Layer Assembly. <i>Advanced Functional Materials</i> , 2005 , 15, 196-202	15.6	99
506	High performance photodetectors of individual InSe single crystalline nanowire. <i>Journal of the American Chemical Society</i> , 2009 , 131, 15602-3	16.4	98
505	Wet Chemistry Synthesis of Multidimensional Nanocarbon-Sulfur Hybrid Materials with Ultrahigh Sulfur Loading for Lithium-Sulfur Batteries. <i>ACS Applied Materials & Description (Control of the Control o</i>	9.5	97
504	Configurations of a calix[8]arene and a C60/calix[8]arene complex on a Au(111) surface. Angewandte Chemie - International Edition, 2003, 42, 2747-51	16.4	96
503	Uniform Nucleation of Lithium in 3D Current Collectors via Bromide Intermediates for Stable Cycling Lithium Metal Batteries. <i>Journal of the American Chemical Society</i> , 2018 , 140, 18051-18057	16.4	96
502	Potential-Induced Phase Transition of Trimesic Acid Adlayer on Au(111). <i>Journal of Physical Chemistry B</i> , 2004 , 108, 1931-1937	3.4	95
501	A Two-Dimensional Hole-Transporting Material for High-Performance Perovskite Solar Cells with 20 % Average Efficiency. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 10959-10965	16.4	95
500	Direct tracking of the polysulfide shuttling and interfacial evolution in all-solid-state lithiumBulfur batteries: a degradation mechanism study. <i>Energy and Environmental Science</i> , 2019 , 12, 2496-2506	35.4	94
499	Facile synthesis of germanium nanocrystals and their application in organic-inorganic hybrid photodetectors. <i>Advanced Materials</i> , 2011 , 23, 3704-7	24	94
498	Insight into the Interfacial Process and Mechanism in Lithium-Sulfur Batteries: An In Situ AFM Study. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 15835-15839	16.4	93

497	Interfacial Mechanism in Lithium-Sulfur Batteries: How Salts Mediate the Structure Evolution and Dynamics. <i>Journal of the American Chemical Society</i> , 2018 , 140, 8147-8155	16.4	91
496	Hydrothermal reduction of three-dimensional graphene oxide for binder-free flexible supercapacitors. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 10830	13	90
495	Tin/Platinum Bimetallic Nanotube Array and its Electrocatalytic Activity for Methanol Oxidation. <i>Advanced Materials</i> , 2005 , 17, 746-750	24	90
494	Controllable Preparation of Submicrometer Single-Crystal C60 Rods and Tubes Trough Concentration Depletion at the Surfaces of Seeds. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 10498-10.	5 0 2 ⁸	89
493	Simulation of water cluster assembly on a graphite surface. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 14183-8	3.4	89
492	C64H4: production, isolation, and structural characterizations of a stable unconventional fulleride. <i>Journal of the American Chemical Society</i> , 2006 , 128, 6605-10	16.4	87
491	Bandgap engineering of monodispersed Cu(2-x)S(y)Se(1-y) nanocrystals through chalcogen ratio and crystal structure. <i>Journal of the American Chemical Society</i> , 2011 , 133, 18558-61	16.4	86
490	Solid-Solution-Based Metal Alloy Phase for Highly Reversible Lithium Metal Anode. <i>Journal of the American Chemical Society</i> , 2020 , 142, 8818-8826	16.4	86
489	Encapsulation of Sulfur in a Hollow Porous Carbon Substrate for Superior Li-S Batteries with Long Lifespan. <i>Particle and Particle Systems Characterization</i> , 2013 , 30, 321-325	3.1	85
488	Confining Iron Carbide Nanocrystals inside CNx@CNT toward an Efficient Electrocatalyst for Oxygen Reduction Reaction. <i>ACS Applied Materials & Amp; Interfaces</i> , 2015 , 7, 11508-15	9.5	85
487	Chiral hierarchical molecular nanostructures on two-dimensional surface by controllable trinary self-assembly. <i>Journal of the American Chemical Society</i> , 2011 , 133, 21010-5	16.4	85
486	In situ STM imaging of surface dissolution and rearrangement of a Pt-Fe alloy electrocatalyst in electrolyte solution. <i>Chemical Communications</i> , 2002 , 58-9	5.8	83
485	Nitrogen, phosphorus and sulfur co-doped ultrathin carbon nanosheets as a metal-free catalyst for selective oxidation of aromatic alkanes and the oxygen reduction reaction. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 18470-18477	13	80
484	Interfacial design for lithium ulfur batteries: From liquid to solid. EnergyChem, 2019, 1, 100002	36.9	80
483	Single nanowire electrode electrochemistry of silicon anode by in situ atomic force microscopy: solid electrolyte interphase growth and mechanical properties. <i>ACS Applied Materials & Amp; Interfaces,</i> 2014 , 6, 20317-23	9.5	80
482	Mesoscopic self-organization of a self-assembled supramolecular rectangle on highly oriented pyrolytic graphite and Au(111) surfaces. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2005 , 102, 971-4	11.5	8o
481	In Situ Scanning Tunneling Microscopy of Well-Defined Ir(111) Surface: High-Resolution Imaging of Adsorbed Sulfate. <i>Journal of Physical Chemistry B</i> , 1999 , 103, 6978-6983	3.4	80
480	Metastable Rock Salt Oxide-Mediated Synthesis of High-Density Dual-Protected M@NC for Long-Life Rechargeable Zinc-Air Batteries with Record Power Density. <i>Journal of the American Chemical Society</i> , 2020 , 142, 7116-7127	16.4	78

479	Structural Engineering of Multishelled Hollow Carbon Nanostructures for High-Performance Na-Ion Battery Anode. <i>Advanced Energy Materials</i> , 2018 , 8, 1800855	21.8	78	
478	2D assembly of metallacycles on HOPG by shape-persistent macrocycle templates. <i>Journal of the American Chemical Society</i> , 2010 , 132, 1328-33	16.4	78	
477	Dimerization of Sulfur Headgroups in 4-Mercaptopyridine Self-Assembled Monolayers on Au(111) Studied by Scanning Tunneling Microscopy. <i>Journal of Physical Chemistry B</i> , 1998 , 102, 5943-5946	3.4	78	
476	Control of supramolecular rectangle self-assembly with a molecular template. <i>Journal of the American Chemical Society</i> , 2007 , 129, 9268-9	16.4	78	
475	Self-organization of a self-assembled supramolecular rectangle, square, and three-dimensional cage on Au111 surfaces. <i>Journal of the American Chemical Society</i> , 2005 , 127, 16279-86	16.4	78	
474	Ni-Pt multilayered nanowire arrays with enhanced coercivity and high remanence ratio. <i>Inorganic Chemistry</i> , 2005 , 44, 3013-5	5.1	78	
473	One-nanometer-precision control of Al(2)O(3) nanoshells through a solution-based synthesis route. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 12776-80	16.4	77	
472	Controllable crystalline structure of fullerene nanorods and transport properties of an individual nanorod. <i>Journal of Materials Chemistry</i> , 2008 , 18, 328-332		76	
471	Boosting the Open Circuit Voltage and Fill Factor of QDSSCs Using Hierarchically Assembled ITO@Cu2S Nanowire Array Counter Electrodes. <i>Nano Letters</i> , 2015 , 15, 3088-95	11.5	75	
470	Tuning the Fermi-level of TiO mesoporous layer by lanthanum doping towards efficient perovskite solar cells. <i>Nanoscale</i> , 2016 , 8, 16881-16885	7.7	75	
469	Sodium chloride-assisted green synthesis of a 3D FeNII hybrid as a highly active electrocatalyst for the oxygen reduction reaction. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 7781-7787	13	75	
468	New Structure of l-Cysteine Self-Assembled Monolayer on Au(111): Studies by In Situ Scanning Tunneling Microscopy. <i>Langmuir</i> , 2001 , 17, 6203-6206	4	74	
467	Physical vapor deposition of amorphous MoS2 nanosheet arrays on carbon cloth for highly reproducible large-area electrocatalysts for the hydrogen evolution reaction. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 19277-19281	13	73	
466	Structural engineering of SnS2/Graphene nanocomposite for high-performance K-ion battery anode. <i>Nano Energy</i> , 2019 , 60, 912-918	17.1	71	
465	Steering elementary steps towards efficient alkaline hydrogen evolution via size-dependent Ni/NiO nanoscale heterosurfaces. <i>National Science Review</i> , 2020 , 7, 27-36	10.8	71	
464	Confined synthesis of a cis-isotactic ladder polysilsesquioxane by using a pi-stacking and H-bonding superstructure. <i>Angewandte Chemie - International Edition</i> , 2006 , 45, 3112-6	16.4	68	
463	Ruthenium/Graphene-like Layered Carbon Composite as an Efficient Hydrogen Evolution Reaction Electrocatalyst. <i>ACS Applied Materials & Electrocatalyst. ACS Appl</i>	9.5	68	
462	Oriented Two-Dimensional Covalent Organic Framework Films for Near-Infrared Electrochromic Application. <i>Journal of the American Chemical Society</i> , 2019 , 141, 19831-19838	16.4	68	

Building an Air Stable and Lithium Deposition Regulable Garnet Interface from 461 Moderate-Temperature Conversion Chemistry. Angewandte Chemie - International Edition, 2020, 59, 12069-12075 In situ nitrogen-doped nanoporous carbon nanocables as an efficient metal-free catalyst for 460 13 67 oxygen reduction reaction. Journal of Materials Chemistry A, 2014, 2, 10154 Wet chemical synthesis of Cu/TiO2 nanocomposites with integrated nano-current-collectors as high-rate anode materials in lithium-ion batteries. *Physical Chemistry Chemical Physics*, **2011**, 13, 2014-20^{3.6} 66 459 Ordered Adlayers of Organic Molecules on Sulfur-Modified Au(111): In Situ Scanning Tunneling 458 66 4 Microscopy Study. Langmuir, 2000, 16, 2164-2168 Rechargeable dual-metal-ion batteries for advanced energy storage. Physical Chemistry Chemical 3.6 66 457 Physics, 2016, 18, 9326-33 AFM and STM study of beta-amyloid aggregation on graphite. Ultramicroscopy, 2003, 97, 73-9 456 3.1 65 Facile growth of centimeter-sized single-crystal graphene on copper foil at atmospheric pressure. 63 7.1 455 Journal of Materials Chemistry C, 2015, 3, 3530-3535 Urchin-like Au@CdS/WO3 micro/nano heterostructure as a visible-light driven photocatalyst for 5.8 63 454 efficient hydrogen generation. Chemical Communications, 2015, 51, 13842-5 The 2021 battery technology roadmap. Journal Physics D: Applied Physics, 2021, 54, 183001 63 453 3 Click and Patterned Functionalization of Graphene by Diels-Alder Reaction. Journal of the American 16.4 62 452 Chemical Society, 2016, 138, 7448-51 Atom-Thick Interlayer Made of CVD-Grown Graphene Film on Separator for Advanced 451 9.5 62 Lithium-Sulfur Batteries. ACS Applied Materials & Diterfaces, 2017, 9, 43696-43703 Non-sacrificial template synthesis of Cr2O3\(\mathbf{L}\) hierarchical core/shell nanospheres and their 62 450 application as anode materials in lithium-ion batteries. Journal of Materials Chemistry, 2010, 20, 7565 Controllable distribution of single molecules and peptides within oligomer template investigated 16.4 62 449 by STM. Journal of the American Chemical Society, 2006, 128, 12384-5 Designing solid-state interfaces on lithium-metal anodes: a review. Science China Chemistry, 2019, 448 61 7.9 62, 1286-1299 A Novel ECDHemin Complex Photocatalyst for Efficient Degradation of Organic Pollutants at 61 3.4 447 Neutral pHs under Visible Irradiation. Journal of Physical Chemistry B, 2003, 107, 9409-9414 Well-Defined Fullerene Nanowire Arrays. Advanced Functional Materials, 2003, 13, 626-630 15.6 60 Gold/Titania Core/Sheath Nanowires Prepared by Layer-by-Layer Assembly. Journal of Physical 60 445 3.4 Chemistry B, 2003, 107, 5441-5444 High-Thermal- and Air-Stability Cathode Material with Concentration-Gradient Buffer for Li-Ion 9.5 59 Batteries. ACS Applied Materials & Samp; Interfaces, 2017, 9, 42829-42835

(2016-2008)

443	STM investigation of the dependence of alkane and alkane (C18H38, C19H40) derivatives self-assembly on molecular chemical structure on HOPG surface. <i>Surface Science</i> , 2008 , 602, 1256-1266	1.8	59
442	Functionalized carbon nanotubes as sensitive materials for electrochemical detection of ultra-trace 2,4,6-trinitrotoluene. <i>Physical Chemistry Chemical Physics</i> , 2006 , 8, 3567-72	3.6	59
441	Carbonized-MOF as a Sulfur Host for AluminumBulfur Batteries with Enhanced Capacity and Cycling Life. <i>Advanced Functional Materials</i> , 2019 , 29, 1807676	15.6	59
440	A Flexible Solid Electrolyte Interphase Layer for Long-Life Lithium Metal Anodes. <i>Angewandte Chemie</i> , 2018 , 130, 1521-1525	3.6	58
439	Electrochemical Scanning Tunneling Microscopy: Adlayer Structure and Reaction at Solid/liquid Interface. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 16109-16130	3.8	58
438	Interface Assembly Synthesis of Inorganic Composite Hollow Spheres. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 9734-9738	3.4	58
437	Single-Molecule Imaging of Iron-Phthalocyanine-Catalyzed Oxygen Reduction Reaction by in Situ Scanning Tunneling Microscopy. <i>ACS Nano</i> , 2016 , 10, 8746-50	16.7	57
436	Three-dimensional nanostructured electrodes for efficient quantum-dot-sensitized solar cells. <i>Nano Energy</i> , 2017 , 32, 130-156	17.1	56
435	From a lamellar to hexagonal self-assembly of bis(4,4Mm,mMdi(dodecyloxy)phenyl)-2,2Mdifluoro-1,3,2-dioxaborin) molecules: a trans-to-cis-isomerization-induced structural transition studied with STM. <i>Angewandte Chemie</i>	16.4	56
434	International Edition, 2006 , 45, 3996-4000 In situ observation of electrolyte-concentration-dependent solid electrolyte interphase on graphite in dimethyl sulfoxide. <i>ACS Applied Materials & Samp; Interfaces</i> , 2015 , 7, 9573-80	9.5	55
433	Silicon-based nanomaterials for lithium-ion batteries. <i>Science Bulletin</i> , 2012 , 57, 4104-4110		55
432	Highly Dispersed Metal Nanoparticles in Porous Anodic Alumina Films Prepared by a Breathing Process of Polyacrylamide Hydrogel. <i>Chemistry of Materials</i> , 2003 , 15, 4332-4336	9.6	55
431	Phase Control on Surface for the Stabilization of High Energy Cathode Materials of Lithium Ion Batteries. <i>Journal of the American Chemical Society</i> , 2019 , 141, 4900-4907	16.4	54
430	Accurate surface control of coreShell structured LiMn0.5Fe0.5PO4@C for improved battery performance. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 17359-17365	13	54
429	Self-Assembled Vanadium Pentoxide (V2O5) Hollow Microspheres from Nanorods and Their Application in Lithium-Ion Batteries. <i>Angewandte Chemie</i> , 2005 , 117, 4465-4469	3.6	54
428	Dynamics of adsorption and phase formation of p-nitrobenzoic acid at Au(111) surface in solution: A combined surface-enhanced infrared and STM study. <i>Physical Chemistry Chemical Physics</i> , 2001 , 3, 333	6-3342	<u>5</u> 54
427	A Black Phosphorus-Graphite Composite Anode for Li-/Na-/K-Ion Batteries. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 2318-2322	16.4	54
426	Suppressing the P2D2 Phase Transition of Na0.67Mn0.67Ni0.33O2 by Magnesium Substitution for Improved Sodium-Ion Batteries. <i>Angewandte Chemie</i> , 2016 , 128, 7571-7575	3.6	53

425	Controlling the Reaction of Nanoparticles for Hollow Metal Oxide Nanostructures. <i>Journal of the American Chemical Society</i> , 2018 , 140, 9070-9073	16.4	53
424	Isomeric routes to Schiff-base single-layered covalent organic frameworks. <i>Small</i> , 2014 , 10, 4934-9	11	53
423	Designed synthesis of SnO-C hollow microspheres as an anode material for lithium-ion batteries. <i>Chemical Communications</i> , 2017 , 53, 11189-11192	5.8	53
422	Microbial-Phosphorus-Enabled Synthesis of Phosphide Nanocomposites for Efficient Electrocatalysts. <i>Journal of the American Chemical Society</i> , 2017 , 139, 11248-11253	16.4	53
421	Scanning tunneling microscopy of the formation, transformation, and property of oligothiophene self-organizations on graphite and gold surfaces. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 3707-12	11.5	53
420	Helical molecular duplex strands: multiple hydrogen-bond-mediated assembly of self-complementary oligomeric hydrazide derivatives. <i>Journal of Organic Chemistry</i> , 2007 , 72, 4936-46	4.2	52
419	Promoting crystalline grain growth and healing pinholes by water vapor modulated post-annealing for enhancing the efficiency of planar perovskite solar cells. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 13458-13467	13	52
418	Investigation of Physical and Electronic Properties of GeSe for Photovoltaic Applications. <i>Advanced Electronic Materials</i> , 2017 , 3, 1700141	6.4	51
417	Controllable Synthesis of Hollow Hierarchical Palladium Nanostructures with Enhanced Activity for Proton/Hydrogen Sensing. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 338-344	3.8	51
416	A novel air-stable n-type organic semiconductor: 4,4?-bis[(6,6?-diphenyl)-2,2-difluoro-1,3,2-dioxaborine] and its application in organic ambipolar field-effect transistors. <i>Journal of Materials Chemistry</i> , 2006 , 16, 4499-4503		51
415	Optimizing the carbon coating on LiFePO4 for improved battery performance. <i>RSC Advances</i> , 2014 , 4, 7795	3.7	50
414	Solvent-controlled 2D host-guest (2,7,12-trihexyloxytruxene/coronene) molecular nanostructures at organic liquid/solid interface investigated by scanning tunneling microscopy. <i>Langmuir</i> , 2010 , 26, 819	95 ⁴ 200	50
413	Engineering of linear molecular nanostructures by a hydrogen-bond-mediated modular and flexible host-guest assembly. <i>ACS Nano</i> , 2010 , 4, 5685-92	16.7	50
412	Self-assembly of PcOC8 and its sandwich lanthanide complex Pr(PcOC8)(2) with oligo(phenylene-ethynylene) molecules. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 19859-65	3.4	50
411	Self-Assembling of an Amphiphilic Polyacetylene Carrying l-Leucine Pendants: A Homopolymer Case. <i>Macromolecules</i> , 2003 , 36, 5447-5450	5.5	50
410	Morphology and modulus evolution of graphite anode in lithium ion battery: An in situ AFM investigation. <i>Science China Chemistry</i> , 2014 , 57, 178-183	7.9	49
409	Solvent-induced oriented attachment growth of air-stable phase-pure pyrite FeS2 nanocrystals. Journal of the American Chemical Society, 2015 , 137, 2211-4	16.4	49
408	One solvent induces a series of structural transitions in monodendron molecular self-assembly from lamellar to quadrangular to hexagonal. <i>Chemistry - A European Journal</i> , 2009 , 15, 9669-73	4.8	48

(2004-2007)

407	Synthesis and characterization of 3D double branched K junction carbon nanotubes and nanorods. <i>Carbon</i> , 2007 , 45, 268-273	10.4	48	
406	Study of Citrate Adsorbed on the Au(111) Surface by Scanning Probe Microscopy. <i>Langmuir</i> , 2003 , 19, 10000-10003	4	48	
405	Tuning the branches and composition of PtCu nanodendrites through underpotential deposition of Cu towards advanced electrocatalytic activity. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 9014-9021	13	47	
404	A Flexible Solid Electrolyte with Multilayer Structure for Sodium Metal Batteries. <i>Advanced Energy Materials</i> , 2020 , 10, 1903966	21.8	47	
403	Self-assembled two-dimensional hexagonal networks. <i>Journal of Materials Chemistry</i> , 2002 , 12, 2856-28	358	47	
402	Enabling a Durable Electrochemical Interface via an Artificial Amorphous Cathode Electrolyte Interphase for Hybrid Solid/Liquid Lithium-Metal Batteries. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 6585-6589	16.4	47	
401	Morphology control and shape evolution in 3D hierarchical superstructures. <i>Science China Chemistry</i> , 2012 , 55, 2249-2256	7.9	45	
400	Chiral Kagome network from thiacalix[4]arene tetrasulfonate at the interface of aqueous solution/Au(111) surface: an in situ electrochemical scanning tunneling microscopy study. <i>Journal of the American Chemical Society</i> , 2010 , 132, 5598-9	16.4	45	
399	Time-resolved surface-enhanced infra-red study of molecular adsorption at the electrochemical interface. <i>Surface Science</i> , 1999 , 427-428, 190-194	1.8	45	
398	In-situ scanning tunneling microscopy of well-ordered Rh(111) electrodes. <i>Journal of Electroanalytical Chemistry</i> , 1995 , 381, 105-111	4.1	45	
397	Stabilizing Cathode Materials of Lithium-Ion Batteries by Controlling Interstitial Sites on the Surface. <i>CheM</i> , 2018 , 4, 1685-1695	16.2	45	
396	Effect of cations in ionic liquids on the electrochemical performance of lithium-sulfur batteries. <i>Science China Chemistry</i> , 2014 , 57, 1564-1569	7.9	44	
395	Bridging Interparticle Li Conduction in a Soft Ceramic Oxide Electrolyte. <i>Journal of the American Chemical Society</i> , 2021 , 143, 5717-5726	16.4	44	
394	Improving the structural stability of Li-rich cathode materials via reservation of cations in the Li-slab for Li-ion batteries. <i>Nano Research</i> , 2017 , 10, 4201-4209	10	43	
393	Hanging Pt hollow nanocrystal assemblies on graphene resulting in an enhanced electrocatalyst. <i>Chemical Communications</i> , 2012 , 48, 10331-3	5.8	43	
392	An Ordered Ni -Ring Superstructure Enables a Highly Stable Sodium Oxide Cathode. <i>Advanced Materials</i> , 2019 , 31, e1903483	24	42	
391	Bilayer molecular assembly at a solid/liquid interface as triggered by a mild electric field. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 13395-9	16.4	42	
390	STM Study of Two-Dimensional Assemblies of Tricarboxylic Acid Derivatives on Au(111). <i>Journal of Physical Chemistry B</i> , 2004 , 108, 11251-11255	3.4	42	

389	Solvent Effects on the Chirality in Two-Dimensional Molecular Assemblies. <i>Journal of Physical Chemistry B</i> , 2003 , 107, 747-750	3.4	42
388	Progress of electrode/electrolyte interfacial investigation of Li-ion batteries via in situ scanning probe microscopy. <i>Science Bulletin</i> , 2015 , 60, 839-849	10.6	41
387	Integrated prototype nanodevices via SnOIhanoparticles decorated SnSe nanosheets. <i>Scientific Reports</i> , 2013 , 3, 2613	4.9	41
386	Structural selection of graphene supramolecular assembly oriented by molecular conformation and alkyl chain. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2008 , 105, 16849-54	11.5	41
385	Facile solution synthesis of hexagonal Alq3 nanorods and their field emission properties. <i>Chemical Communications</i> , 2007 , 3083-5	5.8	41
384	In situ scanning tunneling microscopy of Cu(110): atomic structures of halide adlayers and anodic dissolution. <i>Journal of Electroanalytical Chemistry</i> , 1999 , 473, 10-18	4.1	41
383	Phase-Controlled Synthesis of 1T-MoSe2/NiSe Heterostructure Nanowire Arrays via Electronic Injection for Synergistically Enhanced Hydrogen Evolution. <i>Small Methods</i> , 2019 , 3, 1800317	12.8	41
382	From biological enzyme to single atomic Fe-N-C electrocatalyst for efficient oxygen reduction. <i>Chemical Communications</i> , 2018 , 54, 1307-1310	5.8	41
381	Self-deposition of Pt nanocrystals on Mn3O4 coated carbon nanotubes for enhanced oxygen reduction electrocatalysis. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 7463	13	40
380	Structural Diversity of a Monodendron Molecule Self-Assembly in Different Solvents Investigated by Scanning Tunneling Microscopy: From Dispersant to Counterpart. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 16193-16198	3.8	40
379	Self-assembly and aggregation of melamine and melamine-uric/cyanuric acid investigated by STM and AFM on solid surfaces. <i>Physical Chemistry Chemical Physics</i> , 2009 , 11, 7708-12	3.6	40
378	Heterogeneous nucleation and growth of highly crystalline imine-linked covalent organic frameworks. <i>Chemical Communications</i> , 2018 , 54, 5976-5979	5.8	39
377	Ultra-thin solid electrolyte interphase evolution and wrinkling processes in molybdenum disulfide-based lithium-ion batteries. <i>Nature Communications</i> , 2019 , 10, 3265	17.4	39
376	ZnOEP based phototransistor: signal amplification and light-controlled switch. <i>Chemical Communications</i> , 2008 , 2653-5	5.8	39
375	Eco-friendly visible-wavelength photodetectors based on bandgap engineerable nanomaterials. Journal of Materials Chemistry, 2011 , 21, 17582		38
374	Light-induced structural transformation in self-assembled monolayer of 4-(amyloxy)cinnamic acid investigated with scanning tunneling microscopy. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 14773-8	3.4	38
373	Two-dimensional chiral molecular assembly on solid surfaces: formation and regulation. <i>National Science Review</i> , 2015 , 2, 205-216	10.8	37
372	Controlled Formation of Metal@AlDIYolk-Shell Nanostructures with Improved Thermal Stability. <i>ACS Applied Materials & District Material</i>	9.5	37

(2020-2017)

371	Improving the stability of LiNi0.80Co0.15Al0.05O2 by AlPO4 nanocoating for lithium-ion batteries. <i>Science China Chemistry</i> , 2017 , 60, 1230-1235	7.9	37
370	Structure and structural transition of chiral domains in oligo(p-phenylenevinylene) assembly investigated by scanning tunneling microscopy. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 2769-74	11.5	37
369	A facile method for preparing one-molecule-thick free-standing organic nanosheets with a regular square shape. <i>Chemical Communications</i> , 2010 , 46, 725-7	5.8	37
368	Scanning tunneling microscopy investigation of a supramolecular self-assembled three-dimensional chiral prism on a Au(111) surface. <i>Journal of the American Chemical Society</i> , 2008 , 130, 8878-9	16.4	37
367	Nanopatterning of donor/acceptor hybrid supramolecular architectures on highly oriented pyrolytic graphite: a scanning tunneling microscopy study. <i>Journal of the American Chemical Society</i> , 2008 , 130, 13433-41	16.4	37
366	Controlled orientation of individual molecules by electrode potentials. <i>ChemPhysChem</i> , 2001 , 2, 617-9	3.2	37
365	Revealing the Surface Effect of the Soluble Catalyst on Oxygen Reduction/Evolution in Li-O Batteries. <i>Journal of the American Chemical Society</i> , 2019 , 141, 6900-6905	16.4	36
364	Nitroxide radical polymer/graphene nanocomposite as an improved cathode material for rechargeable lithium batteries. <i>Electrochimica Acta</i> , 2012 , 72, 81-86	6.7	36
363	Metal Drganic Polyhedra Cages Immobilized on a Plasmonic Substrate for Sensitive Detection of Trace Explosives. <i>Advanced Functional Materials</i> , 2015 , 25, 6009-6017	15.6	36
362	Aqueous route for mesoporous metal oxides using inorganic metal source and their applications. <i>Microporous and Mesoporous Materials</i> , 2007 , 100, 233-240	5.3	36
361	Molecular Evidence for the Catalytic Process of Cobalt Porphyrin Catalyzed Oxygen Evolution Reaction in Alkaline Solution. <i>Journal of the American Chemical Society</i> , 2019 , 141, 7665-7669	16.4	35
360	Synergy of Black Phosphorus-Graphite-Polyaniline-Based Ternary Composites for Stable High Reversible Capacity Na-Ion Battery Anodes. <i>ACS Applied Materials & Distributed Mate</i>	5 81 ⁵	35
359	In vitro and in vivo photothermally enhanced chemotherapy by single-walled carbon nanohorns as a drug delivery system. <i>Journal of Materials Chemistry B,</i> 2014 , 2, 4726-4732	7.3	35
358	pH-responsive mechanism of a deoxycholic acid and folate comodified chitosan micelle under cancerous environment. <i>Journal of Physical Chemistry B</i> , 2013 , 117, 1261-8	3.4	35
357	Ion-Transfer-Based Growth: A Mechanism for CuTCNQ Nanowire Formation. <i>Advanced Materials</i> , 2008 , 20, 4879-4882	24	35
356	Time-dependent organization and wettability of decanethiol self-assembled monolayer on Au(111) investigated with STM. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 1794-9	3.4	35
355	Effect of solution pH on the structure of a 4-mercaptopyridine monolayer self-assembled on Au(111). <i>Journal of Electroanalytical Chemistry</i> , 2000 , 489, 68-75	4.1	35
354	A rechargeable aqueous aluminum-sulfur battery through acid activation in water-in-salt electrolyte. Chemical Communications, 2020, 56, 2023-2026	5.8	35

353	Progress in the sustainable recycling of spent lithium-ion batteries. SusMat, 2021, 1, 241-254		35
352	Adsorption and ordered phase formation of 2,2?-bypyridine on Au(111): a combined surface-enhanced infrared and STM study. <i>Journal of Electroanalytical Chemistry</i> , 2000 , 481, 62-68	4.1	34
351	General Synthetic Strategy for Hollow Hybrid Microspheres through a Progressive Inward Crystallization Process. <i>Journal of the American Chemical Society</i> , 2016 , 138, 5916-22	16.4	34
350	High-Temperature Formation of a Functional Film at the Cathode/Electrolyte Interface in Lithium-Sulfur Batteries: An In Situ AFM Study. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 14	4 33-1 4	437
349	Polyethylene glycol-directed SnO2 nanowires for enhanced gas-sensing properties. <i>Nanoscale</i> , 2011 , 3, 1802-6	7.7	33
348	Morphology control of Fe2O3nanocrystals and their application in catalysis. <i>Nanotechnology</i> , 2007 , 18, 385605	3.4	33
347	Adsorbed structures of 4,4Mbipyridine on Cu(111) in acid studied by STM and IR. <i>Langmuir</i> , 2006 , 22, 36	640-6	33
346	Molecular Trapping Phenomenon of the 2-D Assemblies of Octa-Alkoxyl-Substituted Phthalocyanine Studied by Scanning Tunneling Microscopy. <i>Journal of Physical Chemistry B</i> , 2002 , 106, 12569-12574	3.4	33
345	The two-dimensional self-assembled n-alkoxy-substituted stilbenoid compounds and triphenylenes studied by scanning tunneling microscopy. <i>Surface Science</i> , 2003 , 538, L451-L459	1.8	33
344	Template Synthesis of Sc@C82(I) Nanowires and Nanotubes at Room Temperature. <i>Advanced Materials</i> , 2005 , 17, 71-73	24	33
343	Ladderlike carbon nanoarrays on 3D conducting skeletons enable uniform lithium nucleation for stable lithium metal anodes. <i>Chemical Communications</i> , 2018 , 54, 5330-5333	5.8	32
342	Molecular Conductance through a Quadruple-Hydrogen-Bond-Bridged Supramolecular Junction. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 12393-7	16.4	32
341	Solution-crystallized organic semiconductors with high carrier mobility and air stability. <i>Advanced Materials</i> , 2012 , 24, 5576-80, 5518	24	32
340	STM investigation of the photoisomerization of an azobis-(benzo-15-crown-5) molecule and its self-assembly on Au(111). <i>Journal of Physical Chemistry B</i> , 2006 , 110, 3185-8	3.4	32
339	Direct Visualization of Nucleation and Growth Processes of Solid Electrolyte Interphase Film Using in Situ Atomic Force Microscopy. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 22063-22067	9.5	31
338	Precise Surface Engineering of Cathode Materials for Improved Stability of Lithium-Ion Batteries. <i>Small</i> , 2019 , 15, e1901019	11	31
337	Substrate Orientation Effect in the On-Surface Synthesis of Tetrathiafulvalene-Integrated Single-Layer Covalent Organic Frameworks. <i>Langmuir</i> , 2015 , 31, 11755-9	4	31
336	Surface Zn doped LiMnO for an improved high temperature performance. <i>Chemical Communications</i> , 2018 , 54, 5326-5329	5.8	31

335	Initial solid electrolyte interphase formation process of graphite anode in LiPF6 electrolyte: an in situ ECSTM investigation. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 7330-6	3.6	31	
334	Mutual responsive hydrazide-based low-molecular-mass organic gelators: probing gelation on the molecular level. <i>Chemistry - A European Journal</i> , 2008 , 14, 5742-6	4.8	31	
333	C-HF hydrogen bonding: the origin of the self-assemblies of bis(2,2Mdifluoro-1,3,2-dioxaborine). <i>Langmuir</i> , 2006 , 22, 4750-7	4	31	
332	A triphenylene-containing side chain liquid crystalline ladder-like polysiloxane and its highly ordered superstructure. <i>Liquid Crystals</i> , 2003 , 30, 391-397	2.3	31	
331	Modular Assembly of Alkyl-Substituted Phthalocyanines with 1-Iodooctadecane. <i>Chemistry of Materials</i> , 2002 , 14, 2837-2838	9.6	31	
330	In situ encapsulation of Pd inside the MCM-41 channel. <i>Chemical Communications</i> , 2015 , 51, 7482-5	5.8	30	
329	Direct insights into the electrochemical processes at anode/electrolyte interfaces in magnesium-sulfur batteries. <i>Nano Energy</i> , 2018 , 49, 453-459	17.1	30	
328	Nano/Micro-Structured Si/C Anodes with High Initial Coulombic Efficiency in Li-Ion Batteries. <i>Chemistry - an Asian Journal</i> , 2016 , 11, 1205-9	4.5	30	
327	Zero discharge process for foil industry waste acid reclamation: Coupling of diffusion dialysis and electrodialysis with bipolar membranes. <i>Journal of Membrane Science</i> , 2013 , 432, 90-96	9.6	30	
326	SnO2 hollow spheres: Polymer bead-templated hydrothermal synthesis and their electrochemical properties for lithium storage. <i>Science China Chemistry</i> , 2012 , 55, 1314-1318	7.9	30	
325	Photoinduced organic nanowires from self-assembled monolayers. <i>Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena</i> , 2002 , 20, 2466		30	
324	Stabilizing PolymerIlithium Interface in a Rechargeable Solid Battery. <i>Advanced Functional Materials</i> , 2020 , 30, 1908047	15.6	30	
323	Increased residual lithium compounds guided design for green recycling of spent lithium-ion cathodes. <i>Energy and Environmental Science</i> , 2021 , 14, 1461-1468	35.4	30	
322	Structural transition of molecular assembly under photo-irradiation: an STM study. <i>Physical Chemistry Chemical Physics</i> , 2008 , 10, 6467-78	3.6	29	
321	Phase transition of thiophene molecules on Au(111) in solution. <i>Surface Science</i> , 2003 , 531, L363-L368	1.8	29	
320	Adlayers of Benzotriazole on Cu(110), (100), and (111) in HClO[sub 4] Solution. <i>Journal of the Electrochemical Society</i> , 2002 , 149, E367	3.9	29	
319	Influence of N,N-Dimethylformamide Annealing on the Local Electrical Properties of Organometal Halide Perovskite Solar Cells: an Atomic Force Microscopy Investigation. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 26002-26007	9.5	29	
318	Crystallinity-Modulated Electrocatalytic Activity of a Nickel(II) Borate Thin Layer on Ni3B for Efficient Water Oxidation. <i>Angewandte Chemie</i> , 2017 , 129, 6672-6677	3.6	28	

317	In Situ Scanning Tunneling Microscopy of Cobalt-Phthalocyanine-Catalyzed CO Reduction Reaction. Angewandte Chemie - International Edition, 2020 , 59, 16098-16103	16.4	28
316	CoreEhell structured Ce2S3@ZnO and its potential as a pigment. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 2176-2180	13	28
315	Molecular evidence for the intermolecular SIIIS interaction in the surface molecular packing motifs of a fused thiophene derivative. <i>Chemical Communications</i> , 2013 , 49, 1829-31	5.8	28
314	Formation and structural transition of molecular self-assembly on solid surface investigated by scanning tunneling microscopy. <i>Materials Science and Engineering Reports</i> , 2010 , 70, 169-187	30.9	28
313	Site Selective Adsorption and Templated Assembling: Effects of Organic Drganic Heterogeneous Interface Studied by Scanning Tunneling Microscopy. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 1173-11	1 3 : \$	28
312	Discriminating chiral molecules of (R)-PPA and (S)-PPA in aqueous solution by ECSTM. <i>Angewandte Chemie - International Edition</i> , 2002 , 41, 3408-11	16.4	28
311	Evidence of a thermal annealing effect on organic molecular assembly. <i>ChemPhysChem</i> , 2003 , 4, 857-9	3.2	28
310	Study of fibrinogen adsorption on self-assembled monolayers on Au(111) by atomic force microscopy. <i>Ultramicroscopy</i> , 2005 , 105, 129-36	3.1	28
309	Micromechanism in All-Solid-State Alloy-Metal Batteries: Regulating Homogeneous Lithium Precipitation and Flexible Solid Electrolyte Interphase Evolution. <i>Journal of the American Chemical Society</i> , 2021 , 143, 839-848	16.4	28
308	Tunable structure and dynamics of solid electrolyte interphase at lithium metal anode. <i>Nano Energy</i> , 2020 , 75, 104967	17.1	27
307	Pd-induced Pt(IV) reduction to form Pd@Pt/CNT core@shell catalyst for a more complete oxygen reduction. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 14443	13	27
306	Molecular engineering of Schiff-base linked covalent polymers with diverse topologies by gas-solid interface reaction. <i>Journal of Chemical Physics</i> , 2015 , 142, 101905	3.9	27
305	Phage M13KO7 detection with biosensor based on imaging ellipsometry and AFM microscopic confirmation. <i>Virus Research</i> , 2009 , 140, 79-84	6.4	27
304	Molecular architecture of oligothiophene on a highly oriented pyrolytic graphite surface by employing hydrogen bondings. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 17043-9	3.4	27
303	Molecular Organization of Alkoxy-Substituted Oligo(phenylene-ethynylene)s Studied by Scanning Tunneling Microscopy. <i>Langmuir</i> , 2003 , 19, 10128-10131	4	27
302	Studies of the effects of hydrogen bonding on monolayer structures of C18H37X (X=OH, SH) on HOPG. <i>Chemical Physics Letters</i> , 2001 , 348, 321-328	2.5	27
301	Synthesis of benzotrifuran and benzotripyrrole derivatives and molecular orientations on the surface and in the solid state. <i>Chemistry - an Asian Journal</i> , 2013 , 8, 2377-82	4.5	26
300	Effect of polycyclic aromatic hydrocarbons on detection sensitivity of ultratrace nitroaromatic compounds. <i>Analytical Chemistry</i> , 2007 , 79, 2179-83	7.8	26

299	Electrochemical behavior of multi-wall carbon nanotubes and electrocatalysis of toluene-filled nanotube film on gold electrode. <i>Electrochimica Acta</i> , 2004 , 49, 715-719	6.7	26
298	Novel electrocatalytic activity in layered Ni-Cu nanowire arrays. <i>Chemical Communications</i> , 2003 , 3022-3	3 5.8	26
297	Advanced transition metal/nitrogen/carbon-based electrocatalysts for fuel cell applications. <i>Science China Chemistry</i> , 2020 , 63, 1517-1542	7.9	26
296	Remote chiral communication in coadsorber-induced enantioselective 2D supramolecular assembly at a liquid/solid interface. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 4309-14	16.4	25
295	Metal Octaethylporphyrin Nanowire Array and Network toward Electric/Photoelectric Devices. Journal of Physical Chemistry C, 2009 , 113, 16259-16265	3.8	25
294	Molecular Symmetry Breaking and Chiral Expression of Discotic Liquid Crystals in Two-Dimensional Systems. <i>Journal of Physical Chemistry B</i> , 2002 , 106, 13262-13267	3.4	25
293	Interfacial Evolution of Lithium Dendrites and Their Solid Electrolyte Interphase Shells of Quasi-Solid-State Lithium-Metal Batteries. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 18120-1	18125	24
292	Directed block copolymer self-assembly implemented via surface-embedded electrets. <i>Nature Communications</i> , 2016 , 7, 10752	17.4	24
291	Enhanced stability and activity with Pd-O junction formation and electronic structure modification of palladium nanoparticles supported on exfoliated montmorillonite for the oxygen reduction reaction. <i>Chemical Communications</i> , 2014 , 50, 6660-3	5.8	24
2 90	Engineering the interfaces of ITO@Cu2S nanowire arrays toward efficient and stable counter electrodes for quantum-dot-sensitized solar cells. <i>ACS Applied Materials & Discount Counter American</i> (1944) 1944	8 ⁹ 55	24
289	Adaptive reorganization of 2D molecular nanoporous network induced by coadsorbed guest molecule. <i>Langmuir</i> , 2014 , 30, 3034-40	4	24
288	Template-free synthesis and supercapacitance performance of a hierachically porous oxygen-enriched carbon material. <i>Journal of Nanoscience and Nanotechnology</i> , 2011 , 11, 1897-904	1.3	24
287	A simple method to synthesize layered double hydroxide nanoscrolls. <i>Materials Research Bulletin</i> , 2007 , 42, 571-575	5.1	24
286	Direct Observation of the Ordering and Molecular Folding of Poly[(m-phenylenevinylene)-co-(2,5-dioctoxy-p-phenylenevinylene)]. <i>Advanced Materials</i> , 2004 , 16, 828-	·8 ² 3 ⁴ 1	24
285	Structure and Dynamic Process of Two-Dimensional Monodendron Assembly. <i>Chemistry of Materials</i> , 2003 , 15, 3098-3104	9.6	24
284	Adlayer structures of pyrene and perylene on Cu(111): an in situ STM study. <i>Surface Science</i> , 2001 , 478, L320-L326	1.8	24
283	Dynamic Evolution of a Cathode Interphase Layer at the Surface of LiNiCoMnO in Quasi-Solid-State Lithium Batteries. <i>Journal of the American Chemical Society</i> , 2020 , 142, 20752-20762	16.4	24
282	Engineering self-assembled N-doped graphene-carbon nanotube composites towards efficient oxygen reduction electrocatalysts. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 13605-9	3.6	23

281	AFM characterization of gramicidin-A in tethered lipid membrane on silicon surface. <i>Chemical Physics Letters</i> , 2006 , 429, 244-249	2.5	23
280	In Situ STM Evidence for Adsorption of Rhodamine B in Solution. <i>Journal of Physical Chemistry B</i> , 2002 , 106, 4223-4226	3.4	23
279	Elucidating the interfacial evolution and anisotropic dynamics on silicon anodes in lithium-ion batteries. <i>Nano Energy</i> , 2019 , 61, 304-310	17.1	22
278	Unexpected functions of oxygen in a chemical vapor deposition atmosphere to regulate graphene growth modes. <i>Chemical Communications</i> , 2015 , 51, 15486-9	5.8	22
277	Controllable atmospheric pressure growth of mono-layer, bi-layer and tri-layer graphene. <i>Chemical Communications</i> , 2014 , 50, 11012-5	5.8	22
276	Two-dimensional OPV4 self-assembly and its coadsorption with alkyl bromide: from helix to lamellar. <i>Chemical Communications</i> , 2009 , 3765-7	5.8	22
275	Quadruply hydrogen-bonded building block from hydrazide-quinolinone motif and gelation ability of its analogous oxalic monoester-monoamide derivative. <i>Organic Letters</i> , 2007 , 9, 4991-4	6.2	22
274	Identification of the Preferential-Bonding Effect of Disubstituted Alkane Derivatives Using Scanning Tunneling Microscopy. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 620-624	3.4	22
273	Nanoarchitectured metal film electrodes with high electroactive surface areas. <i>Thin Solid Films</i> , 2005 , 484, 341-345	2.2	22
272	Surface Mechanism of Catalytic Electrodes in Lithium-Oxygen Batteries: How Nanostructures Mediate the Interfacial Reactions. <i>Journal of the American Chemical Society</i> , 2020 , 142, 16007-16015	16.4	22
271	Construction of uniform transition-metal phosphate nanoshells and their potential for improving Li-ion battery performance. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 8992-8999	13	21
270	Effect of the bridge alkylene chain on adlayer structure and property of functional oligothiophenes studied with scanning tunneling microscopy and spectroscopy. <i>ACS Nano</i> , 2008 , 2, 743-9	16.7	21
269	La(OH)3 Hollow Nanostructures with Trapezohedron Morphologies Using a New Kirkendall Diffusion Couple. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 17988-17993	3.8	21
268	Adsorption and coordination of tartaric acid enantiomers on Cu(111) in aqueous solution. <i>Langmuir</i> , 2004 , 20, 7360-4	4	21
267	Adlayer Structures of Pyridine, Pyrazine and Triazine on Cu(111): an in Situ Scanning Tunneling Microscopy Study. <i>Langmuir</i> , 2002 , 18, 5133-5138	4	21
266	Adlayer Structures of Benzene and Pyridine Molecules on Cu(100) in Solution by ECSTM. <i>Journal of Physical Chemistry B</i> , 2001 , 105, 8399-8402	3.4	21
265	Sulfur Confined in Sub-Nanometer-Sized 2 D Graphene Interlayers and Its Electrochemical Behavior in Lithium-Sulfur Batteries. <i>Chemistry - an Asian Journal</i> , 2016 , 11, 2690-2694	4.5	21
264	Synthesis of wurtzite Cu2ZnGeSe4 nanocrystals and their thermoelectric properties. <i>Chemistry - an Asian Journal</i> , 2013 , 8, 2383-7	4.5	20

263	Aultu alloy bridged synthesis and optoelectronic properties of Au@CuInSe2 corellhell hybrid nanostructures. <i>Journal of Materials Chemistry</i> , 2012 , 22, 1765-1769		20	
262	STM and XRD studies of the adsorption and assembling structures of phthalocyanine and porphyrin. <i>Surface and Interface Analysis</i> , 2002 , 34, 767-771	1.5	20	
261	Self-organized arrays of calix[4]arene and calix[4]arene diquinone disulfide on Au(111). <i>Chemical Physics Letters</i> , 2002 , 359, 83-88	2.5	20	
260	Adsorption mode of cinchonidine on Cu(111) surface. <i>Journal of the American Chemical Society</i> , 2002 , 124, 14300-1	16.4	20	
259	Progress in the Mechanisms and Materials for CO2 Electroreduction toward C2+ Products. <i>Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica</i> , 2020 , 36, 1906085-0	3.8	20	
258	Recent Advances on Nonprecious-Metal-Based Bifunctional Oxygen Electrocatalysts for ZincAir Batteries. <i>Energy & Discounty Supply Suppl</i>	4.1	20	
257	Controllable synthesis of carbon encapsulated iron phosphide nanoparticles for the chemoselective hydrogenation of aromatic nitroarenes to anilines. <i>Inorganic Chemistry Frontiers</i> , 2018 , 5, 1094-1099	6.8	19	
256	Progress of nanoscience in China. Frontiers of Physics, 2014, 9, 257-288	3.7	19	
255	Structurally modulated Li-rich cathode materials through cooperative cation doping and anion hybridization. <i>Science China Chemistry</i> , 2017 , 60, 1554-1560	7.9	19	
254	Oriented organic islands and one-dimensional chains on a Au(111) surface fabricated by electrodeposition: an STM study. <i>Journal of the American Chemical Society</i> , 2008 , 130, 12123-7	16.4	19	
253	Two-dimensional assemblies of banana-shaped liquid crystal molecules on HOPG surface. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 18733-40	3.4	19	
252	The effect of polarity on coadsorbed molecular nanostructures of substituted phthalocyanine and thiol molecules. <i>ChemPhysChem</i> , 2005 , 6, 65-70	3.2	19	
251	Redistribution of Li-ions using covalent organic frameworks towards dendrite-free lithium anodes: a mechanism based on a Galton Board. <i>Science China Chemistry</i> , 2020 , 63, 1306-1314	7.9	19	
250	Single-Molecule Conductance through an Isoelectronic B-N Substituted Phenanthrene Junction. Journal of the American Chemical Society, 2020 , 142, 8068-8073	16.4	18	
249	Facile synthesis of hollow Ti2Nb10O29 microspheres for high-rate anode of Li-ion batteries. <i>Science China Chemistry</i> , 2018 , 61, 670-676	7.9	18	
248	Kinetically controlled formation of uniform FePO4 shells and their potential for use in high-performance sodium ion batteries. <i>NPG Asia Materials</i> , 2017 , 9, e414-e414	10.3	18	
247	Effect of CHIIIF and OHIIIO Hydrogen Bonding in Forming Self-Assembled Monolayers of BF2-Substituted Dicarbonyl Derivatives on HOPG: STM Investigation. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 13851-13854	3.8	18	
246	Direct evidence of arsenic(III)-carbonate complexes obtained using electrochemical scanning tunneling microscopy. <i>Analytical Chemistry</i> , 2007 , 79, 3615-22	7.8	18	

245	Catalytic synthesis and structural characterizations of a highly crystalline polyphenylacetylene nanobelt array. <i>Journal of the American Chemical Society</i> , 2007 , 129, 12922-3	16.4	18
244	Detection of VOCs and their concentrations by a single SnO2 sensor using kinetic information. <i>Sensors and Actuators B: Chemical</i> , 2007 , 123, 454-460	8.5	18
243	Adsorption of Enantiomeric and Racemic Tyrosine on Cu(111): A Scanning Tunneling Microscopy Study. <i>Langmuir</i> , 2003 , 19, 1958-1962	4	18
242	Atomic structures of adsorbed sulfur on Cu(111) in perchloric acid solution by in situ ECSTM. <i>Surface Science</i> , 2002 , 499, L159-L163	1.8	18
241	Effect of Chemically Modified Tips on STM Imaging of 1-Octadecanethiol Molecule. <i>Journal of Physical Chemistry B</i> , 2001 , 105, 10465-10467	3.4	18
240	TiN nanocrystal anchored on N-doped graphene as effective sulfur hosts for high-performance lithium-sulfur batteries. <i>Journal of Energy Chemistry</i> , 2021 , 54, 16-22	12	18
239	Enabling a Durable Electrochemical Interface via an Artificial Amorphous Cathode Electrolyte Interphase for Hybrid Solid/Liquid Lithium-Metal Batteries. <i>Angewandte Chemie</i> , 2020 , 132, 6647-6651	3.6	17
238	Surface tectonics of nanoporous networks of melamine-capped molecular building blocks formed through interface Schiff-base reactions. <i>Chemistry - an Asian Journal</i> , 2013 , 8, 2466-70	4.5	17
237	Optimizing LiFePO@C core-shell structures via the 3-aminophenol-formaldehyde polymerization for improved battery performance. <i>ACS Applied Materials & District Materials & Distr</i>	9.5	17
236	In Situ Scanning Tunneling Microscopy of Solvent-Dependent Chiral Patterns of 1,4-Di[4-N-(trihydroxymethyl)methyl carbamoylphenyl]-2,5-didodecyloxybenzene Molecular Assembly at a Liquid/Highly Oriented Pyrolytic Graphite Interface. <i>Journal of Physical Chemistry C</i> ,	3.8	17
235	In situ STM evidence for the adsorption geometry of three N-heteroaromatic thiols on Au(111). Langmuir, 2011 , 27, 7614-9	4	17
234	Hierarchical self-assembly of p-terphenyl derivative with dumbbell-like amphiphilic and rod-coil characteristics. <i>Tetrahedron Letters</i> , 2008 , 49, 5522-5526	2	17
233	Highly Ordered p-Xylene Adlayer Formed on Rh(111) in HF Solution: In Situ STM and Ex Situ LEED. <i>Langmuir</i> , 2000 , 16, 9368-9373	4	17
232	Electrospray soft-landing for the construction of non-covalent molecular nanostructures using charged droplets under ambient conditions. <i>Chemical Communications</i> , 2016 , 52, 13660-13663	5.8	17
231	Surface Hostliuest Supramolecular Assemblies on Porphyrin-Based Covalent Organic Grids. Journal of Physical Chemistry C, 2016 , 120, 15753-15757	3.8	16
230	Structural Motif Modulation in 2D Supramolecular Assemblies of Molecular Dipolar Unit Tethered by Alkylene Spacer. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 16392-16396	3.8	16
229	Synthesis, Self-Assembly and Solution-Processed Field-Effect Transistors of a Liquid Crystalline Bis(dithienothiophene) Derivative. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 16232-16237	3.8	16
228	Adlayer Structures of Calixarenes on Au(111) Surface Studied with STM. <i>Journal of Physical Chemistry B</i> , 2003 , 107, 13111-13116	3.4	16

227	Effect of Chemical Structure on the Adsorption of Amino Acids with Aliphatic and Aromatic Substitution Groups: In Situ STM Study. <i>Journal of Physical Chemistry B</i> , 2003 , 107, 8474-8478	3.4	16
226	Cooperative Shielding of Bi-Electrodes via In Situ Amorphous Electrode-Electrolyte Interphases for Practical High-Energy Lithium-Metal Batteries. <i>Journal of the American Chemical Society</i> , 2021 , 143, 1670	5 1 67	76 ⁶
225	On-Surface Growth of Single-Layered Homochiral 2D Covalent Organic Frameworks by Steric Hindrance Strategy. <i>Journal of the American Chemical Society</i> , 2020 , 142, 14350-14356	16.4	16
224	The intramolecular H-bonding effect on the growth and stability of Schiff-base surface covalent organic frameworks. <i>Physical Chemistry Chemical Physics</i> , 2016 , 19, 539-543	3.6	15
223	Controlled formation of core-shell structures with uniform AlPO4 nanoshells. <i>Chemical Communications</i> , 2015 , 51, 2943-2945	5.8	15
222	Fabrication of bilayer tetrathiafulvalene integrated surface covalent organic frameworks. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 17356-9	3.6	15
221	A novel amphipathic block copolymer coating forming micelle-like aggregates for separation of steroids in open tubular capillary electrochromatography. <i>Talanta</i> , 2011 , 84, 501-7	6.2	15
220	Substituent-Dependent Ordering of Adlayer Structures of Fullerene Derivatives Adsorbed on Au(111): A Scanning Tunneling Microscopy Study. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 3170-3174	3.8	15
219	Linear dislocation tunes chirality: STM study of chiral transition and amplification in a molecular assembly on an HOPG surface. <i>Chemical Communications</i> , 2009 , 2649-51	5.8	15
218	Organic light-emitting diodes with improved hole-electron balance by using molecular layers of phthalocyanine to modify the anode surface. <i>Applied Physics A: Materials Science and Processing</i> , 2004 , 78, 553-556	2.6	15
217	Selective Adsorption of Copper Phthalocyanine Atop Functionalized Organic Monolayers. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 224-227	3.4	15
216	Fabrication, characterization and electrochemical behaviors of the orientated film of a C60 derivative. <i>Surface Science</i> , 2003 , 536, L408-L414	1.8	15
215	Preparation and dispersion of Ni©u composite nanoparticles. <i>Physical Chemistry Chemical Physics</i> , 2002 , 4, 3422-3424	3.6	15
214	Rechargeable Aluminium-Sulfur Battery with Improved Electrochemical Performance by Cobalt-Containing Electrocatalyst. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 22963-22967	16.4	15
213	Synthesis of Covalent Organic Framework Films at Interfaces. <i>Bulletin of the Chemical Society of Japan</i> , 2021 , 94, 1090-1098	5.1	15
212	Cobalt-Porphyrin-Catalyzed Oxygen Reduction Reaction: A Scanning Tunneling Microscopy Study. <i>ChemElectroChem</i> , 2016 , 3, 2048-2051	4.3	15
211	A Two-Dimensional Hole-Transporting Material for High-Performance Perovskite Solar Cells with 20 % Average Efficiency. <i>Angewandte Chemie</i> , 2018 , 130, 11125-11131	3.6	15
21 0	Controlled formation of uniform CeO2 nanoshells in a buffer solution. <i>Chemical Communications</i> , 2016 , 52, 1420-3	5.8	14

209	One-Nanometer-Precision Control of Al2O3 Nanoshells through a Solution-Based Synthesis Route. <i>Angewandte Chemie</i> , 2014 , 126, 12990-12994	3.6	14
208	Switching the surface homochiral assembly by surface host-guest chemistry. <i>Chemical Communications</i> , 2017 , 53, 11095-11098	5.8	14
207	Bis(ethylenedithio)tetrathiafulvalene Charge-Transfer Salt Nanotube Arrays. <i>Advanced Materials</i> , 2006 , 18, 2753-2757	24	14
206	Stacking Phenomenon of Self-assembled Monolayers and Bilayers of Thioalkyl-substituted Tetrathiafulvalene. <i>Chemistry Letters</i> , 2003 , 32, 856-857	1.7	14
205	Configurations of a Calix[8]arene and a C60/Calix[8]arene Complex on a Au(111) Surface. <i>Angewandte Chemie</i> , 2003 , 115, 2853-2857	3.6	14
204	Highly ordered adlayers of three calix[4]arene derivatives on Au(1 1 1) surface in HClO4 solution: in situ STM study. <i>Chemical Physics Letters</i> , 2003 , 367, 711-716	2.5	14
203	Voltage-Dependent Scanning Tunneling Microscopy Images of a Copper Complex on Graphite. Journal of Physical Chemistry B, 2003 , 107, 13384-13388	3.4	14
202	A Covalent Organic Framework Film for Three-State Near-Infrared Electrochromism and a Molecular Logic Gate. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 12498-12503	16.4	14
201	Controlled formation of uniform nanoshells of manganese oxide and their potential in lithium ion batteries. <i>Chemical Communications</i> , 2017 , 53, 2846-2849	5.8	13
200	Dynamic Visualization of Cathode/Electrolyte Evolution in Quasi-Solid-State Lithium Batteries. <i>Advanced Energy Materials</i> , 2020 , 10, 2000465	21.8	13
199	Direct probing of the structure and electron transfer of fullerene/ferrocene hybrid on Au(111) electrodes by in situ electrochemical STM. <i>Journal of the American Chemical Society</i> , 2014 , 136, 3184-91	16.4	13
198	Template synthesis of imine-based covalent organic framework core-shell structure and hollow sphere: a case of COFTTA-DHTA. <i>Science China Chemistry</i> , 2017 , 60, 1098-1102	7.9	13
197	Dimerization of three xanthene dyes on Au(111) surface. Surface Science, 2004, 551, 204-212	1.8	13
196	Formation of porous films and vesicular fibers via self-organization of an amphiphilic chiral oligomer. <i>Langmuir</i> , 2004 , 20, 2515-8	4	13
195	Assembling nanometer nickel particles into ordered arrays. ChemPhysChem, 2003, 4, 1114-7	3.2	13
194	Site-Selective Adsorption of Benzoic Acid Using an Assembly of Tridodecylamine as the Molecular Template. <i>Langmuir</i> , 2003 , 19, 9759-9763	4	13
193	The Preparation and in Situ Scanning Tunneling Microscopy Study of Fe(110) Surface. <i>Langmuir</i> , 2003 , 19, 1954-1957	4	13
192	In situ scanning tunneling microscopy study of adsorption of diaza-15-crown-5 on Cu(111). <i>Surface Science</i> , 2001 , 489, L568-L572	1.8	13

191	Synergistic Electrocatalysts for Alkaline Hydrogen Oxidation and Evolution Reactions. <i>Advanced Functional Materials</i> ,2107479	15.6	13
190	A Black Phosphorus Graphite Composite Anode for Li-/Na-/K-Ion Batteries. <i>Angewandte Chemie</i> , 2020 , 132, 2338-2342	3.6	13
189	Insights into electrocatalysis by scanning tunnelling microscopy. <i>Chemical Society Reviews</i> , 2021 , 50, 58	3 3 85 5 4	.913
188	Construction of Uniform Cobalt-Based Nanoshells and Its Potential for Improving Li-Ion Battery Performance. <i>ACS Applied Materials & Description</i> (2018) 10, 22896-22901	9.5	12
187	Donor/acceptor complex of triphenylene and trinitrotoluene on Au(111): a scanning tunneling microscopy study. <i>Chemical Communications</i> , 2011 , 47, 6915-7	5.8	12
186	From a Lamellar to Hexagonal Self-Assembly of Bis(4,4?-(m,m?-di(dodecyloxy)phenyl)-2,2?-difluoro-1,3,2-dioxaborin) Molecules: A trans-to-cis-Isomerization-Induced Structural Transition Studied with STM. <i>Angewandte Chemie</i> ,	3.6	12
185	Self-assembled monolayer of a Schiff base on Au(111) surface: electrochemistry and electrochemical STM study. <i>Electrochimica Acta</i> , 2002 , 48, 303-309	6.7	12
184	Molecule rectifier fabricated by capillary tunnel junction. <i>Chemical Physics Letters</i> , 2002 , 361, 465-468	2.5	12
183	Surface morphology and nodule formation mechanism of cellulose acetate membranes by atomic force microscopy. <i>Journal of Applied Polymer Science</i> , 2003 , 88, 1328-1335	2.9	12
182	In-situ nanoscale insights into the evolution of solid electrolyte interphase shells: revealing interfacial degradation in lithium metal batteries. <i>Science China Chemistry</i> , 2021 , 64, 734-738	7.9	12
181	Hetero-coupling of a carbonate hydroxide and sulfide for efficient and robust water oxidation. Journal of Materials Chemistry A, 2019 , 7, 21959-21965	13	11
180	Recent progress in the application of in situ atomic force microscopy for rechargeable batteries. <i>Current Opinion in Electrochemistry</i> , 2019 , 17, 134-142	7.2	11
179	High-Performance Cathode of Sodium-Ion Batteries Enabled by a Potassium-Containing Framework of KMnFeTiO. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 15313-15319	9.5	11
178	Green Production of Ultrahigh-Basicity Polyaluminum Salts with Maximum Atomic Economy by Ultrafiltration and Electrodialysis with Bipolar Membranes. <i>Industrial & Damp; Engineering Chemistry Research</i> , 2014 , 53, 13467-13474	3.9	11
177	Solution effect on diazonium-modified Au(111): reactions and structures. <i>Langmuir</i> , 2013 , 29, 2955-60	4	11
176	Potential Dependent Adsorption Geometry of 2,5-Dihydroxybenzoic Acid on a Au(111) Surface: An in Situ Electrochemical Scanning Tunneling Microscopy Study. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 6208-6214	3.8	11
175	Block copolymer-templated chemical nanopatterning on pyrolyzed photoresist carbon films. <i>Chemical Communications</i> , 2012 , 48, 9741-3	5.8	11
174	Hydrogen bond partner reorganization in the coadsorption of a monodendron and pyridylethynyl derivatives. <i>Langmuir</i> , 2011 , 27, 1292-7	4	11

173	Synthesis of nanostructured SnO2/C microfibers with improved performances as anode material for Li-ion batteries. <i>Journal of Nanoscience and Nanotechnology</i> , 2012 , 12, 2581-5	1.3	11
172	Programmed fabrication of bimetallic nanobarcodes for miniature multiplexing bioanalysis. <i>Analytical Chemistry</i> , 2009 , 81, 2815-8	7.8	11
171	Photodimerization of P2VB on Au(111) in Solution Studied with Scanning Tunneling Microscopy. Journal of Physical Chemistry B, 2003 , 107, 5116-5119	3.4	11
170	Adlayer structure of 1-C18H37 SH molecules: scanning tunnelling microscopy study. <i>Surface and Interface Analysis</i> , 2001 , 32, 256-261	1.5	11
169	Enantiomeric Excess-Tuned 2D Structural Transition: From Heterochiral to Homochiral Supramolecular Assemblies. <i>Langmuir</i> , 2016 , 32, 6830-5	4	10
168	Competitive chiral induction in a 2D molecular assembly: Intrinsic chirality versus coadsorber-induced chirality. <i>Science Advances</i> , 2017 , 3, e1701208	14.3	10
167	TNT adsorption on Au(111): electrochemistry and adlayer structure. <i>Chemical Communications</i> , 2008 , 1877-9	5.8	10
166	Confined Synthesis of a cis-Isotactic Ladder Polysilsesquioxane by Using a Estacking and H-Bonding Superstructure. <i>Angewandte Chemie</i> , 2006 , 118, 3184-3188	3.6	10
165	Stacking behavior of 2-D assemblies of octa-alkoxyl-substituted phthalocyanine studied by scanning tunneling microscopy. <i>Surface Science</i> , 2004 , 559, 40-46	1.8	10
164	The effects of annealing on the structures and electrical conductivities of fullerene-derived nanowires. <i>Journal of Materials Chemistry</i> , 2004 , 14, 914		10
163	In situ electrochemical STM of charge-transfer complex on Cu(). Surface Science, 2002, 517, 52-58	1.8	10
162	Manipulating Particle Chemistry for Hollow Carbon-based Nanospheres: Synthesis Strategies, Mechanistic Insights, and Electrochemical Applications. <i>Accounts of Chemical Research</i> , 2021 , 54, 221-23	1 ^{24.3}	10
161	Regulating the charge diffusion of two-dimensional cobaltiron hydroxide/graphene composites for high-rate water oxidation. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 11573-11581	13	9
160	Hollow carbon nanospheres: syntheses and applications for post lithium-ion batteries. <i>Materials Chemistry Frontiers</i> , 2020 , 4, 2283-2306	7.8	9
159	Insight into the Interfacial Process and Mechanism in LithiumBulfur Batteries: An In Situ AFM Study. <i>Angewandte Chemie</i> , 2016 , 128, 16067-16071	3.6	9
158	Electrostatic-interaction-induced molecular deposition of a hybrid bilayer on Au(111): a scanning tunneling microscopy study. <i>Langmuir</i> , 2014 , 30, 3502-6	4	9
157	Two-dimensional self-assemblies of telechelic organic compounds: structure and surface host-guest chemistry. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2013 , 371, 20120302	3	9
156	Shape-persistent two-component 2D networks with atomic-size tunability. <i>Chemistry - an Asian Journal</i> , 2011 , 6, 2426-30	4.5	9

155	Adsorption of TTF, TCNQ and TTF-TCNQ on Au(111): An in situ ECSTM study. <i>Science in China Series B: Chemistry</i> , 2009 , 52, 559-565		9
154	Direct STM investigation of cinchona alkaloid adsorption on Cu(III). <i>Langmuir</i> , 2004 , 20, 3006-10	4	9
153	Scanning Tunneling Microscopy Characterization of Aromatic Molecules Stabilized by a Buffer Layer of Alkane Derivatives. <i>Japanese Journal of Applied Physics</i> , 2001 , 40, 4273-4276	1.4	9
152	A Dimeric Structure of Bacteriochlorophyllide c Molecules Studied by Scanning Tunneling Microscopy. <i>Journal of Physical Chemistry B</i> , 2002 , 106, 3037-3040	3.4	9
151	Interfacial Strain Engineering in Wide-Bandgap GeS Thin Films for Photovoltaics. <i>Journal of the American Chemical Society</i> , 2021 ,	16.4	9
150	Confinement Strategies for Precise Synthesis of Efficient Electrocatalysts from the Macroscopic to the Atomic Level. <i>Accounts of Materials Research</i> ,	7.5	9
149	Facile Synthesis of Mo2C Nanocrystals Embedded in Nanoporous Carbon Network for Efficient Hydrogen Evolution. <i>Chinese Journal of Chemistry</i> , 2017 , 35, 911-917	4.9	8
148	Tri-Stable Structural Switching in 2D Molecular Assembly at the Liquid/Solid Interface Triggered by External Electric Field. <i>ACS Nano</i> , 2019 , 13, 6751-6759	16.7	8
147	Potential- and concentration-dependent self-assembly structures at solid/liquid interfaces. <i>Nanoscale</i> , 2018 , 10, 3438-3443	7.7	8
146	The structural details and substituent effects on biphenyls adlayers with halogen/pseudohalogen substituents on Au(1 1 1): An STM investigation. <i>Journal of Electroanalytical Chemistry</i> , 2013 , 688, 237-2	42 ¹	8
145	Hybrid molecular nanostructures with donor-acceptor chains. Science China Chemistry, 2013, 56, 124-13	0 7.9	8
144	In situ scanning tunneling microscopy investigation of subphthalocyanine and subnaphthalocyanine adlayers on a Au(111) electrode. <i>Langmuir</i> , 2013 , 29, 264-70	4	8
143	Adlayer structures of aza- and/or oxo-bridged calix[2]arene[2]triazines on Au(111) investigated by scanning tunneling microscopy (STM). <i>Langmuir</i> , 2007 , 23, 8021-7	4	8
142	Absolute configuration of monodentate phosphine ligand enantiomers on Cu(111). <i>Analytical Chemistry</i> , 2004 , 76, 627-31	7.8	8
141	Langmuir film behaviors of dendrons at water interface. Chemical Physics Letters, 2003, 370, 542-547	2.5	8
140	Tuning molecular orientation with STM at the solid/liquid interface. <i>Chemical Communications</i> , 2003 , 2874-5	5.8	8
139	Self-organization of surfactant molecules on solid surface: an STM study of sodium alkyl sulfonates. <i>Applied Surface Science</i> , 2005 , 240, 13-18	6.7	8
138	Turning off the majority-rules effect in two-dimensional hierarchical chiral assembly by introducing a chiral mismatch. <i>Nanoscale</i> , 2016 , 8, 17861-17868	7.7	8

137	Manifesting the sergeants-and-soldiers principle in coadsorber induced homochiral polymorphic assemblies at the liquid/solid interface. <i>Chemical Communications</i> , 2016 , 52, 12088-12091	5.8	7
136	High-Temperature Formation of a Functional Film at the Cathode/Electrolyte Interface in LithiumBulfur Batteries: An In Situ AFM Study. <i>Angewandte Chemie</i> , 2017 , 129, 14625-14629	3.6	7
135	Ionic interaction-induced assemblies of bimolecular "chessboard" structures. <i>Chemical Communications</i> , 2017 , 53, 9129-9132	5.8	7
134	Controlled synthesis of hierarchically-structured MnCo2O4 and its potential as a high performance anode material. <i>Science China Chemistry</i> , 2017 , 60, 1180-1186	7.9	7
133	Facile solution synthesis and photoelectric properties of monolithic tin(II) sulfide nanobelt arrays. <i>Chemistry - an Asian Journal</i> , 2013 , 8, 2483-8	4.5	7
132	STM investigation of substitute effect on oligothiophene adlayer at Au(111) substrate. <i>Journal of Nanoscience and Nanotechnology</i> , 2007 , 7, 3111-6	1.3	7
131	Electrochemical Construction of Novel C60 Derivative/PPV Composite Adlayer on Cu(111) and Their Current/Voltage Characteristics. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 965-970	3.4	7
130	In situ STM of phenolic compounds on Cu() in solution. <i>Surface Science</i> , 2002 , 520, L625-L632	1.8	7
129	Visible light induced photocatalytic reaction of rhodamine B dye via 12-tungstosilicic acid in water. <i>Science in China Series B: Chemistry</i> , 2003 , 46, 577		7
128	Monitoring molecular motion and structure near defect with STM. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2005 , 257-258, 9-13	5.1	7
127	Adlayer Structures of Organic Molecules with Different Functional Groups on Cu(111) in Solution. Journal of Physical Chemistry B, 2002 , 106, 11272-11276	3.4	7
126	Electrode materials for lithium secondary batteries with high energy densities. <i>Scientia Sinica Chimica</i> , 2011 , 41, 1229-1239	1.6	7
125	Molecular Quadripod as a Noncovalent Interfacial Coupling Reagent for Forming Immobilized Coordination Assemblies. <i>Journal of the American Chemical Society</i> , 2018 , 140, 12337-12340	16.4	7
124	Advancing to 4.6 Neview and Prospect in Developing High-Energy-Density LiCoO Cathode for Lithium-Ion Batteries <i>Small Methods</i> , 2022 , e2200148	12.8	7
123	Crystallization-induced self-hollowing of molybdenum sulfide nanoparticles and their potential in sodium ion batteries. <i>Chemical Communications</i> , 2019 , 55, 5894-5897	5.8	6
122	Conformation diversity of a fused-ring pyrazine derivative on au(111) and highly ordered pyrolytic graphite. <i>Chemistry - an Asian Journal</i> , 2015 , 10, 1311-7	4.5	6
121	Cost-Effective Production of Pure Al13 from AlCl3 by Electrolysis. <i>Industrial & Description of Pure Al13 from AlCl3 by Electrolysis</i> . <i>Industrial & Description of Pure Al13 from AlCl3 by Electrolysis</i> . <i>Industrial & Description of Pure Al13 from AlCl3 by Electrolysis</i> . <i>Industrial & Description of Pure Al13 from AlCl3 by Electrolysis</i> . <i>Industrial & Description of Pure Al13 from AlCl3 by Electrolysis</i> . <i>Industrial & Description of Pure Al13 from AlCl3 by Electrolysis</i> . <i>Industrial & Description of Pure Al13 from AlCl3 by Electrolysis</i> . <i>Industrial & Description of Pure Al13 from AlCl3 by Electrolysis</i> . <i>Industrial & Description of Pure Al13 from AlCl3 by Electrolysis</i> . <i>Industrial & Description of Pure Al13 from AlCl3 by Electrolysis</i> .	3.9	6
120	2D hexagonal tilings based on triangular and hexagonal structural units in the self-assembly of thiacalix[4]arene tetrasulfonate on an Au(111) surface. <i>Chemistry - an Asian Journal</i> , 2011 , 6, 1811-6	4.5	6

(2005-2011)

119	Molecular adlayer and photo-induced structural transformation of a diarylethene derivative on Au(111) investigated with scanning tunneling microscopy. <i>Journal of Electroanalytical Chemistry</i> , 2011 , 656, 304-311	4.1	6
118	Structure of thiocyanate adlayers on Rh(111): an in situ STM study. <i>Journal of Solid State Electrochemistry</i> , 1997 , 1, 45-52	2.6	6
117	Structural comparison of self-organized adlayers of ligands and their metal-coordinated complexes on a Au(111) surface: an STM study. <i>Chemistry - A European Journal</i> , 2006 , 12, 2808-14	4.8	6
116	Bio-active molecule immobilisation on layered double hydroxides. <i>International Journal of Nanotechnology</i> , 2006 , 3, 545	1.5	6
115	Dispersion of metallofullerene Y@C82 on bare, C60-modified, and iodine-modified Au(111) surfaces investigated with ECSTM. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 5559-62	3.4	6
114	Thermally stimulated transition in tunneling characteristics of molecular junction of tin/octadecanol/tin. <i>Chemical Physics Letters</i> , 2003 , 380, 767-773	2.5	6
113	In Situ Realization of Water-Mediated Interfacial Processes at Nanoscale in Aprotic Li D 2 Batteries. <i>Advanced Energy Materials</i> , 2020 , 10, 2002339	21.8	6
112	Layered oxides with solid-solution reaction for high voltage potassium-ion batteries cathode. <i>Chemical Engineering Journal</i> , 2021 , 412, 128735	14.7	6
111	Self-supported metal sulphide nanocrystals-assembled nanosheets on carbon paper as efficient counter electrodes for quantum-dot-sensitized solar cells. <i>Science China Chemistry</i> , 2018 , 61, 1338-1344	,7·9	6
110	Construction of uniform ZrO nanoshells by buffer solutions. <i>Dalton Transactions</i> , 2018 , 47, 12843-12846	54.3	5
109	Supercapacitor-battery hybrid energy storage devices from an aqueous nitroxide radical active material. <i>Science Bulletin</i> , 2011 , 56, 2433-2436		5
108	Nanofrictional Properties of Dendron Langmuir B lodgett Films. <i>Chemistry Letters</i> , 2003 , 32, 290-291	1.7	5
107	A direct observation on the surface assembling and ordering of coumarin derivatives on the graphite surface. <i>Surface Science</i> , 2004 , 559, 70-76	1.8	5
106	Tunneling characteristics of octadecyl derivatives on tin and indium electrodes. <i>Langmuir</i> , 2004 , 20, 855	i- థ 1	5
105	Study of Emyloid adsorption and aggregation on graphite by STM and AFM. <i>Science Bulletin</i> , 2003 , 48, 437-440		5
104	A dimeric structure of eosin molecules on Au(1 1 1) surface. <i>Chemical Physics Letters</i> , 2003 , 370, 268-27.	32.5	5
103	Adlayer structure of 4-ethyl naphthalene-1-sulfonate on Cu(111). Surface Science, 2003, 531, 226-230	1.8	5
102	Solid-State Supramolecular Chemistry of Zn-Tetraphenylporphyrins with 4,4-Dipyridyl N,N-Dioxide and Hexamethylenetetramine. <i>Letters in Organic Chemistry</i> , 2005 , 2, 424-427	0.6	5

101	Adlayer structure of TCNQ molecules on Cu(111): Anin situ STM study. Science Bulletin, 2001, 46, 377-37	79	5
100	Rechargeable AluminiumBulfur Battery with Improved Electrochemical Performance by Cobalt-Containing Electrocatalyst. <i>Angewandte Chemie</i> , 2020 , 132, 23163-23167	3.6	5
99	Molecular Conductance through a Quadruple-Hydrogen-Bond-Bridged Supramolecular Junction. <i>Angewandte Chemie</i> , 2016 , 128, 12581-12585	3.6	5
98	Hydrolysis of Corncob Hemicellulose by Solid Acid Sulfated Zirconia and Its Evaluation in Xylitol Production. <i>Applied Biochemistry and Biotechnology</i> , 2021 , 193, 205-217	3.2	5
97	Directed assembly of fullerene on modified Au(111) electrodes. <i>Chemical Communications</i> , 2018 , 54, 8052-8055	5.8	5
96	Selective Extraction of Transition Metals from Spent LiNixCoyMn1-x-yO2 Cathode via Regulation of Coordination Environment <i>Angewandte Chemie - International Edition</i> , 2022 ,	16.4	5
95	In Situ Electrochemical Regeneration of Degraded LiFePO 4 Electrode with Functionalized Prelithiation Separator. <i>Advanced Energy Materials</i> ,2103630	21.8	5
94	Optoeletronic investigation of Cu2ZnSn(S,Se)4 thin-films & Cu2ZnSn(S,Se)4/CdS interface with scanning probe microscopy. <i>Science China Chemistry</i> , 2016 , 59, 231-236	7.9	4
93	Si@Cu@Au AFM tips for tip-enhanced Raman spectrum. <i>Science China Chemistry</i> , 2015 , 58, 1494-1500	7.9	4
92	In Situ Scanning Tunneling Microscopy of Cobalt-Phthalocyanine-Catalyzed CO2 Reduction Reaction. <i>Angewandte Chemie</i> , 2020 , 132, 16232-16237	3.6	4
91	Interfacial Evolution of Lithium Dendrites and Their Solid Electrolyte Interphase Shells of Quasi-Solid-State Lithium-Metal Batteries. <i>Angewandte Chemie</i> , 2020 , 132, 18277-18282	3.6	4
90	Electron transport characteristics of the dimeric 1,4-benzenedithiol junction. <i>Chemistry - an Asian Journal</i> , 2014 , 9, 2077-82	4.5	4
89	Adlayer structures of thiophene and pyrrole derivatives on Au(1 1 1) probed by scanning tunneling microscopy. <i>Journal of Electroanalytical Chemistry</i> , 2014 , 716, 87-92	4.1	4
88	Monolayer graphene-supported free-standing PS-b-PMMA thin film with perpendicularly orientated microdomains. <i>RSC Advances</i> , 2014 , 4, 63941-63945	3.7	4
87	Scanning tunneling microscopy investigation of copper phthalocyanine and truxenone derivative binary superstructures on graphite. <i>Chemistry - an Asian Journal</i> , 2011 , 6, 424-9	4.5	4
86	Disorder Transformation of Trithiocyanuric Acid Adlayer on a Au(111) Surface Induced by Electrode Potential. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 16583-16589	3.8	4
85	Synthesis of flake-like MnO2/CNT composite nanotubes and their applications in electrochemical capacitors. <i>Journal of Nanoscience and Nanotechnology</i> , 2011 , 11, 1996-2002	1.3	4
84	Substitution effect on the adlayer formation of tetrachloroperylene bisimides on HOPG surface. <i>Surface Science</i> , 2010 , 604, 2078-2083	1.8	4

83	From Amphiphilic Organic Ligands to Metal-Coordinated Complexes: Structural Difference in Their Self-Organizations Studied by STM. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 4667-4672	3.8	4
82	Two-Component Assembling of Phthalocyanine with Alkane Derivatives on Graphite Surface. <i>Japanese Journal of Applied Physics</i> , 2003 , 42, 4729-4733	1.4	4
81	Delaying photobleaching and recovering luminescence of a DNA molecular light switch in DNA analysis. <i>Analytical Biochemistry</i> , 2004 , 329, 334-6	3.1	4
80	Controlled assembly of copper phthalocyanine with 1-iodooctadecane. Science Bulletin, 2003, 48, 1519-	1524	4
79	Electrochemical scanning tunneling microscope imaging of self-assembled monolayer of double-stranded DNA on Au(111). <i>Journal of Nanoscience and Nanotechnology</i> , 2004 , 4, 561-4	1.3	4
78	Surface Structure of Heterogeneous Catalysts: Cinchona and Tartaric Acid on Solid Surface. <i>Topics in Catalysis</i> , 2005 , 35, 131-139	2.3	4
77	Pd Porphyrin Cofacial Dimer Formed via CO2 Binding: An in Situ Electrochemistry Scanning Tunneling Microscopy Study. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 24915-24919	3.8	4
76	Spherical Mesoporous Metal Oxides with Tunable Orientation Enabled by Growth Kinetics Control. <i>Journal of the American Chemical Society</i> , 2020 , 142, 17897-17902	16.4	4
75	Development of simulation approach for two-dimensional chiral molecular self-assembly driven by hydrogen bond at the liquid/solid interface. <i>Surface Science</i> , 2017 , 663, 71-80	1.8	3
74	Hollow-Structured Electrode Materials: Self-Templated Synthesis and Their Potential in Secondary Batteries. <i>ChemNanoMat</i> , 2020 , 6, 1298-1314	3.5	3
73	A continuous etching process for highly-active Pd nanoclusters and their in situ stabilization. <i>RSC Advances</i> , 2014 , 4, 23637	3.7	3
72	Bilayer Molecular Assembly at a Solid/Liquid Interface as Triggered by a Mild Electric Field. <i>Angewandte Chemie</i> , 2014 , 126, 13613-13617	3.6	3
71	Carbon-free Cu2ZnSn(S,Se)4 film prepared via a non-hydrazine route. <i>Science China Chemistry</i> , 2014 , 57, 1552-1558	7.9	3
70	Surface-confined conformers and coassembly-induced conformer resolution. <i>Langmuir</i> , 2011 , 27, 9994-	9 ₄	3
69	MOLECULAR TEMPLATES FOR CONTROLLING AND ORDERING ORGANIC MOLECULES ON SOLID SURFACES. <i>Nano</i> , 2012 , 07, 1230001	1.1	3
68	Topography and functional information of plasma membrane. <i>Science in China Series C: Life Sciences</i> , 2008 , 51, 95-103		3
67	Facile synthesis of Pt multipods nanocrystals. <i>Journal of Nanoscience and Nanotechnology</i> , 2006 , 6, 203	1-63	3
66	Adlayer Structures of Binaphthyl Derivatives on Cu(111). Chemistry Letters, 2003, 32, 702-703	1.7	3

65	Direct Observation of the DNA Multimolecule Condensation with Fluorescence Microscopy. <i>Chemistry Letters</i> , 2003 , 32, 80-81	1.7	3
64	Discriminating Chiral Molecules of (R)-PPA and (S)-PPA in Aqueous Solution by ECSTM. <i>Angewandte Chemie</i> , 2002 , 114, 3558-3561	3.6	3
63	A simple route to platinum and Pt-based composite nanotubes. <i>Journal of Nanoscience and Nanotechnology</i> , 2005 , 5, 1929-32	1.3	3
62	In situ scanning tunneling microscopy of maleic acid and fumaric acid adsorbed on Pt(111). <i>Journal of Electroanalytical Chemistry</i> , 2001 , 500, 156-162	4.1	3
61	Coordination-Assisted Precise Construction of Metal Oxide Nanofilms for High-Performance Solid-State Batteries <i>Journal of the American Chemical Society</i> , 2022 ,	16.4	3
60	The Functions and Applications of Fluorinated Interface Engineering in Li-Based Secondary Batteries. <i>Small Science</i> , 2021 , 1, 2100066		3
59	Chemoselective On-surface Homocoupling of Terminal Alkynes Catalyzed by Exogenous Cupric Ions. <i>Chemistry - an Asian Journal</i> , 2020 , 15, 2627-2630	4.5	3
58	Self-assembly of a sulfur-bridged annulene: Substrate effect and donor-acceptor complex. <i>Journal of Electroanalytical Chemistry</i> , 2016 , 781, 20-23	4.1	3
57	Self-assembly of an oligo(-phenylenevinylene)-based molecule on an HOPG surface: insights from multi-scale simulation and STM observation <i>RSC Advances</i> , 2018 , 8, 31868-31873	3.7	3
56	High-resolution imaging of graphene by tip-enhanced coherent anti-Stokes Raman scattering. Journal of Innovative Optical Health Sciences, 2019 , 12, 1841003	1.2	2
55	Controlling the reaction kinetics in solution for uniform nanoshells of metal sulfides with sub-nanometer accuracy. <i>Science Bulletin</i> , 2019 , 64, 232-235	10.6	2
54	Innentitelbild: A Flexible Solid Electrolyte Interphase Layer for Long-Life Lithium Metal Anodes (Angew. Chem. 6/2018). <i>Angewandte Chemie</i> , 2018 , 130, 1436-1436	3.6	2
53	The formation of an ordered microporous aluminum-based material mediated by phthalic acid. <i>Chemical Communications</i> , 2016 , 52, 8038-41	5.8	2
52	Batteries: A High-Energy Room-Temperature Sodium-Sulfur Battery (Adv. Mater. 8/2014). <i>Advanced Materials</i> , 2014 , 26, 1308-1308	24	2
51	Formation of hostguest structure at an electrified electrode surface: An electrochemical STM investigation. <i>Electrochemistry Communications</i> , 2012 , 17, 82-84	5.1	2
50	Remote Chiral Communication in Coadsorber-Induced Enantioselective 2D Supramolecular Assembly at a Liquid/Solid Interface. <i>Angewandte Chemie</i> , 2015 , 127, 4383-4388	3.6	2
49	Theoretical understanding of adlayer structure, thermal stability and electronic property of graphene molecules. <i>Surface Science</i> , 2010 , 604, 2091-2097	1.8	2
48	Adlayer structure of P2VB on iodine-modified Au(111) in solution. <i>Surface Science</i> , 2002 , 511, L298-L30	2 .8	2

(2006-2002)

47	Scanning tunneling microscopy image contrast variation on a copper (II) complex adlayer with tipBample separation. <i>Surface Science</i> , 2002 , 513, L436-L440	1.8	2
46	Structure of self-assembled monolayer of NPAN on Au(111) electrode. Science Bulletin, 2003, 48, 1952-	1955	2
45	Fabrication of a thin film containing C60 derivative nanodomains by photo- polymerization of diacetylene acid. <i>Applied Physics A: Materials Science and Processing</i> , 2003 , 77, 757-760	2.6	2
44	Chiral discrimination in Langmuir and Langmuir B lodgett film of axially chiral 1,1?-binaphthyl acid. <i>Surface Science</i> , 2003 , 527, L171-L176	1.8	2
43	Synthesis of a novel axially chiral amphiphile and study on its assembly behavior in two and three dimensions. <i>Chemical Communications</i> , 2003 , 1498	5.8	2
42	Fabrication of a composite nano-ultrathin film of poly-phenylene-vinylene and C60 derivative. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2005 , 257-258, 195-198	5.1	2
41	Investigation of ITO surface modified by NPB and arachidic acid LB films. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2005 , 257-258, 433-437	5.1	2
40	Effect of alkyl substitutions on self-assembly. <i>Science Bulletin</i> , 2002 , 47, 1514		2
39	Study of Emyloid adsorption and aggregation on graphite by STM and AFM. <i>Science Bulletin</i> , 2003 , 48, 437		2
38	The Self-assembly Structure of Pyrazine Derivative on Highly Oriented Pyrolytic Graphite. <i>Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica</i> , 2005 , 21, 925-928	3.8	2
37	In situ AFM Investigation of Interfacial Morphology of Single Crystal Silicon Wafer Anode. <i>Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica</i> , 2016 , 32, 283-289	3.8	2
36	Insights into evolution processes and degradation mechanisms of anion-tunable interfacial stability in all-solid-state lithium-sulfur batteries. <i>Energy Storage Materials</i> , 2021 , 41, 642-649	19.4	2
35	Interface Engineering of a Ceramic Electrolyte by Ta 2 O 5 Nanofilms for Ultrastable Lithium Metal Batteries. <i>Advanced Functional Materials</i> ,2201498	15.6	2
34	Lattice-confined Ru clusters for hydrogen oxidation reaction with high CO-tolerance. <i>Science China Chemistry</i> , 2020 , 63, 1169-1170	7.9	1
33	2D Co-crystallization of molecular homologues promoted by size complementarity of the alkyl chains at the liquid/solid interface. <i>Physical Chemistry Chemical Physics</i> , 2019 , 21, 17846-17851	3.6	1
32	Discursive imbalance and deficiency in intercultural news communication. <i>Chinese Journal of Communication</i> , 2008 , 1, 156-167	3	1
31	Chiral molecular cavities of calix[4]crown on Au(111). <i>Journal of Nanoscience and Nanotechnology</i> , 2008 , 8, 5702-7	1.3	1
30	Self-assembly of 4-(amyloxy) cinnamic acid on HOPG and its photoinduced transformation: An STM study. <i>Science Bulletin</i> , 2006 , 51, 1389-1392		1

29	STRUCTURES OF Ni(II) OCTAETHYLPORPHYRIN AND C60 AT Au(111) SURFACE INVESTIGATED BY STM. <i>Nano</i> , 2006 , 01, 95-100	1.1	1
28	Evaluation for cell affinity of the composite material containing carbon nanotubes. <i>Science Bulletin</i> , 2004 , 49, 2126		1
27	Controlled fabrication of fullerene derivative one-dimensional nanostruc-tures via electrophoretic depo-sition of its clusters. <i>Science Bulletin</i> , 2004 , 49, 2021		1
26	Self-assembled structure of alkyloxy substituted benzoic acid methyl ester on HOPG: An STM study. <i>Science Bulletin</i> , 2004 , 49, 2590		1
25	Ordered arrays of semi-crown ligands on an Au(111) electrode surface: in situ STM study. <i>Science in China Series B: Chemistry</i> , 2004 , 47, 320		1
24	Adlayer structures of dl-homocysteine and l-homocysteine thiolactone on Au(1 1 1) surface: an in situ STM study. <i>Electrochimica Acta</i> , 2004 , 49, 1629-1633	6.7	1
23	Comment on On the Existence of Ordered Organic Adlayers at the Cu(111)/Electrolyte Interface. <i>Langmuir</i> , 2004 , 20, 2807-2807	4	1
22	Direct observation of monomer film structure of bacteriochlorophyll c. <i>Science Bulletin</i> , 2003 , 48, 2307		1
21	Ordered Nillu Nanowire Array with Enhanced Coercivity ChemInform, 2003, 34, no		1
20	Towards total dissolution of full length unmodified carbon nanotubes (CNT) and its application to fabrication of ultra-thin CNT films at the water/air interface. <i>Journal of Materials Chemistry</i> , 2003 , 13, 1244		1
19	Insights into the nitride-regulated processes at the electrolyte/electrode interface in quasi-solid-state lithium metal batteries. <i>Journal of Energy Chemistry</i> , 2021 , 67, 780-780	12	1
18	Molecular Linking Stabilizes Bi Nanoparticles for Efficient Electrochemical Carbon Dioxide Reduction. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 12699-12706	3.8	1
17	A General Synthesis Strategy for Hollow Metal Oxide Microspheres Enabled by Gel-Assisted Precipitation. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 21377-21383	16.4	1
16	Assembling Behavior of BINAP Derivative. <i>Chemistry Letters</i> , 2002 , 31, 706-707	1.7	O
15	In Situ/Operando Advances of Electrode Processes in Solid-state Lithium Batteries. <i>Acta Chimica Sinica</i> , 2021 , 79, 1197	3.3	0
14	2021 Emerging Investigator Issue of Science China Chemistry. Science China Chemistry, 2021 , 64, 1811	7.9	O
13	Charge Rate-Dependent Decomposition Mechanism of Toroidal Li2O2 in Li-O2 Batteries. <i>Chinese Journal of Chemistry</i> , 2021 , 39, 2668-2672	4.9	О
12	On-Surface Dynamic Covalent Chemistry. Advances in Atom and Single Molecule Machines, 2016 , 221-235	50	

LIST OF PUBLICATIONS

11	Batteries: Encapsulation of Sulfur in a Hollow Porous Carbon Substrate for Superior Li-S Batteries with Long Lifespan (Part. Part. Syst. Charact. 4/2013). <i>Particle and Particle Systems Characterization</i> , 2013 , 30, 392-392	3.1
10	Formation and structure of p-nitrobenzoic acid adlayer on Au(111) surface in HClO4 investigated by in-situ scanning tunneling microscopy. <i>Journal of Nanoscience and Nanotechnology</i> , 2011 , 11, 4800-5	1.3
9	Organic Semiconductors: Solution-Crystallized Organic Semiconductors with High Carrier Mobility and Air Stability (Adv. Mater. 41/2012). <i>Advanced Materials</i> , 2012 , 24, 5518-5518	24
8	2D self-assembly of 1,3,2-dioxaborine derivatives on HOPG. <i>Science Bulletin</i> , 2007 , 52, 2486-2490	
7	Observation of contrast variations of a copper (II) complex by scanning tunneling microscopy. <i>Science Bulletin</i> , 2003 , 48, 531	
6	2D self-assembling of 4, 5-didodecylthiolphthalonitrile on graphite surface. <i>Science Bulletin</i> , 2003 , 48, 742-745	
5	Electronic characteristics of Au-mercaptohexadecanoic acid-Au junction in a capillary. <i>Journal of Nanoscience and Nanotechnology</i> , 2004 , 4, 1081-4	1.3
4	Adsorption of Aromatic Molecules at Solid/Liquid Interface Investigated by Electrochemical STM. <i>Hyomen Kagaku</i> , 2003 , 24, 726-733	
3	Nanostructures at Solid/Liquid Interface 2003 , 85-92	
2	Hierarchically Nanostructured Electrode Materials for Lithium-Ion Batteries 2011 , 237-266	
1	A General Synthesis Strategy for Hollow Metal Oxide Microspheres Enabled by Gel-Assisted Precipitation. <i>Angewandte Chemie</i> , 2021 , 133, 21547-21553	3.6