Vadim A Frolov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2707704/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Molecular Shape Solution for Mesoscopic Remodeling of Cellular Membranes. Annual Review of Biophysics, 2022, 51, 473-497.	4.5	16
2	Reconstitution and real-time quantification of membrane remodeling by single proteins and protein complexes. Nature Protocols, 2020, 15, 2443-2469.	5.5	12
3	Electrophysiological Methods for Detection of Membrane and Hemifission by Dynamin 1. Methods in Molecular Biology, 2020, 2159, 141-162.	0.4	2
4	Dynamic constriction and fission of endoplasmic reticulum membranes by reticulon. Nature Communications, 2019, 10, 5327.	5.8	46
5	Highly Charged Membrane Templates for Studying the Mechano-Chemistry of Dynamin 1. Biophysical Journal, 2018, 114, 281a.	0.2	Ο
6	Nanomechanics of Membrane Fission: Elasticity of the Precursor State. Biophysical Journal, 2018, 114, 606a-607a.	0.2	0
7	The 2018 biomembrane curvature and remodeling roadmap. Journal Physics D: Applied Physics, 2018, 51, 343001.	1.3	212
8	Bending Modulus of Multicomponent Lipid Membranes. Biophysical Journal, 2017, 112, 520a.	0.2	0
9	Catalytic Intermediates of Membrane Fission. Biophysical Journal, 2017, 112, 158a.	0.2	0
10	Membrane fission by dynamin: what we know and what we need to know. EMBO Journal, 2016, 35, 2270-2284.	3.5	388
11	Cholesterol Effect on the Elastic Properties of Unsaturated Lipid Bilayers. Biophysical Journal, 2016, 110, 369a-370a.	0.2	Ο
12	Synthesis, lipid membrane incorporation, and ion permeability testing of carbon nanotube porins. Nature Protocols, 2016, 11, 2029-2047.	5.5	42
13	Live Cell Interactions with Biocompatible Ultra-Short Carbon Nanotube Porins. Biophysical Journal, 2015, 108, 487a-488a.	0.2	1
14	Geometry of membrane fission. Chemistry and Physics of Lipids, 2015, 185, 129-140.	1.5	40
15	A hemi-fission intermediate links two mechanistically distinct stages of membrane fission. Nature, 2015, 524, 109-113.	13.7	91
16	Stochastic transport through carbon nanotubes in lipid bilayers and live cell membranes. Nature, 2014, 514, 612-615.	13.7	350
17	Rapid Determination of Geometry and Elastic Constants of Lipid Nanotubes. Biophysical Journal, 2014, 106, 700a.	0.2	0
18	Lipids as Regulators of Effective Membrane Rigidity. Biophysical Journal, 2014, 106, 288a.	0.2	1

2

VADIM A FROLOV

#	Article	IF	CITATIONS
19	Quantification of Curvature Gradients in Highly Curved Tubular Lipid Bilayers. Biophysical Journal, 2013, 104, 243a.	0.2	0
20	The Regulatory Catalytic Step in Dynamin-Driven Membrane Fission. Biophysical Journal, 2013, 104, 617a.	0.2	0
21	Curvature Stimulates Assembly of Gag Shell through Distinct Fluid-Like Intermediate. Biophysical Journal, 2013, 104, 416a-417a.	0.2	0
22	Geometric Catalysis of Membrane Fission Driven by Flexible Dynamin Rings. Science, 2013, 339, 1433-1436.	6.0	123
23	Spatio-Temporal Organization of a Minimal Dynamin Machinery Producing Membrane Fission. Biophysical Journal, 2012, 102, 322a.	0.2	0
24	Coordination of Bending and Wedging in Membrane Fission. Biophysical Journal, 2012, 102, 322a.	0.2	0
25	Dynamin: Functional Design of a Membrane Fission Catalyst. Annual Review of Cell and Developmental Biology, 2011, 27, 79-105.	4.0	264
26	Variation of lipid membrane composition caused by strong bending. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 2011, 5, 205-211.	0.3	14
27	Lipid Polymorphisms and Membrane Shape. Cold Spring Harbor Perspectives in Biology, 2011, 3, a004747-a004747.	2.3	152
28	Reconstitution of Proapoptotic BAK Function in Liposomes Reveals a Dual Role for Mitochondrial Lipids in the BAK-driven Membrane Permeabilization Process. Journal of Biological Chemistry, 2011, 286, 8213-8230.	1.6	66
29	Non-bilayer intermediates and pathways of membrane remodeling. Chemistry and Physics of Lipids, 2010, 163, S2.	1.5	0
30	Cooperative elastic stresses, the hydrophobic effect, and lipid tilt in membrane remodeling. FEBS Letters, 2010, 584, 1824-1829.	1.3	31
31	Membrane Curvature and Fission By Dynamin: Mechanics, Dynamics and Partners. Biophysical Journal, 2010, 98, 2a.	0.2	2
32	Domain-Driven Morphogenesis of Cellular Membranes. Current Biology, 2009, 19, R772-R780.	1.8	33
33	Shaping biological matter. Nature Materials, 2009, 8, 173-174.	13.3	4
34	Breakdown of Charged Lipid Asymmetry as a Result of Lipidic Pore Formation. Biophysical Journal, 2009, 96, 152a.	0.2	0
35	Fission Of Lipid Nanotube By Osmotic Pressure. Biophysical Journal, 2009, 96, 351a.	0.2	0
36	Measurement Of Mechanical Parameters Of Lipid Bilayer Form The Deformation Of Membrane Nanotube In Electric Field. Biophysical Journal, 2009, 96, 351a-352a.	0.2	0

VADIM A FROLOV

#	Article	IF	CITATIONS
37	ER Biogenesis: Self-Assembly of Tubular Topology by Protein Hairpins. Current Biology, 2008, 18, R474-R476.	1.8	12
38	Flexible Scaffolding Made of Rigid BARs. Cell, 2008, 132, 727-729.	13.5	6
39	GTPase Cycle of Dynamin Is Coupled to Membrane Squeeze and Release, Leading to Spontaneous Fission. Cell, 2008, 135, 1276-1286.	13.5	269
40	Vesicle formation by self-assembly of membrane-bound matrix proteins into a fluidlike budding domain. Journal of Cell Biology, 2007, 179, 627-633.	2.3	53
41	"Entropic Traps―in the Kinetics of Phase Separation in Multicomponent Membranes Stabilize Nanodomains. Biophysical Journal, 2006, 91, 189-205.	0.2	109
42	Synaptotagmin: fusogenic role for calcium sensor?. Nature Structural and Molecular Biology, 2006, 13, 301-303.	3.6	32
43	Insulin stimulates the halting, tethering, and fusion of mobile GLUT4 vesicles in rat adipose cells. Journal of Cell Biology, 2005, 169, 481-489.	2.3	158
44	Membrane Permeability Changes at Early Stages of Influenza Hemagglutinin-Mediated Fusion. Biophysical Journal, 2003, 85, 1725-1733.	0.2	84
45	Shape bistability of a membrane neck: A toggle switch to control vesicle content release. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 8698-8703.	3.3	53
46	Voltage-Induced Nonconductive Pre-Pores and Metastable Single Pores in Unmodified Planar Lipid Bilayer. Biophysical Journal, 2001, 80, 1829-1836.	0.2	236
47	Pro-apoptotic Cleavage Products of Bcl-xL Form Cytochrome c-conducting Pores in Pure Lipid Membranes. Journal of Biological Chemistry, 2001, 276, 31083-31091.	1.6	134
48	Multiple Local Contact Sites are Induced by GPI-Linked Influenza Hemagglutinin During Hemifusion and Flickering Pore Formation. Traffic, 2000, 1, 622-630.	1.3	58
49	Structural intermediates in influenza haemagglutinin-mediated fusion. Molecular Membrane Biology, 1999, 16, 33-42.	2.0	67
50	The Pathway of Membrane Fusion Catalyzed by Influenza Hemagglutinin: Restriction of Lipids, Hemifusion, and Lipidic Fusion Pore Formation. Journal of Cell Biology, 1998, 140, 1369-1382.	2.3	358
51	An Early Stage of Membrane Fusion Mediated by the Low pH Conformation of Influenza Hemagglutinin Depends upon Membrane Lipids. Journal of Cell Biology, 1997, 136, 81-93.	2.3	206