Zhendong Niu

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/270768/zhendong-niu-publications-by-year.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

241
papers

2,935
citations

26
h-index
g-index

3,763
ext. papers

28
3,763
ext. citations

3.3
citations

3.4
L-index

#	Paper	IF	Citations
241	Multi-level Attention Map Network for Multimodal Sentiment Analysis. <i>IEEE Transactions on Knowledge and Data Engineering</i> , 2022 , 1-1	4.2	1
240	Learning I/O Variables from Scientific Software User Manuals. Lecture Notes in Computer Science, 2022 , 503-516	0.9	0
239	Co-AI: A Colab-Based Tool for Abstraction Identification 2021,		1
238	Recommending Learning Objects through Attentive Heterogeneous Graph Convolution and Operation-Aware Neural Network. <i>IEEE Transactions on Knowledge and Data Engineering</i> , 2021 , 1-1	4.2	2
237	Contextual Understanding and Improvement of Metamorphic Testing in Scientific Software Development 2021 ,		1
236	Recommending scientific paper via heterogeneous knowledge embedding based attentive recurrent neural networks. <i>Knowledge-Based Systems</i> , 2021 , 215, 106744	7.3	12
235	MHCPDP: multi-source heterogeneous cross-project defect prediction via multi-source transfer learning and autoencoder. <i>Software Quality Journal</i> , 2021 , 29, 405	1.2	5
234	CNN with depthwise separable convolutions and combined kernels for rating prediction. <i>Expert Systems With Applications</i> , 2021 , 170, 114528	7.8	9
233	Finding Metamorphic Relations for Scientific Software 2021,		2
232	Social Signal-Driven Knowledge Automation: A Focus on Social Transportation. <i>IEEE Transactions on Computational Social Systems</i> , 2021 , 8, 737-753	4.5	7
231	Unit and regression tests of scientific software: A study on SWMM. <i>Journal of Computational Science</i> , 2021 , 53, 101347-101347	3.4	3
230	EKGTF: A knowledge-enhanced model for optimizing social network-based meteorological briefings. <i>Information Processing and Management</i> , 2021 , 58, 102564	6.3	4
229	Hybrid microblog recommendation with heterogeneous features using deep neural network. <i>Expert Systems With Applications</i> , 2021 , 167, 114191	7.8	7
228	Review text based rating prediction approaches: preference knowledge learning, representation and utilization. <i>Artificial Intelligence Review</i> , 2021 , 54, 1171-1200	9.7	7
227	A Deep Hybrid Model for Recommendation by jointly leveraging ratings, reviews and metadata information. <i>Engineering Applications of Artificial Intelligence</i> , 2021 , 97, 104066	7.2	6
226	Improving University Faculty Evaluations via multi-view Knowledge Graph. <i>Future Generation Computer Systems</i> , 2021 , 117, 181-192	7.5	6
225	Deep learning techniques for rating prediction: a survey of the state-of-the-art. <i>Artificial Intelligence Review</i> , 2021 , 54, 95-135	9.7	10

224	A first look at developerslive chat on Gitter 2021 ,		2
223	XAI tools in the public sector: a case study on predicting combined sewer overflows 2021 ,		2
222	Learning deep relevance couplings for ad-hoc document retrieval. <i>Expert Systems With Applications</i> , 2021 , 183, 115335	7.8	0
221	TCIC_FS: Total correlation information coefficient-based feature selection method for high-dimensional data. <i>Knowledge-Based Systems</i> , 2021 , 231, 107418	7.3	1
220	I/O Associations in Scientific Software: A Study of SWMM. Lecture Notes in Computer Science, 2021, 375-	-389	1
219	Detecting Software Security Vulnerabilities via Requirements Dependency Analysis. <i>IEEE Transactions on Software Engineering</i> , 2020 , 1-1	3.5	3
218	Requirements Engineering in the Days of Artificial Intelligence. <i>IEEE Software</i> , 2020 , 37, 7-10	1.5	10
217	Social weather: A review of crowdsourcing-assisted meteorological knowledge services through social cyberspace. <i>Geoscience Data Journal</i> , 2020 , 7, 61-79	2.5	10
216	Joint Deep Recommendation Model Exploiting Reviews and Metadata Information. <i>Neurocomputing</i> , 2020 , 402, 256-265	5.4	4
215	Heterogeneous Knowledge Learning of Predictive Academic Intelligence in Transportation. <i>IEEE Transactions on Intelligent Transportation Systems</i> , 2020 , 1-19	6.1	1
214	Learning Semantic Concepts and Temporal Alignment for Narrated Video Procedural Captioning 2020 ,		4
213	A novel approach to tracing safety requirements and state-based design models 2020,		3
212	Safety Patterns for SysML: What Does OMG Specify?. Lecture Notes in Computer Science, 2020, 19-34	0.9	
211	Unit Tests of Scientific Software: A Study on SWMM. Lecture Notes in Computer Science, 2020, 413-427	0.9	7
210	Deep residual network for highly accelerated fMRI reconstruction using variable density spiral trajectory. <i>Neurocomputing</i> , 2020 , 398, 338-346	5.4	3
209	Automatic generation of meteorological briefing by event knowledge guided summarization model. <i>Knowledge-Based Systems</i> , 2020 , 192, 105379	7.3	7
208	Faulty Requirements Made Valuable: On the Role of Data Quality in Deep Learning 2020,		5
207	Heterogeneous teaching evaluation network based offline course recommendation with graph learning and tensor factorization. <i>Neurocomputing</i> , 2020 , 415, 84-95	5.4	29

206	Relating the Empirical Foundations of Attack Generation and Vulnerability Discovery 2020,		1
205	Feature requests-based recommendation of software refactorings. <i>Empirical Software Engineering</i> , 2020 , 25, 4315-4347	3.3	6
204	Deep Learning Based Program Generation from Requirements Text: Are We There Yet?. <i>IEEE Transactions on Software Engineering</i> , 2020 , 1-1	3.5	5
203	Discovering Metamorphic Relations for Scientific Software From User Forums. <i>Computing in Science and Engineering</i> , 2020 , 23, 65-72	1.5	2
202	Complementarity in Requirements Tracing. <i>IEEE Transactions on Cybernetics</i> , 2020 , 50, 1395-1404	10.2	5
201	A Hybrid E-Learning Recommendation Approach Based on LearnersIInfluence Propagation. <i>IEEE Transactions on Knowledge and Data Engineering</i> , 2020 , 32, 827-840	4.2	42
200	Wide-grained capsule network with sentence-level feature to detect meteorological event in social network. <i>Future Generation Computer Systems</i> , 2020 , 102, 323-332	7.5	12
199	Scientific Software Testing Goes Serverless: Creating and Invoking Metamorphic Functions. <i>IEEE Software</i> , 2020 , 38, 61-67	1.5	9
198	Hierarchical Text-Label Integrated Attention Network for Document Classification 2019,		2
197	Multi-task learning model based on recurrent convolutional neural networks for citation sentiment and purpose classification. <i>Neurocomputing</i> , 2019 , 335, 195-205	5.4	21
196	Special issue on just-in-time requirements engineering for software integration. <i>Journal of Industrial Information Integration</i> , 2019 , 14, 1-2	7	
195	Academic rising star prediction via scholar evaluation model and machine learning techniques. <i>Scientometrics</i> , 2019 , 120, 461-476	3	13
194	Topological reorganization after partial auditory deprivation-a structural connectivity study in single-sided deafness. <i>Hearing Research</i> , 2019 , 380, 75-83	3.9	7
193	User preferences prediction approach based on embedded deep summaries. <i>Expert Systems With Applications</i> , 2019 , 132, 87-98	7.8	9
192	An opinion based cross-regional meteorological event detection model. Weather, 2019 , 74, 51-55	0.9	6
191	Efficiently extracting frequent patterns from continuous uncertain data 2019 , 42, 225-235		1
190	Predicting the Post-therapy Severity Level (UPDRS-III) of Patients With Parkinson's Disease After Drug Therapy by Using the Dynamic Connectivity Efficiency of fMRI. <i>Frontiers in Neurology</i> , 2019 , 10, 668	4.1	6
189	Lean Learning of Risks in Students[Agile Teams 2019 , 263-281		1

18	88	Corrections to Requirements Socio-Technical Graphs for Managing Practitioners Traceability Questions [IEEE Transactions on Computational Social Systems, 2019, 6, 190-190	4.5		
18	87	SysML Modeling Mistakes and Their Impacts on Requirements 2019 ,		4	
18	86	Multi-Scale Deformable CNN for Answer Selection. <i>IEEE Access</i> , 2019 , 7, 164986-164995	3.5	2	
18	85	Attentive Dual Embedding for Understanding Medical Concepts in Electronic Health Records 2019 ,		8	
18	84	Releasing Scientific Software in GitHub: A Case Study on SWMM2PEST 2019 ,		4	
18	83	Automated Recommendation of Software Refactorings Based on Feature Requests 2019,		7	
18	82	Improving Citation Sentiment and Purpose Classification Using Hybrid Deep Neural Network Model. <i>Advances in Intelligent Systems and Computing</i> , 2019 , 327-336	0.4	2	
18	81	Lexical based automated teaching evaluation via students Bhort reviews. <i>Computer Applications in Engineering Education</i> , 2019 , 27, 194-205	1.6	26	
18	80	In-Place Traceability for Automated Production Systems: A Survey of PLC and SysML Tools. <i>IEEE Transactions on Industrial Informatics</i> , 2019 , 15, 3155-3162	11.9	9	
17	79	Modeling positive and negative feedback for improving document retrieval. <i>Expert Systems With Applications</i> , 2019 , 120, 253-261	7.8	2	
17	78	A survey on sentiment analysis of scientific citations. <i>Artificial Intelligence Review</i> , 2019 , 52, 1805-1838	9.7	33	
17	77	. IEEE Transactions on Knowledge and Data Engineering, 2019 , 31, 152-165	4.2	7	
17	76	Concept coupling learning for improving concept lattice-based document retrieval. <i>Engineering Applications of Artificial Intelligence</i> , 2018 , 69, 65-75	7.2	10	
17	75	A Novel Community Detection Method Based on Cluster Density Peaks. <i>Lecture Notes in Computer Science</i> , 2018 , 515-525	0.9	4	
17	74	Requirements Engineering and Continuous Deployment. <i>IEEE Software</i> , 2018 , 35, 86-90	1.5	18	
17	73	Automatically Tracing Dependability Requirements via Term-Based Relevance Feedback. <i>IEEE Transactions on Industrial Informatics</i> , 2018 , 14, 342-349	11.9	22	
17	72	Knowledge-based recommendation: a review of ontology-based recommender systems for e-learning. <i>Artificial Intelligence Review</i> , 2018 , 50, 21-48	9.7	159	
17	71	Automatic approval prediction for software enhancement requests. <i>Automated Software Engineering</i> , 2018 , 25, 347-381	1.5	10	

170	A hybrid recommender system for e-learning based on context awareness and sequential pattern mining. <i>Soft Computing</i> , 2018 , 22, 2449-2461	3.5	55
169	A Deep Reinforced Training Method for Location-Based Image Captioning. <i>Lecture Notes in Computer Science</i> , 2018 , 878-890	0.9	
168	Tensor factorization method based on review text semantic similarity for rating prediction. <i>Expert Systems With Applications</i> , 2018 , 114, 629-638	7.8	15
167	Citation Function Classification Based on Ontologies and Convolutional Neural Networks. <i>Communications in Computer and Information Science</i> , 2018 , 105-115	0.3	3
166	Answering the requirements traceability questions 2018,		2
165	Citation Classification Using Multitask Convolutional Neural Network Model. <i>Lecture Notes in Computer Science</i> , 2018 , 232-243	0.9	1
164	Assuring Virtual PLC in the Context of SysML Models. Lecture Notes in Computer Science, 2018, 121-136	0.9	4
163	A New Scheme for Citation Classification based on Convolutional Neural Networks 2018,		2
162	Sensing Urban Transportation Events from Multi-Channel Social Signals with the Word2vec Fusion Model. <i>Sensors</i> , 2018 , 18,	3.8	12
161	Unsupervised Automatic Text Style Transfer Using LSTM. Lecture Notes in Computer Science, 2018, 281-2	282)	1
160	Exploratory Metamorphic Testing for Scientific Software. <i>Computing in Science and Engineering</i> , 2018 , 22, 78-87	1.5	11
159	Semi-Automatic Annotation for Citation Function Classification 2018,		4
158	Heterogeneous Knowledge-Based Attentive Neural Networks for Short-Term Music Recommendations. <i>IEEE Access</i> , 2018 , 6, 58990-59000	3.5	19
157	Using Obstacle Analysis to Support SysML-Based Model Testing for Cyber Physical Systems 2018 ,		6
156	Using Adverse Weather Data in Social Media to Assist with City-Level Traffic Situation Awareness and Alerting. <i>Applied Sciences (Switzerland)</i> , 2018 , 8, 1193	2.6	11
155	Creating Socio-Technical Patches for Information Foraging: A Requirements Traceability Case Study 2018 ,		2
154	Mining Security Requirements from Common Vulnerabilities and Exposures for Agile Projects 2018,		6
153	Requirements Socio-Technical Graphs for Managing Practitioners Traceability Questions. <i>IEEE Transactions on Computational Social Systems</i> , 2018 , 5, 1152-1162	4.5	5

152	Hierarchical metamorphic relations for testing scientific software 2018 ,		9
151	Enhancing Automated Requirements Traceability by Resolving Polysemy 2018,		16
150	Recommending Refactoring Solutions Based on Traceability and Code Metrics. <i>IEEE Access</i> , 2018 , 6, 494	690₅494	4735
149	Mechanisms to improve clustering uncertain data with UKmeans. <i>Data and Knowledge Engineering</i> , 2018 , 116, 61-79	1.5	4
148	Sentiment Analysis Model on Weather Related Tweets with Deep Neural Network 2018,		7
147	A Two-Step Resume Information Extraction Algorithm. <i>Mathematical Problems in Engineering</i> , 2018 , 2018, 1-8	1.1	9
146	An e-learning recommendation approach based on the self-organization of learning resource. <i>Knowledge-Based Systems</i> , 2018 , 160, 71-87	7.3	49
145	Ethnographic field work in requirements engineering. Enterprise Information Systems, 2017, 11, 137-159	3.5	2
144	A hybrid knowledge-based recommender system for e-learning based on ontology and sequential pattern mining. <i>Future Generation Computer Systems</i> , 2017 , 72, 37-48	7.5	123
143	Advancing viewpoint merging in requirements engineering: a theoretical replication and explanatory study. <i>Requirements Engineering</i> , 2017 , 22, 317-338	2.7	15
142	Software product lines traceability: A systematic mapping study. <i>Information and Software Technology</i> , 2017 , 84, 1-18	3.4	22
141	Extractive Summarization via Overlap-Based Optimized Picking. <i>Lecture Notes in Computer Science</i> , 2017 , 135-149	0.9	
140	Authorship Identification of Source Codes. Lecture Notes in Computer Science, 2017, 282-296	0.9	6
139	A Novel Coupling Pattern in Computational Science and Engineering Software 2017,		7
138	A Survey of Learner and Researcher Related Challenges in E-learning Recommender Systems. <i>Communications in Computer and Information Science</i> , 2017 , 122-132	0.3	1
137	Facilitating end-user developers by estimating time cost of foraging a webpage 2017,		4
136	Traceability for Automated Production Systems: A Position Paper 2017,		7
135	An Approach for Identifying Author Profiles of Blogs. <i>Lecture Notes in Computer Science</i> , 2017 , 475-487	0.9	1

134	Optimal Group Size for Software Change Tasks: A Social Information Foraging Perspective. <i>IEEE Transactions on Cybernetics</i> , 2016 , 46, 1784-95	10.2	16
133	A Clustering-Based Approach to Enriching Code Foraging Environment. <i>IEEE Transactions on Cybernetics</i> , 2016 , 46, 1962-73	10.2	6
132	Predictive Brain Mechanisms in Sound-to-Meaning Mapping during Speech Processing. <i>Journal of Neuroscience</i> , 2016 , 36, 10813-10822	6.6	14
131	How skill balancing impact the elderly player experience? 2016,		2
130	Unified Profiling of Attackers via Domain Modeling 2016 ,		5
129	Literature search framework by analyzing key aspects 2016 ,		1
128	Dynamic and Automatic Feedback-Based Threshold Adaptation for Code Smell Detection. <i>IEEE Transactions on Software Engineering</i> , 2016 , 42, 544-558	3.5	16
127	Case Retrieval Based on Formal Concept Analysis. <i>Journal of Computational and Theoretical Nanoscience</i> , 2016 , 13, 4211-4222	0.3	
126	Visual Cortex Inspired CNN Model for Feature Construction in Text Analysis. <i>Frontiers in Computational Neuroscience</i> , 2016 , 10, 64	3.5	9
125	A brain-region-based meta-analysis method utilizing the Apriori algorithm. <i>BMC Neuroscience</i> , 2016 , 17, 23	3.2	2
124	The Brain Effective Connectivity of Chinese during Rhyming Task. <i>PLoS ONE</i> , 2016 , 11, e0162158	3.7	2
123	On the impact of social network information diversity on end-user programming productivity: a foraging-theoretic study 2016 ,		4
122	Advancing Repeated Research in Requirements Engineering: A Theoretical Replication of Viewpoint Merging 2016 ,		16
121	Gray links in the use of requirements traceability 2016,		26
120	Pragmatic Software Reuse in Bioinformatics: How Can Social Network Information Help?. <i>Lecture Notes in Computer Science</i> , 2016 , 247-264	0.9	5
119	ASELM: Adaptive semi-supervised ELM with application in question subjectivity identification. <i>Neurocomputing</i> , 2016 , 207, 599-609	5.4	10
118	A learner oriented learning recommendation approach based on mixed concept mapping and immune algorithm. <i>Knowledge-Based Systems</i> , 2016 , 103, 28-40	7.3	41
117	Answer Extraction Based on Merging Score Strategy of Hot Terms. <i>Chinese Journal of Electronics</i> , 2016 , 25, 614-620	0.9	2

(2014-2016)

116	Identifying Helpful Online Reviews with Word Embedding Features. <i>Lecture Notes in Computer Science</i> , 2016 , 123-133	0.9	7
115	Cross-language differences in the brain network subserving intelligible speech. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 2972-7	11.5	58
114	Leveraging topic modeling and part-of-speech tagging to support combinational creativity in requirements engineering. <i>Requirements Engineering</i> , 2015 , 20, 253-280	2.7	18
113	A Novel Method for Clustering Web Search Results with Wikipedia Disambiguation Pages. <i>Lecture Notes in Computer Science</i> , 2015 , 3-16	0.9	1
112	On the role of semantics in automated requirements tracing. <i>Requirements Engineering</i> , 2015 , 20, 281-3	300 ₇	32
111	A hybrid approach of topic model and matrix factorization based on two-step recommendation framework. <i>Journal of Intelligent Information Systems</i> , 2015 , 44, 335-353	2.1	25
110	Tagging in Assisted Tracing 2015 ,		11
109	Improving Top-NRecommendation Performance Using Missing Data. <i>Mathematical Problems in Engineering</i> , 2015 , 2015, 1-13	1.1	5
108	A Coupled User Clustering Algorithm Based on Mixed Data for Web-Based Learning Systems. <i>Mathematical Problems in Engineering</i> , 2015 , 2015, 1-14	1.1	2
107	Solving the class imbalance problems using RUSMultiBoost ensemble 2015 ,		4
107	Solving the class imbalance problems using RUSMultiBoost ensemble 2015, Distribution based ensemble for class imbalance learning 2015,		3
		2	
106	Distribution based ensemble for class imbalance learning 2015 , On the Role of Structural Holes in Requirements Identification. <i>ACM Transactions on Management</i>	2 0.9	3
106	Distribution based ensemble for class imbalance learning 2015, On the Role of Structural Holes in Requirements Identification. <i>ACM Transactions on Management Information Systems</i> , 2015, 6, 1-30 A Multi-news Timeline Summarization Algorithm Based on Aging Theory. <i>Lecture Notes in Computer</i>		3
106	Distribution based ensemble for class imbalance learning 2015, On the Role of Structural Holes in Requirements Identification. <i>ACM Transactions on Management Information Systems</i> , 2015, 6, 1-30 A Multi-news Timeline Summarization Algorithm Based on Aging Theory. <i>Lecture Notes in Computer Science</i> , 2015, 449-460 Learning Trend Analysis and Prediction Based on Knowledge Tracing and Regression Analysis.	0.9	3
106 105 104	Distribution based ensemble for class imbalance learning 2015, On the Role of Structural Holes in Requirements Identification. <i>ACM Transactions on Management Information Systems</i> , 2015, 6, 1-30 A Multi-news Timeline Summarization Algorithm Based on Aging Theory. <i>Lecture Notes in Computer Science</i> , 2015, 449-460 Learning Trend Analysis and Prediction Based on Knowledge Tracing and Regression Analysis. <i>Lecture Notes in Computer Science</i> , 2015, 29-41 A Novel Knowledge Extraction Framework for Resumes Based on Text Classifier. <i>Lecture Notes in</i>	0.9	3 8 2
106 105 104 103	Distribution based ensemble for class imbalance learning 2015, On the Role of Structural Holes in Requirements Identification. ACM Transactions on Management Information Systems, 2015, 6, 1-30 A Multi-news Timeline Summarization Algorithm Based on Aging Theory. Lecture Notes in Computer Science, 2015, 449-460 Learning Trend Analysis and Prediction Based on Knowledge Tracing and Regression Analysis. Lecture Notes in Computer Science, 2015, 29-41 A Novel Knowledge Extraction Framework for Resumes Based on Text Classifier. Lecture Notes in Computer Science, 2015, 540-543 A Novel Recommendation Relevancy Measure for Collaborative Filtering. Lecture Notes in Computer	0.9	3 8 2

98	Automated support for combinational creativity in requirements engineering 2014,		20
97	Traceability-enabled refactoring for managing just-in-time requirements 2014,		19
96	An agent-based linked data integration system 2014 ,		2
95	A Systems Approach to Product Line Requirements Reuse. <i>IEEE Systems Journal</i> , 2014 , 8, 827-836	4.3	25
94	Temporal reliability and lateralization of the resting-state language network. PLoS ONE, 2014, 9, e8588	03.7	44
93	A Personalized User Evaluation Model for Web-Based Learning Systems 2014 ,		2
92	Different patterns and development characteristics of processing written logographic characters and alphabetic words: an ALE meta-analysis. <i>Human Brain Mapping</i> , 2014 , 35, 2607-18	5.9	26
91	Adaptive Learning Objects Assembly with compound constraints 2014 ,		2
90	Automatic construction of domain-specific sentiment lexicon based on constrained label propagation. <i>Knowledge-Based Systems</i> , 2014 , 56, 191-200	7.3	70
89	A hybrid recommendation algorithm adapted in e-learning environments. <i>World Wide Web</i> , 2014 , 17, 271-284	2.9	93
88	Supporting requirements to code traceability through refactoring. <i>Requirements Engineering</i> , 2014 , 19, 309-329	2.7	22
87	Visual requirements analytics: a framework and case study. <i>Requirements Engineering</i> , 2014 , 19, 257-27	92.7	26
86	An Exploratory Case Study on Exploiting Aspect Orientation in Mobile Game Porting. <i>Advances in Intelligent Systems and Computing</i> , 2014 , 241-261	0.4	2
85	A Collaborative Filtering Recommendation Algorithm Based on Tag Clustering. <i>Lecture Notes in Electrical Engineering</i> , 2014 , 177-183	0.2	2
84	Chinese Named Entity Recognition Using Improved Bi-gram Model Based on Dynamic Programming. <i>Advances in Intelligent Systems and Computing</i> , 2014 , 441-451	0.4	
83	Considering Rating as Probability Distribution of Attitude in Recommender System. <i>Lecture Notes in Computer Science</i> , 2014 , 393-402	0.9	
82	Towards Efficient Distributed SPARQL Queries on Linked Data. <i>Lecture Notes in Computer Science</i> , 2014 , 259-272	0.9	1
81	Conceptual Clustering. Lecture Notes in Electrical Engineering, 2014, 1-8	0.2	3

(2013-2014)

80	A Federation Layer for Query Processing over the Web of Linked Data. <i>Lecture Notes in Computer Science</i> , 2014 , 347-350	0.9		
79	Enterprise Information Systems ArchitectureAnalysis and Evaluation. <i>IEEE Transactions on Industrial Informatics</i> , 2013 , 9, 2147-2154	11.9	78	
78	Conflict resolution support for parallel software development. IET Software, 2013, 7, 1-11	1	5	
77	Interest before liking: Two-step recommendation approaches. <i>Knowledge-Based Systems</i> , 2013 , 48, 46-	5 6 .3	26	
76	Long-Term Product Line Sustainability with Planned Staged Investments. <i>IEEE Software</i> , 2013 , 30, 63-6	9 1.5	9	
75	Departures from optimality: Understanding human analyst's information foraging in assisted requirements tracing 2013 ,		17	
74	Keeping requirements on track via visual analytics 2013,		11	
73	Identification of generalization refactoring opportunities. <i>Automated Software Engineering</i> , 2013 , 20, 81-110	1.5	10	
72	Concept Based Query Expansion 2013 ,		3	
71	Porting mobile games in an aspect-oriented way: An industrial case study 2013,		1	
70	Evaluating software clustering algorithms in the context of program comprehension 2013,		7	
69	Supporting requirements traceability through refactoring 2013,		13	
68	A Systematic Mapping Study on Business Process Variability. <i>International Journal of Computer Science and Information Technology</i> , 2013 , 5, 1-21	0.6	23	
67	Product Features Categorization Using Constrained Spectral Clustering. <i>Lecture Notes in Computer Science</i> , 2013 , 285-290	0.9	1	
66	Opinion-Based Collaborative Filtering to Solve Popularity Bias in Recommender Systems. <i>Lecture Notes in Computer Science</i> , 2013 , 426-433	0.9	14	
65	CGMF: Coupled Group-Based Matrix Factorization for Recommender System. <i>Lecture Notes in Computer Science</i> , 2013 , 189-198	0.9	9	
64	A Novel Method for Identifying Optimal Number of Clusters with Marginal Differential Entropy. <i>Lecture Notes in Computer Science</i> , 2013 , 371-382	0.9	1	
63	Classification of Opinion Questions. <i>Lecture Notes in Computer Science</i> , 2013 , 714-717	0.9	1	

62	Extracting Fine-Grained Entities Based on Coordinate Graph. <i>Lecture Notes in Computer Science</i> , 2013 , 367-371	0.9	
61	Building Enhanced Link Context by Logical Sitemap. Lecture Notes in Computer Science, 2013, 36-47	0.9	
60	Representation and Verification of Attribute Knowledge. Lecture Notes in Computer Science, 2013, 473-	482)	
59	Schedule of Bad Smell Detection and Resolution: A New Way to Save Effort. <i>IEEE Transactions on Software Engineering</i> , 2012 , 38, 220-235	3.5	57
58	ReCVisu: A tool for clustering-based visual exploration of requirements 2012,		15
57	Automatic labeling of software requirements clusters 2012,		5
56	Enhancing candidate link generation for requirements tracing: The cluster hypothesis revisited 2012 ,		29
55	A semantic relatedness approach for traceability link recovery 2012 ,		25
54	A cost-benefit approach to recommending conflict resolution for parallel software development 2012 ,		4
53	Domain-specific term extraction from free texts 2012 ,		4
53 52	Domain-specific term extraction from free texts 2012, An Initial Study on Refactoring Tactics 2012,		6
52	An Initial Study on Refactoring Tactics 2012 ,	3.4	6
52 51	An Initial Study on Refactoring Tactics 2012, Fine-grained Product Features Extraction and Categorization in Reviews Opinion Mining 2012, Combining a segmentation-like approach and a density-based approach in content extraction.	3.4	6 28
52 51 50	An Initial Study on Refactoring Tactics 2012, Fine-grained Product Features Extraction and Categorization in Reviews Opinion Mining 2012, Combining a segmentation-like approach and a density-based approach in content extraction. Tsinghua Science and Technology, 2012, 17, 256-264	3.4	6 28 5
52 51 50 49	An Initial Study on Refactoring Tactics 2012, Fine-grained Product Features Extraction and Categorization in Reviews Opinion Mining 2012, Combining a segmentation-like approach and a density-based approach in content extraction. Tsinghua Science and Technology, 2012, 17, 256-264 2012, Personalized Web Search Using Clickthrough Data and Web Page Rating. Journal of Computers,	1.4	6 28 5
52 51 50 49 48	An Initial Study on Refactoring Tactics 2012, Fine-grained Product Features Extraction and Categorization in Reviews Opinion Mining 2012, Combining a segmentation-like approach and a density-based approach in content extraction. Tsinghua Science and Technology, 2012, 17, 256-264 2012, Personalized Web Search Using Clickthrough Data and Web Page Rating. Journal of Computers, 2012, 7,	1.4	6 28 5 5

(2010-2011)

44	A Chromatic Transient Visual Evoked Potential Based Encoding/Decoding Approach for Braintomputer Interface. <i>IEEE Journal on Emerging and Selected Topics in Circuits and Systems</i> , 2011 , 1, 578-589	5.2	9	
43	Faceted Navigation for Software Exploration 2011,		3	
42	News topic detection based on hierarchical clustering and named entity 2011,		7	
41	A user evaluation framework for web-based learning systems 2011 ,		2	
40	Information foraging as a foundation for code navigation 2011,		20	
39	TraCter: A tool for candidate traceability link clustering 2011 ,		13	
38	A case study of exploiting enterprise resource planning requirements. <i>Enterprise Information Systems</i> , 2011 , 5, 183-206	3.5	30	
37	Learning new color names produces rapid increase in gray matter in the intact adult human cortex. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 6686-8	11.5	71	
36	A Discretization Algorithm of Numerical Attributes for Digital Library Evaluation Based on Data Mining Technology. <i>Lecture Notes in Computer Science</i> , 2011 , 70-76	0.9	1	
35	A Personalized Genetic Algorithm Approach for Test Sheet Assembling. <i>Lecture Notes in Computer Science</i> , 2011 , 164-173	0.9	2	
34	A Probability Model for Related Entity Retrieval Using Relation Pattern. <i>Lecture Notes in Computer Science</i> , 2011 , 318-330	0.9	3	
33	Active Discovery Based Query Federation over the Web of Linked Data. <i>Advances in Intelligent and Soft Computing</i> , 2011 , 239-248			
32	Using Semantics-Enabled Information Retrieval in Requirements Tracing: An Ongoing Experimental Investigation 2010 ,		8	
31	An Approach Based on Tree Kernels for Opinion Mining of Online Product Reviews 2010 ,		12	
30	Data Analysis in Los Angeles Long Beach with Seasonal Time Series Model 2010 ,		1	
29	Variability Modeling for Product Line Viewpoints Integration 2010 ,		11	
28	A Pattern Based Anti-Fraud Method in C2C Ecommerce Environment 2010 ,		1	
27	An Study on Personalized Recommendation Model Based on Search Behaviors and Resource Properties 2010 ,		2	

26	2010,		3
25	Active Learning Algorithm for Threshold of Decision Probability on Imbalanced Text Classification Based on Protein-Protein Interaction Documents 2010 ,		2
24	Document classification for mining host pathogen protein-protein interactions. <i>Artificial Intelligence in Medicine</i> , 2010 , 49, 155-60	7.4	14
23	Requirements engineering for software product lines: A systematic literature review. <i>Information and Software Technology</i> , 2010 , 52, 806-820	3.4	108
22	Blog Opinion Retrieval Based on Topic-Opinion Mixture Model. <i>Lecture Notes in Computer Science</i> , 2010 , 249-260	0.9	3
21	Evaluation Algorithm about Digital Library Collections Based on Data Mining Technology. <i>Lecture Notes in Computer Science</i> , 2010 , 266-267	0.9	1
20	Time Series Analysis of NASDAQ Composite Based on Seasonal ARIMA Model 2009 ,		2
19	A K-means Approach Based on Concept Hierarchical Tree for Search Results Clustering 2009,		4
18	Concept analysis for product line requirements 2009 ,		19
17	Aspects across Software Life Cycle: A Goal-Driven Approach. <i>Lecture Notes in Computer Science</i> , 2009 , 83-110	0.9	12
16	VAR Model of PM2.5, Weather and Traffic in Los Angeles-Long Beach Area 2009 ,		2
15	Identifying Fragments to be Extracted from Long Methods 2009,		14
14	Semi-supervised Learning of Text Classification on Bacterial Protein-Protein Interaction Documents 2009 ,		6
13	An Ontology-Based Query System for Digital Libraries 2008 ,		5
12	On-Demand Cluster Analysis for Product Line Functional Requirements 2008,		21
11	Document Classification for Mining Host Pathogen Protein-Protein Interactions 2008,		1
10	Extraction of Informative Blocks from Web Pages 2008 ,		4
9	Extracting and Modeling Product Line Functional Requirements 2008,		55

LIST OF PUBLICATIONS

8	The modification of AODV by utilizing the communication intervals 2008,		2	
7	Mining Infrequent Itemsets Based on Multiple Level Minimum Supports 2007,		12	
6	. IEEE Software, 2007 , 24, 53-61	1.5	35	
5	Analysis of Early Aspects in Requirements Goal Models: A Concept-Driven Approach 2007 , 40-72		15	
4	Efficient Multiplier over Finite Field Represented in Type II Optimal Normal Basis 2006,		1	
3	A manifesto for model merging 2006 ,		60	
2	Managing Terminological Interference in Goal Models with Repertory Grid 2006,		4	
1	E-CapsGan: Generative adversarial network using capsule network as feature encoder. <i>Multimedia</i> Tools and Applications 1	2.5	0	