
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2707833/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin. Nature, 1992, 359, 832-835.	13.7	1,750
2	Safety Assessment of Graphene-Based Materials: Focus on Human Health and the Environment. ACS Nano, 2018, 12, 10582-10620.	7.3	438
3	Botulinum neurotoxins serotypes A and E cleave SNAP-25 at distinct COOH-terminal peptide bonds. FEBS Letters, 1993, 335, 99-103.	1.3	401
4	Classification Framework for Grapheneâ€Based Materials. Angewandte Chemie - International Edition, 2014, 53, 7714-7718.	7.2	369
5	Synaptic vesicle-associated Ca2+/calmodulin-dependent protein kinase II is a binding protein for synapsin I. Nature, 1992, 359, 417-420.	13.7	299
6	The Synapsins. Annual Review of Cell Biology, 1990, 6, 433-460.	26.0	279
7	A polymer optoelectronic interface restores light sensitivity in blind rat retinas. Nature Photonics, 2013, 7, 400-406.	15.6	267
8	A hybrid bioorganic interface for neuronal photoactivation. Nature Communications, 2011, 2, 166.	5.8	246
9	Synapsin I Is an Oligomannose-Carrying Glycoprotein, Acts As an Oligomannose-Binding Lectin, and Promotes Neurite Outgrowth and Neuronal Survival When Released via Glia-Derived Exosomes. Journal of Neuroscience, 2011, 31, 7275-7290.	1.7	244
10	A fully organic retinal prosthesis restores vision in a rat model of degenerative blindness. Nature Materials, 2017, 16, 681-689.	13.3	232
11	SYN1 loss-of-function mutations in autism and partial epilepsy cause impaired synaptic function. Human Molecular Genetics, 2011, 20, 2297-2307.	1.4	204
12	Direct Conversion of Fibroblasts into Functional Astrocytes by Defined Transcription Factors. Stem Cell Reports, 2015, 4, 25-36.	2.3	194
13	Interaction of free and synaptic vesicle-bound synapsin I with F-actin. Neuron, 1992, 8, 377-386.	3.8	167
14	Modulation by cholecystokinins of ³ Hâ€spiroperidol binding in rat striatum: evidence for increased affinity and reduction in the number of binding sites. Acta Physiologica Scandinavica, 1981, 113, 567-569.	2.3	158
15	Synaptic recruitment of gephyrin regulates surface GABAA receptor dynamics for the expression of inhibitory LTP. Nature Communications, 2014, 5, 3921.	5.8	158
16	Rapid Conversion of Fibroblasts into Functional Forebrain GABAergic Interneurons by Direct Genetic Reprogramming. Cell Stem Cell, 2015, 17, 719-734.	5.2	152
17	Neurotensin in vitro markedly reduces the affinity in subcortical limbic ³ Hâ€Nâ€propyInorapomorphine binding sites*. Acta Physiologica Scandinavica, 1983, 119, 459-461.	2.3	149
18	Lack of Synapsin I Reduces the Readily Releasable Pool of Synaptic Vesicles at Central Inhibitory Synapses. Journal of Neuroscience, 2007, 27, 13520-13531.	1.7	149

#	Article	IF	CITATIONS
19	Photothermal cellular stimulation in functional bio-polymer interfaces. Scientific Reports, 2015, 5, 8911.	1.6	143
20	Lithium rescues synaptic plasticity and memory in Down syndrome mice. Journal of Clinical Investigation, 2013, 123, 348-361.	3.9	136
21	Protein Kinase A-Mediated Synapsin I Phosphorylation Is a Central Modulator of Ca2+-Dependent Synaptic Activity. Journal of Neuroscience, 2006, 26, 11670-11681.	1.7	135
22	dCas9-Based Scn1a Gene Activation Restores Inhibitory Interneuron Excitability and Attenuates Seizures in Dravet Syndrome Mice. Molecular Therapy, 2020, 28, 235-253.	3.7	135
23	Structural Domains Involved in the Regulation of Transmitter Release by Synapsins. Journal of Neuroscience, 2005, 25, 2658-2669.	1.7	134
24	TBC1D24, an ARF6-Interacting Protein, Is Mutated in Familial Infantile Myoclonic Epilepsy. American Journal of Human Genetics, 2010, 87, 365-370.	2.6	134
25	Subretinally injected semiconducting polymer nanoparticles rescue vision in a rat model of retinal dystrophy. Nature Nanotechnology, 2020, 15, 698-708.	15.6	129
26	Graphene Oxide Nanosheets Disrupt Lipid Composition, Ca ²⁺ Homeostasis, and Synaptic Transmission in Primary Cortical Neurons. ACS Nano, 2016, 10, 7154-7171.	7.3	124
27	Autism-related behavioral abnormalities in synapsin knockout mice. Behavioural Brain Research, 2013, 251, 65-74.	1.2	123
28	PRRT2 Is a Key Component of the Ca 2+ -Dependent Neurotransmitter Release Machinery. Cell Reports, 2016, 15, 117-131.	2.9	121
29	Synapsin Controls Both Reserve and Releasable Synaptic Vesicle Pools during Neuronal Activity and Short-Term Plasticity in <i>Aplysia</i> . Journal of Neuroscience, 2001, 21, 4195-4206.	1.7	120
30	Strategies to maximize the performance of a STED microscope. Optics Express, 2012, 20, 7362.	1.7	113
31	Novel Compound Heterozygous Mutations in <i>TBC1D24</i> Cause Familial Malignant Migrating Partial Seizures of Infancy. Human Mutation, 2013, 34, 869-872.	1.1	110
32	Opposite Changes in Glutamatergic and GABAergic Transmission Underlie the Diffuse Hyperexcitability of Synapsin l–Deficient Cortical Networks. Cerebral Cortex, 2009, 19, 1422-1439.	1.6	106
33	Synaptophysin I Controls the Targeting of VAMP2/Synaptobrevin II to Synaptic Vesicles. Molecular Biology of the Cell, 2003, 14, 4909-4919.	0.9	104
34	The role of synapsins in neuronal development. Cellular and Molecular Life Sciences, 2010, 67, 1383-1396.	2.4	104
35	Synapsin-I- and synapsin-II-null mice display an increased age-dependent cognitive impairment. Journal of Cell Science, 2008, 121, 3042-3051.	1.2	102
36	MAPK/Erk-dependent phosphorylation of synapsin mediates formation of functional synapses and short-term homosynaptic plasticity. Journal of Cell Science, 2010, 123, 881-893.	1.2	101

#	Article	IF	CITATIONS
37	α-synuclein and synapsin III cooperatively regulate synaptic function in dopamine neurons. Journal of Cell Science, 2015, 128, 2231-2243.	1.2	99
38	PRRT2 controls neuronal excitability by negatively modulating Na+ channel 1.2/1.6 activity. Brain, 2018, 141, 1000-1016.	3.7	99
39	TAAR1 Modulates Cortical Glutamate NMDA Receptor Function. Neuropsychopharmacology, 2015, 40, 2217-2227.	2.8	98
40	Interfacing Graphene-Based Materials With Neural Cells. Frontiers in Systems Neuroscience, 2018, 12, 12.	1.2	98
41	Interleukin-6 inhibits neurotransmitter release and the spread of excitation in the rat cerebral cortex. European Journal of Neuroscience, 2000, 12, 1241-1252.	1.2	96
42	Phosphorylation of VAMP/Synaptobrevin in Synaptic Vesicles by Endogenous Protein Kinases. Journal of Neurochemistry, 1995, 65, 1712-1720.	2.1	90
43	REST/NRSF-mediated intrinsic homeostasis protects neuronal networks from hyperexcitability. EMBO Journal, 2013, 32, 2994-3007.	3.5	89
44	Synapsin II desynchronizes neurotransmitter release at inhibitory synapses by interacting with presynaptic calcium channels. Nature Communications, 2013, 4, 1512.	5.8	87
45	Using the Atomic Force Microscope to Study the Interaction between Two Solid Supported Lipid Bilayers and the Influence of Synapsin I. Biophysical Journal, 2004, 87, 2446-2455.	0.2	86
46	Light-evoked hyperpolarization and silencing of neurons by conjugated polymers. Scientific Reports, 2016, 6, 22718.	1.6	84
47	Nanostructured Superhydrophobic Substrates Trigger the Development of 3D Neuronal Networks. Small, 2013, 9, 402-412.	5.2	83
48	TBC1D24 regulates neuronal migration and maturation through modulation of the ARF6-dependent pathway. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2337-2342.	3.3	80
49	SYN2 is an autism predisposing gene: loss-of-function mutations alter synaptic vesicle cycling and axon outgrowth. Human Molecular Genetics, 2014, 23, 90-103.	1.4	80
50	Phosphorylation of Synapsin I by cAMP-Dependent Protein Kinase Controls Synaptic Vesicle Dynamics in Developing Neurons. Journal of Neuroscience, 2005, 25, 7299-7308.	1.7	77
51	Characterization of a Polymerâ€Based, Fully Organic Prosthesis for Implantation into the Subretinal Space of the Rat. Advanced Healthcare Materials, 2016, 5, 2271-2282.	3.9	75
52	The PRRT2 knockout mouse recapitulates the neurological diseases associated with PRRT2 mutations. Neurobiology of Disease, 2017, 99, 66-83.	2.1	72
53	Brainâ€Inspired Structural Plasticity through Reweighting and Rewiring in Multiâ€Terminal Selfâ€Organizing Memristive Nanowire Networks. Advanced Intelligent Systems, 2020, 2, 2000096.	3.3	72
54	Neuronal firing modulation by a membrane-targeted photoswitch. Nature Nanotechnology, 2020, 15, 296-306.	15.6	71

#	Article	IF	CITATIONS
55	Accelerated Structural Maturation Induced by Synapsin I at Developing Neuromuscular Synapses ofXenopus laevis. European Journal of Neuroscience, 1995, 7, 261-270.	1.2	70
56	The evolution of artificial light actuators in living systems: from planar to nanostructured interfaces. Chemical Society Reviews, 2018, 47, 4757-4780.	18.7	70
57	De novo mutations of the ATP6V1A gene cause developmental encephalopathy with epilepsy. Brain, 2018, 141, 1703-1718.	3.7	69
58	PRRT2: from Paroxysmal Disorders to Regulation of Synaptic Function. Trends in Neurosciences, 2016, 39, 668-679.	4.2	68
59	Synaptic and Extrasynaptic Origin of the Excitation/Inhibition Imbalance in the Hippocampus of Synapsin I/II/III Knockout Mice. Cerebral Cortex, 2013, 23, 581-593.	1.6	65
60	Phosphorylation of Synapsin I by Cyclin-Dependent Kinase-5 Sets the Ratio between the Resting and Recycling Pools of Synaptic Vesicles at Hippocampal Synapses. Journal of Neuroscience, 2014, 34, 7266-7280.	1.7	65
61	2 Synapsin I, an actin-binding protein regulating synaptic vesicle traffic in the nerve terminal. Advances in Second Messenger and Phosphoprotein Research, 1994, 29, 31-45.	4.5	62
62	Identification of synapsin I peptides that insert into lipid membranes. Biochemical Journal, 2001, 354, 57-66.	1.7	61
63	Epileptogenic Q555X SYN1 mutant triggers imbalances in release dynamics and short-term plasticity. Human Molecular Genetics, 2013, 22, 2186-2199.	1.4	61
64	Binding of Protein Kinase Inhibitors to Synapsin I Inferred from Pair-Wise Binding Site Similarity Measurements. PLoS ONE, 2010, 5, e12214.	1.1	60
65	A Novel Topology of Proline-rich Transmembrane Protein 2 (PRRT2). Journal of Biological Chemistry, 2016, 291, 6111-6123.	1.6	59
66	Kinetic analysis of the phosphorylation-dependent interactions of synapsin I with rat brain synaptic vesicles. Journal of Physiology, 1997, 504, 501-515.	1.3	58
67	Fluorescence Resonance Energy Transfer Detection of Synaptophysin I and Vesicle-associated Membrane Protein 2 Interactions during Exocytosis from Single Live Synapses. Molecular Biology of the Cell, 2002, 13, 2706-2717.	0.9	58
68	Synapsin Is a Novel Rab3 Effector Protein on Small Synaptic Vesicles. Journal of Biological Chemistry, 2004, 279, 43769-43779.	1.6	56
69	Site-Specific Synapsin I Phosphorylation Participates in the Expression of Post-Tetanic Potentiation and Its Enhancement by BDNF. Journal of Neuroscience, 2012, 32, 5868-5879.	1.7	56
70	ERK activation in axonal varicosities modulates presynaptic plasticity in the CA3 region of the hippocampus through synapsin I. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 9872-9877.	3.3	55
71	Kidins220/ARMS as a functional mediator of multiple receptor signalling pathways. Journal of Cell Science, 2012, 125, 1845-54.	1.2	55
72	Tyrosine phosphorylation of synapsin I by Src regulates synaptic-vesicle trafficking. Journal of Cell Science, 2010, 123, 2256-2265.	1.2	54

#	Article	IF	CITATIONS
73	Involvement of Synaptic Genes in the Pathogenesis of Autism Spectrum Disorders: The Case of Synapsins. Frontiers in Pediatrics, 2014, 2, 94.	0.9	54
74	Identification of a developmentally regulated pathway of membrane retrieval in neuronal growth cones. Journal of Cell Science, 2008, 121, 3757-3769.	1.2	53
75	Specificity Protein 1 (Sp1)-dependent Activation of the Synapsin I Gene (SYN1) Is Modulated by RE1-silencing Transcription Factor (REST) and 5′-Cytosine-Phosphoguanine (CpG) Methylation. Journal of Biological Chemistry, 2013, 288, 3227-3239.	1.6	53
76	Synapsin III deficiency hampers α-synuclein aggregation, striatal synaptic damage and nigral cell loss in an AAV-based mouse model of Parkinson's disease. Acta Neuropathologica, 2018, 136, 621-639.	3.9	53
77	Specificity of the Binding of Synapsin I to Src Homology 3 Domains. Journal of Biological Chemistry, 2000, 275, 29857-29867.	1.6	52
78	Synapsin Is a Novel Rab3 Effector Protein on Small Synaptic Vesicles. Journal of Biological Chemistry, 2004, 279, 43760-43768.	1.6	52
79	Synapsins: From synapse to network hyperexcitability and epilepsy. Seminars in Cell and Developmental Biology, 2011, 22, 408-415.	2.3	52
80	Synapsins Contribute to the Dynamic Spatial Organization of Synaptic Vesicles in an Activity-Dependent Manner. Journal of Neuroscience, 2012, 32, 12214-12227.	1.7	52
81	Nanoparticles: A Challenging Vehicle for Neural Stimulation. Frontiers in Neuroscience, 2016, 10, 105.	1.4	52
82	Xâ€linked focal epilepsy with reflex bathing seizures: Characterization of a distinct epileptic syndrome. Epilepsia, 2015, 56, 1098-1108.	2.6	48
83	Regulation of neural gene transcription by optogenetic inhibition of the RE1-silencing transcription factor. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E91-100.	3.3	48
84	Intersectin associates with synapsin and regulates its nanoscale localization and function. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 12057-12062.	3.3	47
85	Graphene Oxide Upregulates the Homeostatic Functions of Primary Astrocytes and Modulates Astrocyte-to-Neuron Communication. Nano Letters, 2018, 18, 5827-5838.	4.5	47
86	Selective lowering of synapsins induced by oligomeric $\hat{I}\pm$ -synuclein exacerbates memory deficits. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E4648-E4657.	3.3	45
87	Roadmap on semiconductor–cell biointerfaces. Physical Biology, 2018, 15, 031002.	0.8	45
88	B-50/GAP-43 Binds to Actin Filaments Without Affecting Actin Polymerization and Filament Organization. Journal of Neurochemistry, 1993, 61, 1530-1533.	2.1	43
89	Phosphorylation of synapsin domain A is required for post-tetanic potentiation. Journal of Cell Science, 2007, 120, 3228-3237.	1.2	43
90	The Knockout of Synapsin II in Mice Impairs Social Behavior and Functional Connectivity Generating an ASD-like Phenotype. Cerebral Cortex, 2017, 27, 5014-5023.	1.6	43

#	Article	lF	CITATIONS
91	Arf6 regulates the cycling and the readily releasable pool of synaptic vesicles at hippocampal synapse. ELife, 2016, 5, .	2.8	43
92	Use of SU8 as a stable and biocompatible adhesion layer for gold bioelectrodes. Scientific Reports, 2018, 8, 5560.	1.6	42
93	Asynchronous GABA Release Is a Key Determinant of Tonic Inhibition and Controls Neuronal Excitability: A Study in the Synapsin II ^{â^'/â^'} Mouse. Cerebral Cortex, 2015, 25, 3356-3368.	1.6	41
94	Molecular Dynamics Simulations of Ion Selectivity in a Claudin-15 Paracellular Channel. Journal of Physical Chemistry B, 2018, 122, 10783-10792.	1.2	41
95	A refined model of claudin-15 tight junction paracellular architecture by molecular dynamics simulations. PLoS ONE, 2017, 12, e0184190.	1.1	41
96	Shedding Light on Living Cells. Advanced Materials, 2015, 27, 7662-7669.	11.1	40
97	Bio-inspired hybrid microelectrodes: a hybrid solution to improve long-term performance of chronic intracortical implants. Frontiers in Neuroengineering, 2014, 7, 7.	4.8	39
98	Phosphorylation-dependent Effects of Synapsin IIa on Actin Polymerization and Network Formation. European Journal of Neuroscience, 1997, 9, 2712-2722.	1.2	38
99	Synapsin I Senses Membrane Curvature by an Amphipathic Lipid Packing Sensor Motif. Journal of Neuroscience, 2011, 31, 18149-18154.	1.7	38
100	Synapsin Phosphorylation by Src Tyrosine Kinase Enhances Src Activity in Synaptic Vesicles. Journal of Biological Chemistry, 2007, 282, 15754-15767.	1.6	37
101	The synapsins: Multitask modulators of neuronal development. Seminars in Cell and Developmental Biology, 2011, 22, 378-386.	2.3	37
102	A novel SYN1 missense mutation in non-syndromic X-linked intellectual disability affects synaptic vesicle life cycle, clustering and mobility. Human Molecular Genetics, 2017, 26, 4699-4714.	1.4	37
103	An Increase in Membrane Cholesterol by Graphene Oxide Disrupts Calcium Homeostasis in Primary Astrocytes. Small, 2019, 15, e1900147.	5.2	37
104	The synapsin domain E accelerates the exoendocytotic cycle of synaptic vesicles in cerebellar Purkinje cells. Journal of Cell Science, 2006, 119, 4257-4268.	1.2	36
105	The epilepsy-associated protein TBC1D24 is required for normal development, survival and vesicle trafficking in mammalian neurons. Human Molecular Genetics, 2019, 28, 584-597.	1.4	35
106	Identification of synapsin I peptides that insert into lipid membranes. Biochemical Journal, 2001, 354, 57.	1.7	34
107	2â€Deoxyâ€ <scp>d</scp> â€glucose enhances tonic inhibition through the neurosteroidâ€mediated activation of extrasynaptic <scp>GABA</scp> _A receptors. Epilepsia, 2016, 57, 1987-2000.	2.6	34
108	Constitutive Inactivation of the PRRT2 Gene Alters Short-Term Synaptic Plasticity and Promotes Network Hyperexcitability in Hippocampal Neurons. Cerebral Cortex, 2019, 29, 2010-2033.	1.6	33

#	Article	IF	CITATIONS
109	Clinical translation of nanoparticles for neural stimulation. Nature Reviews Materials, 2021, 6, 1-4.	23.3	33
110	Effects of phosphorylation and neuronal activity on the control of synapse formation by synapsin I. Journal of Cell Science, 2011, 124, 3643-3653.	1.2	32
111	Octopus arm regeneration: Role of acetylcholinesterase during morphological modification. Journal of Experimental Marine Biology and Ecology, 2013, 447, 93-99.	0.7	32
112	Long-term optical stimulation of channelrhodopsin-expressing neurons to study network plasticity. Frontiers in Molecular Neuroscience, 2013, 6, 22.	1.4	32
113	Anti-synapsin monoclonal antibodies: epitope mapping and inhibitory effects on phosphorylation and Grb2 binding. Molecular Brain Research, 1997, 52, 1-16.	2.5	31
114	Influence of GABA _A R Monoliganded States on GABAergic Responses. Journal of Neuroscience, 2011, 31, 1752-1761.	1.7	31
115	New technologies for developing second generation retinal prostheses. Lab Animal, 2018, 47, 71-75.	0.2	31
116	Neurite-Enriched MicroRNA-218 Stimulates Translation of the GluA2 Subunit and Increases Excitatory Synaptic Strength. Molecular Neurobiology, 2019, 56, 5701-5714.	1.9	31
117	A hybrid P3HT-Graphene interface for efficient photostimulation of neurons. Carbon, 2020, 162, 308-317.	5.4	31
118	The highly conserved synapsin domain E mediates synapsin dimerization and phospholipid vesicle clustering. Biochemical Journal, 2010, 426, 55-64.	1.7	29
119	Presynaptic NMDA receptors: dynamics and distribution in developing axons <i>in vitro</i> and <i>in vivo</i> . Journal of Cell Science, 2015, 128, 768-80.	1.2	29
120	Nonsense-Mediated mRNA Decay and Loss-of-Function of the Protein Underlie the X-Linked Epilepsy Associated with the W356× Mutation in Synapsin I. PLoS ONE, 2013, 8, e67724.	1.1	29
121	Pavlovian Conditioning of Larval Drosophila: An Illustrated, Multilingual, Hands-On Manual for Odor-Taste Associative Learning in Maggots. Frontiers in Behavioral Neuroscience, 2017, 11, 45.	1.0	28
122	Membrane Environment Enables Ultrafast Isomerization of Amphiphilic Azobenzene. Advanced Science, 2020, 7, 1903241.	5.6	28
123	Functional Role of ATP Binding to Synapsin I In Synaptic Vesicle Trafficking and Release Dynamics. Journal of Neuroscience, 2014, 34, 14752-14768.	1.7	27
124	Delivery of Brain-Derived Neurotrophic Factor by 3D Biocompatible Polymeric Scaffolds for Neural Tissue Engineering and Neuronal Regeneration. Molecular Neurobiology, 2018, 55, 8788-8798.	1.9	27
125	S100A1 codistributes with synapsin I in discrete brain areas and inhibits the F-actin-bundling activity of synapsin I. Journal of Neurochemistry, 2004, 89, 1260-1270.	2.1	25
126	Influence of Synapsin I on Synaptic Vesicles: An Analysis by Force-Volume Mode of the Atomic Force Microscope and Dynamic Light Scattering. Biophysical Journal, 2007, 93, 1051-1060.	0.2	25

#	Article	IF	CITATIONS
127	The synapsin gene family in basal chordates: evolutionary perspectives in metazoans. BMC Evolutionary Biology, 2010, 10, 32.	3.2	25
128	Identification and Expression of Acetylcholinesterase in Octopus vulgaris Arm Development and Regeneration: a Conserved Role for ACHE?. Molecular Neurobiology, 2015, 52, 45-56.	1.9	25
129	Synapsins Are Downstream Players of the BDNF-Mediated Axonal Growth. Molecular Neurobiology, 2017, 54, 484-494.	1.9	25
130	Leucineâ€rich repeat kinase 2 phosphorylation on synapsin I regulates glutamate release at preâ€synaptic sites. Journal of Neurochemistry, 2019, 150, 264-281.	2.1	25
131	Autoantibodies to synapsin I sequestrate synapsin I and alter synaptic function. Cell Death and Disease, 2019, 10, 864.	2.7	24
132	Obligatory role of endoplasmic reticulum in brain FDG uptake. European Journal of Nuclear Medicine and Molecular Imaging, 2019, 46, 1184-1196.	3.3	24
133	Genotype-phenotype correlations in patients with de novo <i>KCNQ2</i> pathogenic variants. Neurology: Genetics, 2020, 6, e528.	0.9	24
134	Cell adhesion molecule L1 contributes to neuronal excitability regulating the function of voltage-gated sodium channels. Journal of Cell Science, 2016, 129, 1878-91.	1.2	23
135	Biallelic DMXL2 mutations impair autophagy and cause Ohtahara syndrome with progressive course. Brain, 2019, 142, 3876-3891.	3.7	23
136	TBC1D24 regulates axonal outgrowth and membrane trafficking at the growth cone in rodent and human neurons. Cell Death and Differentiation, 2019, 26, 2464-2478.	5.0	23
137	Dentate gyrus network dysfunctions precede the symptomatic phase in a genetic mouse model of seizures. Frontiers in Cellular Neuroscience, 2013, 7, 138.	1.8	22
138	Synapsin III Acts Downstream of Semaphorin 3A/CDK5 Signaling to Regulate Radial Migration and Orientation of Pyramidal Neurons InÂVivo. Cell Reports, 2015, 11, 234-248.	2.9	22
139	Exocytosis regulates trafficking of GABA and glycine heterotransporters in spinal cord glutamatergic synapses: a mechanism for the excessive heterotransporter-induced release of glutamate in experimental amyotrophic lateral sclerosis. Neurobiology of Disease, 2015, 74, 314-324.	2.1	22
140	Emerging Role of the Autophagy/Lysosomal Degradative Pathway in Neurodevelopmental Disorders With Epilepsy. Frontiers in Cellular Neuroscience, 2020, 14, 39.	1.8	22
141	Acute knockdown of Depdc5 leads to synaptic defects in mTOR-related epileptogenesis. Neurobiology of Disease, 2020, 139, 104822.	2.1	22
142	An updated reappraisal of synapsins: structure, function and role in neurological and psychiatric disorders. Neuroscience and Biobehavioral Reviews, 2021, 130, 33-60.	2.9	22
143	Phosphorylation by PKA and Cdk5 Mediates the Early Effects of Synapsin III in Neuronal Morphological Maturation. Journal of Neuroscience, 2015, 35, 13148-13159.	1.7	21
144	Optogenetic Modulation of Intracellular Signalling and Transcription: Focus on Neuronal Plasticity. Journal of Experimental Neuroscience, 2017, 11, 117906951770335.	2.3	21

#	Article	IF	CITATIONS
145	Neuroinflammation induces synaptic scaling through IL- $1\hat{1}^2$ -mediated activation of the transcriptional repressor REST/NRSF. Cell Death and Disease, 2021, 12, 180.	2.7	21
146	Intrathecal immunoglobulin A and G antibodies to synapsin in a patient with limbic encephalitis. Neurology: Neuroimmunology and NeuroInflammation, 2015, 2, e169.	3.1	19
147	Spike-Related Electrophysiological Identification of Cultured Hippocampal Excitatory and Inhibitory Neurons. Molecular Neurobiology, 2019, 56, 6276-6292.	1.9	19
148	Alpha-synuclein/synapsin III pathological interplay boosts the motor response to methylphenidate. Neurobiology of Disease, 2020, 138, 104789.	2.1	19
149	Neuronal hyperactivity causes Na+/H+ exchanger-induced extracellular acidification at active synapses. Journal of Cell Science, 2017, 130, 1435-1449.	1.2	18
150	Synapsin I and Synapsin II regulate neurogenesis in the dentate gyrus of adult mice. Oncotarget, 2018, 9, 18760-18774.	0.8	18
151	Sub-millisecond Control of Neuronal Firing by Organic Light-Emitting Diodes. Frontiers in Bioengineering and Biotechnology, 2019, 7, 278.	2.0	18
152	Kainate Induces Mobilization of Synaptic Vesicles at the Growth Cone through the Activation of Protein Kinase A. Cerebral Cortex, 2013, 23, 531-541.	1.6	17
153	REST/NRSF deficiency impairs autophagy and leads to cellular senescence in neurons. Aging Cell, 2021, 20, e13471.	3.0	17
154	Photochemistry of Organic Retinal Prostheses. Annual Review of Physical Chemistry, 2019, 70, 99-121.	4.8	16
155	Role of pericytes in blood–brain barrier preservation during ischemia through tunneling nanotubes. Cell Death and Disease, 2022, 13, .	2.7	16
156	Studies of neurotensinâ€dopamine receptor interactions in striatal membranes of the male rat. The influence of 6â€hydroxydopamineâ€induced dopamine receptor supersensitivity. Acta Physiologica Scandinavica, 1986, 126, 147-149.	2.3	15
157	Synapsin-antibodies in psychiatric and neurological disorders: Prevalence and clinical findings. Brain, Behavior, and Immunity, 2017, 66, 125-134.	2.0	15
158	Biocompatibility of a Magnetic Tunnel Junction Sensor Array for the Detection of Neuronal Signals in Culture. Frontiers in Neuroscience, 2018, 12, 909.	1.4	15
159	Kidins220/ARMS controls astrocyte calcium signaling and neuron–astrocyte communication. Cell Death and Differentiation, 2020, 27, 1505-1519.	5.0	15
160	Interactions between Primary Neurons and Graphene Films with Different Structure and Electrical Conductivity. Advanced Functional Materials, 2021, 31, 2005300.	7.8	15
161	Increased responsiveness at the cerebellar input stage in the PRRT2 knockout model of paroxysmal kinesigenic dyskinesia. Neurobiology of Disease, 2021, 152, 105275.	2.1	15
162	PRRT2 modulates presynaptic Ca2+ influx by interacting with P/Q-type channels. Cell Reports, 2021, 35, 109248.	2.9	15

#	Article	IF	CITATIONS
163	Kidins220/ARMS Is a Novel Modulator of Short-Term Synaptic Plasticity in Hippocampal GABAergic Neurons. PLoS ONE, 2012, 7, e35785.	1.1	14
164	APache Is an AP2-Interacting Protein Involved in Synaptic Vesicle Trafficking and Neuronal Development. Cell Reports, 2017, 21, 3596-3611.	2.9	14
165	Effect of starvation on brain glucose metabolism and 18F-2-fluoro-2-deoxyglucose uptake: an experimental in-vivo and ex-vivo study. EJNMMI Research, 2018, 8, 44.	1.1	14
166	Behavioral Assessment of Vision in Pigs. Journal of the American Association for Laboratory Animal Science, 2018, 57, 350-356.	0.6	14
167	Presynaptic L-Type Ca ²⁺ Channels Increase Glutamate Release Probability and Excitatory Strength in the Hippocampus during Chronic Neuroinflammation. Journal of Neuroscience, 2020, 40, 6825-6841.	1.7	14
168	Clinical spectrum and genotype-phenotype correlations in PRRT2 Italian patients. European Journal of Paediatric Neurology, 2020, 28, 193-197.	0.7	14
169	Functional Interaction between the Scaffold Protein Kidins220/ARMS and Neuronal Voltage-Gated Na+ Channels. Journal of Biological Chemistry, 2015, 290, 18045-18055.	1.6	13
170	Fine Tuning of Synaptic Plasticity and Filtering by GABA Released from Hippocampal Autaptic Granule Cells. Cerebral Cortex, 2016, 26, 1149-1167.	1.6	13
171	An interaction between PRRT2 and Na+/K+ ATPase contributes to the control of neuronal excitability. Cell Death and Disease, 2021, 12, 292.	2.7	13
172	Expanding the Nude SCID/CID Phenotype Associated with FOXN1 Homozygous, Compound Heterozygous, or Heterozygous Mutations. Journal of Clinical Immunology, 2021, 41, 756-768.	2.0	13
173	PRRT2, a network stability gene. Oncotarget, 2017, 8, 55770-55771.	0.8	13
174	Small-Animal 18F-FDG PET for Research on Octopus vulgaris: Applications and Future Directions in Invertebrate Neuroscience and Tissue Regeneration. Journal of Nuclear Medicine, 2018, 59, 1302-1307.	2.8	12
175	Hydrogenated Graphene Improves Neuronal Network Maturation and Excitatory Transmission. Advanced Biology, 2021, 5, e2000177.	1.4	12
176	Progress of Induced Pluripotent Stem Cell Technologies to Understand Genetic Epilepsy. International Journal of Molecular Sciences, 2020, 21, 482.	1.8	11
177	Clinical and Genetic Features in Patients With Reflex Bathing Epilepsy. Neurology, 2021, 97, e577-e586.	1.5	11
178	The lipid composition of few layers graphene and graphene oxide biomolecular corona. Carbon, 2021, 185, 591-598.	5.4	11
179	Phenotypic and genetic spectrum of ATP6V1A encephalopathy: a disorder of lysosomal homeostasis. Brain, 2022, 145, 2687-2703.	3.7	11
180	Biocompatibility of a Conjugated Polymer Retinal Prosthesis in the Domestic Pig. Frontiers in Bioengineering and Biotechnology, 2020, 8, 579141.	2.0	10

#	Article	IF	CITATIONS
181	Conopeptide-Functionalized Nanoparticles Selectively Antagonize Extrasynaptic <i>N</i> -Methyl- <scp>d</scp> -aspartate Receptors and Protect Hippocampal Neurons from Excitotoxicity <i>In Vitro</i> . ACS Nano, 2020, 14, 6866-6877.	7.3	10
182	Mild Inactivation of RE-1 Silencing Transcription Factor (REST) Reduces Susceptibility to Kainic Acid-Induced Seizures. Frontiers in Cellular Neuroscience, 2019, 13, 580.	1.8	10
183	The physics of plasma membrane photostimulation. APL Materials, 2021, 9, 030901.	2.2	10
184	A developmental stage- and Kidins220-dependent switch in astrocyte responsiveness to brain-derived neurotrophic factor. Journal of Cell Science, 2021, 134, .	1.2	10
185	Isobaric Labeling Proteomics Allows a High-Throughput Investigation of Protein Corona Orientation. Analytical Chemistry, 2021, 93, 784-791.	3.2	10
186	Computational Assessment of Different Structural Models for Claudin-5 Complexes in Blood–Brain Barrier Tight Junctions. ACS Chemical Neuroscience, 2022, 13, 2140-2153.	1.7	10
187	Molecular Machines Determining the Fate of Endocytosed Synaptic Vesicles in Nerve Terminals. Frontiers in Synaptic Neuroscience, 2016, 8, 10.	1.3	9
188	Computational study of ion permeation through claudinâ€4 paracellular channels. Annals of the New York Academy of Sciences, 2022, 1516, 162-174.	1.8	9
189	Synapsins—Molecular function, development and disease. Seminars in Cell and Developmental Biology, 2011, 22, 377.	2.3	8
190	Dysfunction of the serotonergic system in the brain of synapsin triple knockout mice is associated with behavioral abnormalities resembling synapsin-related human pathologies. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2021, 105, 110135.	2.5	8
191	The enhancement of activity rescues the establishment of <i>Mecp2</i> null neuronal phenotypes. EMBO Molecular Medicine, 2021, 13, e12433.	3.3	8
192	Graphene Nanoplatelets Render Poly(3-Hydroxybutyrate) a Suitable Scaffold to Promote Neuronal Network Development. Frontiers in Neuroscience, 2021, 15, 731198.	1.4	8
193	The Transcription Factors EBF1 and EBF2 Are Positive Regulators of Myelination in Schwann Cells. Molecular Neurobiology, 2017, 54, 8117-8127.	1.9	7
194	Altered Intracellular Calcium Homeostasis Underlying Enhanced Glutamatergic Transmission in Striatal-Enriched Tyrosine Phosphatase (STEP) Knockout Mice. Molecular Neurobiology, 2018, 55, 8084-8102.	1.9	7
195	Synapsin I Controls Synaptic Maturation of Long-Range Projections in the Lateral Amygdala in a Targeted Selective Fashion. Frontiers in Cellular Neuroscience, 2019, 13, 220.	1.8	7
196	Neuronal Cultures and Nanomaterials. Advances in Neurobiology, 2019, 22, 51-79.	1.3	7
197	Proline-rich transmembrane protein 2 (PRRT2) regulates the actin cytoskeleton during synaptogenesis. Cell Death and Disease, 2020, 11, 856.	2.7	7
198	REST/NRSF drives homeostatic plasticity of inhibitory synapses in a target-dependent fashion. ELife, 2021, 10, .	2.8	7

#	Article	IF	CITATIONS
199	Protein Phosphorylation in Rat Pineal Gland and Its Regulation in Supersensitive and Subsensitive States. Journal of Neurochemistry, 1987, 48, 1069-1076.	2.1	6
200	Epitope specificity of anti-synapsin autoantibodies: Differential targeting of synapsin I domains. PLoS ONE, 2018, 13, e0208636.	1.1	6
201	Synapsins are expressed at neuronal and non-neuronal locations in Octopus vulgaris. Scientific Reports, 2019, 9, 15430.	1.6	6
202	Structural Mechanism of ω-Currents in a Mutated Kv7.2 Voltage Sensor Domain from Molecular Dynamics Simulations. Journal of Chemical Information and Modeling, 2021, 61, 1354-1367.	2.5	6
203	Impaired GABAB-mediated presynaptic inhibition increases excitatory strength and alters short-term plasticity in synapsin knockout mice. Oncotarget, 2017, 8, 90061-90076.	0.8	6
204	Investigation of the stability and biocompatibility of commonly used electrode materials in organic neuro-optoelectronics. , 2015, , .		5
205	1H NMR Spectroscopy Characterization of Porcine Vitreous Humor in Physiological and Photoreceptor Degeneration Conditions. , 2019, 60, 741.		5
206	The porcine iodoacetic acid model of retinal degeneration: Morpho-functional characterization of the visual system. Experimental Eye Research, 2020, 193, 107979.	1.2	5
207	Reply to: Questions about the role of P3HT nanoparticles in retinal stimulation. Nature Nanotechnology, 2021, 16, 1333-1336.	15.6	5
208	Engineering REST-Specific Synthetic PUF Proteins to Control Neuronal Gene Expression: A Combined Experimental and Computational Study. ACS Synthetic Biology, 2020, 9, 2039-2054.	1.9	4
209	Brainâ€Inspired Structural Plasticity through Reweighting and Rewiring in Multiâ€Terminal Selfâ€Organizing Memristive Nanowire Networks. Advanced Intelligent Systems, 2020, 2, 2080071.	3.3	4
210	Synapsin III in brain development. Oncotarget, 2016, 7, 15288-15289.	0.8	3
211	3D Cell Cultures: Nanostructured Superhydrophobic Substrates Trigger the Development of 3D Neuronal Networks (Small 3/2013). Small, 2013, 9, 334-334.	5.2	2
212	Controlling cell functions by light. , 2015, , .		2
213	Electrochemically Synthesized Poly(3-hexylthiophene) Nanowires as Photosensitive Neuronal Interfaces. Materials, 2021, 14, 4761.	1.3	2
214	Synapsins and Synaptic Vesicle Storage. , 2015, , 295-326.		2
215	An Emerging Role of PRRT2 in Regulating Growth Cone Morphology. Cells, 2021, 10, 2666.	1.8	2
216	Kidins220/ARMS modulates brain morphology and anxiety-like traits in adult mice. Cell Death Discovery, 2022, 8, 58.	2.0	1

FABIO BENFENATI

#	Article	IF	CITATIONS
217	Magnetic Tunnel Junction Based Chip to Detect the Magnetic Field of Neuronal Signals: A Platform for In Vitro Studies. Proceedings (mdpi), 2017, 1, .	0.2	0
218	Modulation of neuronal firing: what role can nanotechnology play?. Nanomedicine, 2020, 15, 2895-2900.	1.7	0
219	Stability Studies of New Caged bis â€deoxyâ€coelenterazine Derivatives and Their Potential Use as Cellular pH Probes. Photochemistry and Photobiology, 2021, 97, 343-352.	1.3	0
220	Giving names to the actors of synaptic transmission: The long journey from synaptic vesicles to neural plasticity. Advances in Pharmacology, 2021, 90, 19-37.	1.2	0
221	Neuronal Networks: Interactions between Primary Neurons and Graphene Films with Different Structure and Electrical Conductivity (Adv. Funct. Mater. 11/2021). Advanced Functional Materials, 2021, 31, 2170075.	7.8	0
222	Reply to Comment on Conopeptide-Functionalized Nanoparticles Selectively Antagonize Extrasynaptic N-Methyl-d-aspartate Receptors and Protect Hippocampal Neurons from Excitotoxicity In Vitro. ACS Nano, 2021, 15, 15409-15417.	7.3	0
223	Complexity and Computation at the Synapse: Multilayer Architecture and Role of Diffusion in Shaping Synaptic Activity and Computation. , 2014, , 269-298.		0