Aldo Treves

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2707729/publications.pdf

Version: 2024-02-01

		147801	114465
68	3,958	31	63
papers	citations	h-index	g-index
68	68	68	3411
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Multimessenger observations of a flaring blazar coincident with high-energy neutrino lceCube-170922A. Science, 2018, 361, .	12.6	654
2	The major upgrade of the MAGIC telescopes, Part II: A performance study using observations of the Crab Nebula. Astroparticle Physics, 2016, 72, 76-94.	4.3	305
3	TheHubble Space TelescopeSurvey of BL Lacertae Objects. II. Host Galaxies. Astrophysical Journal, 2000, 532, 816-829.	4.5	213
4	Performance of the MAGIC stereo system obtained with Crab Nebula data. Astroparticle Physics, 2012, 35, 435-448.	4.3	183
5	The major upgrade of the MAGIC telescopes, Part I: The hardware improvements and the commissioning of the system. Astroparticle Physics, 2016, 72, 61-75.	4.3	150
6	Imaging Redshifts of BL Lacertae Objects. Astrophysical Journal, 2005, 635, 173-179.	4.5	146
7	TheHubble Space TelescopeSurvey of BL Lacertae Objects. I. Surface Brightness Profiles, Magnitudes, and Radii of Host Galaxies. Astrophysical Journal, 2000, 532, 740-815.	4.5	134
8	The Redshift of the BL Lac Object TXS 0506+056. Astrophysical Journal Letters, 2018, 854, L32.	8.3	116
9	Optimized dark matter searches in deep observations of Segue 1 with MAGIC. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 008-008.	5.4	105
10	An optical view of BL Lacertae objects. Astronomy and Astrophysics Review, 2014, 22, 1.	25.5	97
11	QUASI-PERIODICITIES AT YEAR-LIKE TIMESCALES IN BLAZARS. Astronomical Journal, 2016, 151, 54.	4.7	86
12	Phase-resolved energy spectra of the Crab pulsar in the range of 50–400ÂGeV measured with the MAGIC telescopes. Astronomy and Astrophysics, 2012, 540, A69.	5.1	84
13	Teraelectronvolt pulsed emission from the Crab Pulsar detected by MAGIC. Astronomy and Astrophysics, 2016, 585, A133.	5.1	82
14	ESO Very Large Telescope Optical Spectroscopy of BL Lacertae Objects. II. New Redshifts, Featureless Objects, and Classification Assessments. Astronomical Journal, 2006, 132, 1-19.	4.7	79
15	VERY HIGH ENERGY <i>γ</i> -RAYS FROM THE UNIVERSE'S MIDDLE AGE: DETECTION OF THE <i>z</i> = 0.940 BLAZAR PKS 1441+25 WITH MAGIC. Astrophysical Journal Letters, 2015, 815, L23.) 8.3	78
16	OBSERVATIONS OF THE CRAB PULSAR BETWEEN 25 AND 100 GeV WITH THE MAGIC I TELESCOPE. Astrophysical Journal, 2011, 742, 43.	4.5	69
17	On the Redshift of TeV BL LacÂObjects. Astrophysical Journal, 2017, 837, 144.	4.5	68
18	The Black Hole Mass of BL Lacertae Objects from the Stellar Velocity Dispersion of the Host Galaxy. Astrophysical Journal, 2002, 569, L35-L38.	4.5	68

#	Article	IF	Citations
19	ESO Very Large Telescope Optical Spectroscopy of BL Lacertae Objects. I. New Redshifts. Astronomical Journal, 2005, 129, 559-566.	4.7	65
20	QUASI-PERIODICITIES OF THE BL LACERTAE OBJECT PKS 2155–304. Astrophysical Journal Letters, 2014, 793, L1.	8.3	57
21	Detection of very high energy gamma-ray emission from the gravitationally lensed blazar QSO B0218+357 with the MAGIC telescopes. Astronomy and Astrophysics, 2016, 595, A98.	5.1	56
22	Gamma-ray and optical oscillations of 0716+714, MRK 421, and BL Lacertae. Astronomy and Astrophysi 2017, 600, A132.	cs. 5.1	50
23	FIRST <i>NuSTAR</i> OBSERVATIONS OF MRK 501 WITHIN A RADIO TO TeV MULTI-INSTRUMENT CAMPAIGN. Astrophysical Journal, 2015, 812, 65.	4.5	49
24	Quasi-periodicities of BL Lacertae objects. Astronomy and Astrophysics, 2018, 615, A118.	5.1	46
25	Gamma-ray quasi-periodicities of blazars. A cautious approach. Monthly Notices of the Royal Astronomical Society, 2019, 482, 1270-1274.	4.4	44
26	GAMMA-RAY AND OPTICAL OSCILLATIONS IN PKS 0537–441. Astrophysical Journal, 2016, 820, 20.	4.5	42
27	TheHubble Space TelescopeSurvey of BL Lacertae Objects: Gravitational Lens Candidates and Other Unusual Sources. Astrophysical Journal, 1999, 521, 134-144.	4.5	38
28	Optical spectroscopy of BLÂLacertae objects. Astronomy and Astrophysics, 2006, 457, 35-43.	5.1	38
29	PG 1553 + 11 - A bright optically selected BL Lacertae object. Publications of the Astronomical Society of the Pacific, 1990, 102, 1120.	3.1	37
30	The Cosmic Evolution of Quasar Host Galaxies. Astrophysical Journal, 2004, 604, 495-507.	4.5	36
31	The Nuclear to Host Galaxy Relation of Highâ€Redshift Quasars. Astrophysical Journal, 2007, 660, 1039-1050.	4.5	33
32	Multi-wavelength characterization of the blazar S5 0716+714 during an unprecedented outburst phase. Astronomy and Astrophysics, 2018, 619, A45.	5.1	32
33	Pulsar timing constraints on the Fermi massive black hole binary blazar population. Monthly Notices of the Royal Astronomical Society: Letters, 2018, 481, L74-L78.	3.3	31
34	Detection of bridge emission above 50 GeV from the Crab pulsar with the MAGIC telescopes. Astronomy and Astrophysics, 2014, 565, L12.	5.1	30
35	Optical Spectroscopic Survey of a Sample of Unidentified Fermi Objects. Astrophysical Journal, 2017, 851, 135.	4.5	30
36	Spectroscopy of BL Lacertae objects of extraordinary luminosity. Astronomy and Astrophysics, 2014, 570, A126.	5.1	29

#	Article	IF	CITATIONS
37	A SEARCH FOR SPECTRAL HYSTERESIS AND ENERGY-DEPENDENT TIME LAGS FROM X-RAY AND TeV GAMMA-RAY OBSERVATIONS OF Mrk 421. Astrophysical Journal, 2017, 834, 2.	4.5	29
38	Spectroscopy of 10 Î ³ -Ray BL Lac Objects at High Redshift. Astrophysical Journal, 2017, 844, 120.	4.5	28
39	VLT adaptive optics imaging of QSO host galaxies and their close environment at z \$mathsf{sim}\$ 2.5: Results from a pilot program. Astronomy and Astrophysics, 2005, 434, 469-473.	5.1	27
40	EUROPEAN SOUTHERN OBSERVATORY VERY LARGE TELESCOPE OPTICAL SPECTROSCOPY OF BL LACERTAE OBJECTS. III. AN EXTENSION OF THE SAMPLE. Astronomical Journal, 2009, 137, 337-346.	4.7	27
41	WHAT IS THE REDSHIFT OF THE GAMMA-RAY BL LAC SOURCE S4 0954+65?. Astronomical Journal, 2015, 150, 181.	4.7	27
42	ESO VERY LARGE TELESCOPE OPTICAL SPECTROSCOPY OF BL LACERTAE OBJECTS. IV. NEW SPECTRA AND PROPERTIES OF THE FULL SAMPLE. Astronomical Journal, 2013, 145, 114.	4.7	26
43	Nearâ€Infrared Adaptive Optics Imaging of Highâ€Redshift Quasars. Astrophysical Journal, 2008, 673, 694-702.	4.5	25
44	Constraining Lorentz Invariance Violation Using the Crab Pulsar Emission Observed up to TeV Energies by MAGIC. Astrophysical Journal, Supplement Series, 2017, 232, 9.	7.7	25
45	Optical Spectroscopic Survey of a Sample of Unidentified Fermi Objects: II. Astrophysical Journal, 2019, 871, 162.	4.5	25
46	THE PROPERTIES OF QUASAR HOSTS AT THE PEAK OF THE QUASAR ACTIVITY. Astrophysical Journal, 2009, 703, 1663-1671.	4.5	24
47	SPECTROSCOPY OF OPTICALLY SELECTED BL LAC OBJECTS AND THEIR Î ³ -RAY EMISSION. Astronomical Journal, 2013, 146, 163.	4.7	23
48	On the redshift of the bright BL Lacertae object PKS 0048-097. Astronomy and Astrophysics, 2012, 543, All6.	5.1	21
49	High-redshift BL Lac Objects: Spectroscopy of Candidates. Astrophysical Journal, 2018, 861, 130.	4.5	21
50	Looking at Blazar Light-curve Periodicities with Gaussian Processes. Astrophysical Journal, 2020, 895, 122.	4.5	21
51	Optical spectroscopy of BL Lac objects: TeV candidates. Monthly Notices of the Royal Astronomical Society, 2020, 497, 94-108.	4.4	20
52	The jet of the BL Lacertae object PKS 0521-365 in the near-IR: MAD adaptive optics observations. Astronomy and Astrophysics, 2009, 501, 907-914.	5.1	19
53	On the nebulosity surrounding the BL Lacertae object PKS 2155 - 304. Astrophysical Journal, 1991, 380, L67.	4.5	16
54	The spectra of IceCube neutrino (SIN) candidate sources $\hat{a}\in$ II. Source characterization. Monthly Notices of the Royal Astronomical Society, 2022, 510, 2671-2688.	4.4	13

#	Article	IF	CITATIONS
55	The host galaxy of the BL Lacertae object 1ES 0647+250 and its imaging redshift. Astronomy and Astrophysics, 2011, 534, L2.	5.1	12
56	On the redshift of the very high-energy gamma-ray BL Lac object S2 0109+22. Monthly Notices of the Royal Astronomical Society, 2016, 458, 2836-2839.	4.4	10
57	The redshift and the host galaxy of the neutrino candidate 4FGLÂJ0955.1+3551 (3HSPÂJ095507.9+355101). Monthly Notices of the Royal Astronomical Society: Letters, 2020, 495, L108-L111.	3.3	10
58	ZBLLAC: A Spectroscopic Database of BL Lacertae Objects. Astrophysical Journal, Supplement Series, 2020, 250, 37.	7.7	10
59	On the lensed blazar B0218+357. Monthly Notices of the Royal Astronomical Society, 2017, 470, 2814-2821.	4.4	8
60	The jet of the BL Lacertae object PKS 2201+044: MAD near-IR adaptive optics observations and comparison with optical, radio and X-ray data. Astronomy and Astrophysics, 2011, 528, A34.	5.1	6
61	ON THE RADIO AND NEAR-INFRARED JET OF PKS 2155–304 AND ITS CLOSE ENVIRONMENT. Astronomical Journal, 2013, 145, 73.	4.7	6
62	The spectra of IceCube neutrino candidate sources – I. Optical spectroscopy of blazars. Monthly Notices of the Royal Astronomical Society, 2021, 504, 3338-3353.	4.4	5
63	Predictions of TeV emission for a set of hard BL Lac objects. Monthly Notices of the Royal Astronomical Society, 2021, 508, 6128-6141.	4.4	5
64	An Optical View of Extragalactic Î ³ -Ray Emitters. Frontiers in Astronomy and Space Sciences, 2017, 4, .	2.8	3
65	Detecting the periodicity of highly irregularly sampled light curves with Gaussian processes: the case of SDSS J025214.67Ⱂ002813.7. Monthly Notices of the Royal Astronomical Society, 2022, 513, 2841-2849.	4.4	3
66	MAD ADAPTIVE OPTICS IMAGING OF HIGH-LUMINOSITY QUASARS: A PILOT PROJECT. Astronomical Journal, 2016, 152, 38.	4.7	2
67	Quasi-Periodicities at Year Time Scales in Blazars. Proceedings of the International Astronomical Union, 2016, 12, 180-183.	0.0	1
68	The circum-galactic medium of quasars: transverse and line-of-sight absorptions. Astrophysics and Space Science, 2020, 365, 1.	1.4	0