Keisuke Ono

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2707735/publications.pdf

Version: 2024-02-01

414034 361045 1,160 51 20 32 citations h-index g-index papers 51 51 51 1824 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Methane and nitrous oxide emissions from conventional and modified rice cultivation systems in South India. Agriculture, Ecosystems and Environment, 2018, 252, 148-158.	2.5	88
2	FLUXNET-CH ₄ : a global, multi-ecosystem dataset and analysis of methane seasonality from freshwater wetlands. Earth System Science Data, 2021, 13, 3607-3689.	3.7	79
3	Trace gas and particle emissions from open burning of three cereal crop residues: Increase in residue moistness enhances emissions of carbon monoxide, methane, and particulate organic carbon. Atmospheric Environment, 2014, 95, 36-44.	1.9	74
4	Identifying dominant environmental predictors of freshwater wetland methane fluxes across diurnal to seasonal time scales. Global Change Biology, 2021, 27, 3582-3604.	4.2	59
5	Chemical characterization and oxidative potential of particles emitted from open burning of cereal straws and rice husk under flaming and smoldering conditions. Atmospheric Environment, 2017, 163, 118-127.	1.9	54
6	Development and evaluation of a paddy module for improving hydrological simulation in SWAT. Agricultural Water Management, 2014, 137, 116-122.	2.4	51
7	Apparent downward CO2 flux observed with open-path eddy covariance over a non-vegetated surface. Theoretical and Applied Climatology, 2008, 92, 195-208.	1.3	47
8	Increasing canopy photosynthesis in rice can be achieved without a large increase in water useâ€"A model based on freeâ€air <scp>CO</scp> ₂ enrichment. Global Change Biology, 2018, 24, 1321-1341.	4.2	47
9	The Impact of Sunlight Conditions on the Consistency of Vegetation Indices in Croplands—Effective Usage of Vegetation Indices from Continuous Ground-Based Spectral Measurements. Remote Sensing, 2015, 7, 14079-14098.	1.8	44
10	Canopyâ€scale relationships between stomatal conductance and photosynthesis in irrigated rice. Global Change Biology, 2013, 19, 2209-2220.	4.2	43
11	Inferring CO ₂ fertilization effect based on global monitoring land-atmosphere exchange with a theoretical model. Environmental Research Letters, 2020, 15, 084009.	2.2	38
12	8 million phenological and sky images from 29 ecosystems from the Arctic to the tropics: the Phenological Eyes Network. Ecological Research, 2018, 33, 1091-1092.	0.7	37
13	Understanding the variability of water isotopologues in near-surface atmospheric moisture over a humid subtropical rice paddy in Tsukuba, Japan. Journal of Hydrology, 2016, 533, 91-102.	2.3	34
14	Gap-filling eddy covariance methane fluxes: Comparison of machine learning model predictions and uncertainties at FLUXNET-CH4 wetlands. Agricultural and Forest Meteorology, 2021, 308-309, 108528.	1.9	33
15	How elevated CO2 affects our nutrition in rice, and how we can deal with it. PLoS ONE, 2019, 14, e0212840.	1.1	31
16	Environmental Controls on Fallow Carbon Dioxide Flux in a Single rop Rice Paddy, Japan. Land Degradation and Development, 2015, 26, 331-339.	1.8	27
17	Validation of the DNDC-Rice model to discover problems in evaluating the nitrogen balance at a paddy-field scale for single-cropping of rice. Nutrient Cycling in Agroecosystems, 2013, 95, 255-268.	1.1	23
18	Coupling atmospheric ammonia exchange process over a rice paddy field with a multi-layer atmosphere–soil–vegetation model. Agricultural and Forest Meteorology, 2013, 180, 1-21.	1.9	23

#	Article	IF	Citations
19	Quality Control for the Open-path Eddy Covariance Data. J Agricultural Meteorology, 2007, 63, 125-138.	0.8	23
20	A land surface model combined with a crop growth model for paddy rice (MATCRO-Rice v.Â1) – PartÂ1: Model description. Geoscientific Model Development, 2016, 9, 4133-4154.	1.3	22
21	Evapotranspiration in a rice paddy field over 13 crop years. J Agricultural Meteorology, 2017, 73, 109-118.	0.8	22
22	Mitigation Potential and Yield-Scaled Global Warming Potential of Early-Season Drainage from a Rice Paddy in Tamil Nadu, India. Agronomy, 2018, 8, 202.	1.3	19
23	Experimental evaluation of water vapour cross-sensitivity for accurate eddy covariance measurement of CO ₂ flux using open-path CO ₂ /H ₂ 0 gas analysers. Tellus, Series B: Chemical and Physical Meteorology. 2022. 66. 23803.	0.8	18
24	A land surface model combined with a crop growth model for paddy rice (MATCRO-Rice v.Â1) – PartÂ2: Model validation. Geoscientific Model Development, 2016, 9, 4155-4167.	1.3	18
25	A Model of Silicon Dynamics in Rice: An Analysis of the Investment Efficiency of Si Transporters. Frontiers in Plant Science, 2017, 8, 1187.	1.7	18
26	Cross-Validation of Open-Path and Closed-Path Eddy-Covariance Techniques for Observing Methane Fluxes. Boundary-Layer Meteorology, 2014, 151, 95-118.	1.2	15
27	Applicability of the Planar Fit Technique in Estimating Surface Fluxes over Flat Terrain using Eddy Covariance. J Agricultural Meteorology, 2008, 64, 121-130.	0.8	14
28	Exploring sub-daily to seasonal variations in methane exchange in a single-crop rice paddy in central Japan. Atmospheric Environment, 2018, 179, 156-165.	1.9	13
29	Atmosphere-rice paddy exchanges of inorganic particles and relevant gases during a week in winter and a week in summer. J Agricultural Meteorology, 2012, 68, 55-68.	0.8	12
30	Manure application has an effect on the carbon budget of a managed grassland in southern Hokkaido, Japan. Soil Science and Plant Nutrition, 2015, 61, 856-872.	0.8	12
31	Random Sampling Errors in CO2 Fluxes Measured by the Open-path Eddy Covariance Method and Their Influence on Estimating Annual Carbon Budget. J Agricultural Meteorology, 2007, 63, 67-79.	0.8	10
32	<i>FluxPro</i> as a realtime monitoring and surveilling system for eddy covariance flux measurement. J Agricultural Meteorology, 2015, 71, 32-50.	0.8	10
33	Amelioration of the reactive nitrogen flux calculation by a day/night separation in weekly mean air concentration measurements. Atmospheric Environment, 2013, 79, 462-471.	1.9	9
34	Effect of manure application on seasonal carbon fluxes in a temperate managed grassland in Southern Hokkaido, Japan. Catena, 2015, 133, 474-485.	2.2	9
35	Field Validation of the DNDC-Rice Model for Methane and Nitrous Oxide Emissions from Double-Cropping Paddy Rice under Different Irrigation Practices in Tamil Nadu, India. Agriculture (Switzerland), 2020, 10, 355.	1.4	9
36	Free-air CO2 enrichment (FACE) net nitrogen fixation experiment at a paddy soil surface under submerged conditions. Nutrient Cycling in Agroecosystems, 2014, 98, 57-69.	1.1	8

#	Article	IF	CITATIONS
37	Seabird-affected taluses are denitrification hotspots and potential N2O emitters in the High Arctic. Scientific Reports, 2018, 8, 17261.	1.6	8
38	Analysis of the spatial variation in the net ecosystem production of rice paddy fields using the diagnostic biosphere model, BEAMS. Ecological Modelling, 2012, 247, 175-189.	1,2	7
39	Systematic Differences in CO2 Fluxes Measured by Open- and Closed-path Eddy Covariance Systems: Influence of Air Density Fluctuations Resulting from Temperature and Water Vapor Transfer. J Agricultural Meteorology, 2007, 63, 139-155.	0.8	7
40	Determination of rice paddy parameters in the global gross primary production capacity estimation algorithm using 6 years of JP-MSE flux observation data. J Agricultural Meteorology, 2017, 73, 119-132.	0.8	7
41	Four-year monitoring of atmospheric ammonia using passive samplers at a single-crop rice paddy field in central Japan. J Agricultural Meteorology, 2013, 69, 229-241.	0.8	7
42	Isotopic disequilibrium between carbon assimilated and respired in a rice paddy as influenced by methanogenesis from CO2. Journal of Geophysical Research, 2007, 112, .	3.3	6
43	Estimation of methane emission from rice paddy soils in Japan using the diagnostic ecosystem model. J Agricultural Meteorology, 2017, 73, 133-139.	0.8	6
44	Comparison of fallow season CO ₂ efflux from paddy soil estimated using laboratory incubation with eddy covariance-based flux. J Agricultural Meteorology, 2017, 73, 140-145.	0.8	5
45	Influence of local land cover on meteorological conditions in farmland: Case study of a rice paddy field near Tsukuba City, Japan. J Agricultural Meteorology, 2018, 74, 140-153.	0.8	4
46	Characteristics of Atmosphere-rice Paddy Exchange of Gaseous and Particulate Reactive Nitrogen in Terms of Nitrogen Input to a Single-cropping Rice Paddy Area in Central Japan. Asian Journal of Atmospheric Environment, 2017, 11, 202-216.	0.4	4
47	Heat-Mitigation Effects of Irrigated Rice-Paddy Fields Under Changing Atmospheric Carbon Dioxide Based on a Coupled Atmosphere and Crop Energy-Balance Model. Boundary-Layer Meteorology, 2021, 179, 447-476.	1.2	2
48	Atmosphere-sea ice-ocean interaction study in Saroma-ko Lagoon, Hokkaido, Japan 2021. Bulletin of Glaciological Research, 2022, 40, 1-17.	0.5	2
49	Development of an onsite computation scheme of eddy-covariance fluxes. J Agricultural Meteorology, 2015, 71, 318-329.	0.8	1
50	Nitrogen Aspects of the Free-Air CO2 Enrichment (FACE) Study for Paddy Rice Ecosystems. , 2020, , 331-340.		1
51	Derivations and applications of the density correction for estimating surface flux. Climate in Biosphere, 2012, 12, 21-35.	0.1	0