Cristina Dueso

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2708598/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Overcoming chemical equilibrium limitations using a thermodynamically reversible chemical reactor. Nature Chemistry, 2019, 11, 638-643.	13.6	53
2	New approach to materials behaviour studies in high-speed flue gas from oxy-steam combustion. Fuel, 2019, 245, 586-593.	6.4	1
3	Towards oxy-steam combustion: The effect of increasing the steam concentration on coal reactivity. Fuel, 2019, 239, 534-546.	6.4	32
4	Performance and emissions of a diesel engine using sunflower biodiesel with a renewable antioxidant additive from bio-oil. Fuel, 2018, 234, 276-285.	6.4	70
5	High-stability, high-capacity oxygen carriers: Iron oxide-perovskite composite materials for hydrogen production by chemical looping. Applied Energy, 2015, 157, 382-390.	10.1	54
6	H2FC SUPERGEN: An overview of the Hydrogen and Fuel Cell research across the UK. International Journal of Hydrogen Energy, 2015, 40, 5534-5543.	7.1	21
7	Performance of a highly reactive impregnated Fe2O3/Al2O3 oxygen carrier with CH4 and H2S in a 500Wth CLC unit. Fuel, 2014, 121, 117-125.	6.4	99
8	Evaluation of a highly reactive and sulfur resistant synthetic Fe-based oxygen carrier for CLC using gaseous fuels. Energy Procedia, 2013, 37, 580-587.	1.8	4
9	Chemical-looping combustion of solid fuels in a 10 kW reactor system using natural minerals as oxygen carrier. Energy Procedia, 2013, 37, 598-607.	1.8	37
10	CaMn _{0.9} Mg _{0.1} O _{3-δ} as Oxygen Carrier in a Gas-Fired 10 kW _{th} Chemical-Looping Combustion Unit. Industrial & Engineering Chemistry Research, 2013, 52, 6923-6932.	3.7	92
11	Effect of H2S on the behaviour of an impregnated NiO-based oxygen-carrier for chemical-looping combustion (CLC). Applied Catalysis B: Environmental, 2012, 126, 186-199.	20.2	50
12	Reduction and oxidation kinetics of nickel-based oxygen-carriers for chemical-looping combustion and chemical-looping reforming. Chemical Engineering Journal, 2012, 188, 142-154.	12.7	163
13	Reactivity of a NiO/Al2O3 oxygen carrier prepared by impregnation for chemical-looping combustion. Fuel, 2010, 89, 3399-3409.	6.4	88
14	Syngas combustion in a chemical-looping combustion system using an impregnated Ni-based oxygen carrier. Fuel, 2009, 88, 2357-2364.	6.4	96
15	NiO/Al2O3 oxygen carriers for chemical-looping combustion prepared by impregnation and deposition–precipitation methods. Fuel, 2009, 88, 1016-1023.	6.4	108
16	Effect of gas impurities on the behavior of Ni-based oxygen carriers on chemical-looping combustion. Energy Procedia, 2009, 1, 11-18.	1.8	19
17	Methane Combustion in a 500 W _{th} Chemical-Looping Combustion System Using an Impregnated Ni-Based Oxygen Carrier. Energy & Fuels, 2009, 23, 130-142.	5.1	134
18	Effect of Fuel Gas Composition in Chemical-Looping Combustion with Ni-Based Oxygen Carriers. 1. Fate of Sulfur. Industrial & Engineering Chemistry Research, 2009, 48, 2499-2508.	3.7	99

#	Article	IF	CITATIONS
19	Effect of Fuel Gas Composition in Chemical-Looping Combustion with Ni-Based Oxygen Carriers. 2. Fate of Light Hydrocarbons. Industrial & Engineering Chemistry Research, 2009, 48, 2509-2518.	3.7	43
20	Effect of support on reactivity and selectivity of Ni-based oxygen carriers for chemical-looping combustion. Fuel, 2008, 87, 2641-2650.	6.4	152