Zhendong Niu

List of Publications by Citations

Source: https://exaly.com/author-pdf/270768/zhendong-niu-publications-by-citations.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

241
papers

2,935
citations

26
h-index
g-index

3,763
ext. papers

28
3,763
ext. citations

3.3
citations

3.4
L-index

#	Paper	IF	Citations
241	Knowledge-based recommendation: a review of ontology-based recommender systems for e-learning. <i>Artificial Intelligence Review</i> , 2018 , 50, 21-48	9.7	159
240	A hybrid knowledge-based recommender system for e-learning based on ontology and sequential pattern mining. <i>Future Generation Computer Systems</i> , 2017 , 72, 37-48	7.5	123
239	Requirements engineering for software product lines: A systematic literature review. <i>Information and Software Technology</i> , 2010 , 52, 806-820	3.4	108
238	A hybrid recommendation algorithm adapted in e-learning environments. <i>World Wide Web</i> , 2014 , 17, 271-284	2.9	93
237	Enterprise Information Systems ArchitectureAnalysis and Evaluation. <i>IEEE Transactions on Industrial Informatics</i> , 2013 , 9, 2147-2154	11.9	78
236	Learning new color names produces rapid increase in gray matter in the intact adult human cortex. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 6686-8	11.5	71
235	Automatic construction of domain-specific sentiment lexicon based on constrained label propagation. <i>Knowledge-Based Systems</i> , 2014 , 56, 191-200	7.3	7º
234	A manifesto for model merging 2006 ,		60
233	Cross-language differences in the brain network subserving intelligible speech. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 2972-7	11.5	58
232	Schedule of Bad Smell Detection and Resolution: A New Way to Save Effort. <i>IEEE Transactions on Software Engineering</i> , 2012 , 38, 220-235	3.5	57
231	A hybrid recommender system for e-learning based on context awareness and sequential pattern mining. <i>Soft Computing</i> , 2018 , 22, 2449-2461	3.5	55
230	Extracting and Modeling Product Line Functional Requirements 2008,		55
229	An e-learning recommendation approach based on the self-organization of learning resource. <i>Knowledge-Based Systems</i> , 2018 , 160, 71-87	7.3	49
228	Temporal reliability and lateralization of the resting-state language network. PLoS ONE, 2014, 9, e8588	303.7	44
227	A Hybrid E-Learning Recommendation Approach Based on LearnersInfluence Propagation. <i>IEEE Transactions on Knowledge and Data Engineering</i> , 2020 , 32, 827-840	4.2	42
226	A learner oriented learning recommendation approach based on mixed concept mapping and immune algorithm. <i>Knowledge-Based Systems</i> , 2016 , 103, 28-40	7.3	41
225	Authorship identification from unstructured texts. <i>Knowledge-Based Systems</i> , 2014 , 66, 99-111	7.3	39

224	. IEEE Software, 2007 , 24, 53-61	1.5	35
223	Analysis of Architecturally Significant Requirements for Enterprise Systems. <i>IEEE Systems Journal</i> , 2014 , 8, 850-857	4.3	34
222	A survey on sentiment analysis of scientific citations. <i>Artificial Intelligence Review</i> , 2019 , 52, 1805-1838	9.7	33
221	On the role of semantics in automated requirements tracing. <i>Requirements Engineering</i> , 2015 , 20, 281-	30 <u>0</u> 7	32
220	A case study of exploiting enterprise resource planning requirements. <i>Enterprise Information Systems</i> , 2011 , 5, 183-206	3.5	30
219	Enhancing candidate link generation for requirements tracing: The cluster hypothesis revisited 2012 ,		29
218	Heterogeneous teaching evaluation network based offline course recommendation with graph learning and tensor factorization. <i>Neurocomputing</i> , 2020 , 415, 84-95	5.4	29
217	Fine-grained Product Features Extraction and Categorization in Reviews Opinion Mining 2012,		28
216	Interest before liking: Two-step recommendation approaches. Knowledge-Based Systems, 2013, 48, 46-	5 6 7.3	26
215	Different patterns and development characteristics of processing written logographic characters and alphabetic words: an ALE meta-analysis. <i>Human Brain Mapping</i> , 2014 , 35, 2607-18	5.9	26
214	Visual requirements analytics: a framework and case study. <i>Requirements Engineering</i> , 2014 , 19, 257-27	92.7	26
213	Gray links in the use of requirements traceability 2016,		26
212	Lexical based automated teaching evaluation via students hort reviews. <i>Computer Applications in Engineering Education</i> , 2019 , 27, 194-205	1.6	26
211	A hybrid approach of topic model and matrix factorization based on two-step recommendation framework. <i>Journal of Intelligent Information Systems</i> , 2015 , 44, 335-353	2.1	25
210	A Systems Approach to Product Line Requirements Reuse. <i>IEEE Systems Journal</i> , 2014 , 8, 827-836	4.3	25
209	A semantic relatedness approach for traceability link recovery 2012 ,		25
208	A Systematic Mapping Study on Business Process Variability. <i>International Journal of Computer Science and Information Technology</i> , 2013 , 5, 1-21	0.6	23
207	Software product lines traceability: A systematic mapping study. <i>Information and Software Technology</i> , 2017 , 84, 1-18	3.4	22

206	Automatically Tracing Dependability Requirements via Term-Based Relevance Feedback. <i>IEEE Transactions on Industrial Informatics</i> , 2018 , 14, 342-349	11.9	22
205	Supporting requirements to code traceability through refactoring. <i>Requirements Engineering</i> , 2014 , 19, 309-329	2.7	22
204	Multi-task learning model based on recurrent convolutional neural networks for citation sentiment and purpose classification. <i>Neurocomputing</i> , 2019 , 335, 195-205	5.4	21
203	On-Demand Cluster Analysis for Product Line Functional Requirements 2008,		21
202	Automated support for combinational creativity in requirements engineering 2014,		20
201	Information foraging as a foundation for code navigation 2011 ,		20
200	Traceability-enabled refactoring for managing just-in-time requirements 2014,		19
199	Concept analysis for product line requirements 2009,		19
198	Heterogeneous Knowledge-Based Attentive Neural Networks for Short-Term Music Recommendations. <i>IEEE Access</i> , 2018 , 6, 58990-59000	3.5	19
197	Leveraging topic modeling and part-of-speech tagging to support combinational creativity in requirements engineering. <i>Requirements Engineering</i> , 2015 , 20, 253-280	2.7	18
196	Requirements Engineering and Continuous Deployment. IEEE Software, 2018, 35, 86-90	1.5	18
195	Departures from optimality: Understanding human analyst's information foraging in assisted requirements tracing 2013 ,		17
194	Source code indexing for automated tracing 2011 ,		17
193	Optimal Group Size for Software Change Tasks: A Social Information Foraging Perspective. <i>IEEE Transactions on Cybernetics</i> , 2016 , 46, 1784-95	10.2	16
192	Dynamic and Automatic Feedback-Based Threshold Adaptation for Code Smell Detection. <i>IEEE Transactions on Software Engineering</i> , 2016 , 42, 544-558	3.5	16
191	Advancing Repeated Research in Requirements Engineering: A Theoretical Replication of Viewpoint Merging 2016 ,		16
190	Enhancing Automated Requirements Traceability by Resolving Polysemy 2018,		16
189	Advancing viewpoint merging in requirements engineering: a theoretical replication and explanatory study. <i>Requirements Engineering</i> , 2017 , 22, 317-338	2.7	15

(2015-2018)

188	Tensor factorization method based on review text semantic similarity for rating prediction. <i>Expert Systems With Applications</i> , 2018 , 114, 629-638	7.8	15
187	ReCVisu: A tool for clustering-based visual exploration of requirements 2012,		15
186	Analysis of Early Aspects in Requirements Goal Models: A Concept-Driven Approach 2007 , 40-72		15
185	Predictive Brain Mechanisms in Sound-to-Meaning Mapping during Speech Processing. <i>Journal of Neuroscience</i> , 2016 , 36, 10813-10822	6.6	14
184	Identifying Fragments to be Extracted from Long Methods 2009,		14
183	Document classification for mining host pathogen protein-protein interactions. <i>Artificial Intelligence in Medicine</i> , 2010 , 49, 155-60	7.4	14
182	Opinion-Based Collaborative Filtering to Solve Popularity Bias in Recommender Systems. <i>Lecture Notes in Computer Science</i> , 2013 , 426-433	0.9	14
181	Academic rising star prediction via scholar evaluation model and machine learning techniques. <i>Scientometrics</i> , 2019 , 120, 461-476	3	13
180	Supporting requirements traceability through refactoring 2013,		13
179	TraCter: A tool for candidate traceability link clustering 2011 ,		13
179 178	TraCter: A tool for candidate traceability link clustering 2011, An Approach Based on Tree Kernels for Opinion Mining of Online Product Reviews 2010,		13
		0.9	
178	An Approach Based on Tree Kernels for Opinion Mining of Online Product Reviews 2010 , Aspects across Software Life Cycle: A Goal-Driven Approach. <i>Lecture Notes in Computer Science</i> ,	0.9	12
178	An Approach Based on Tree Kernels for Opinion Mining of Online Product Reviews 2010 , Aspects across Software Life Cycle: A Goal-Driven Approach. <i>Lecture Notes in Computer Science</i> , 2009 , 83-110	o.9 3.8	12
178 177 176	An Approach Based on Tree Kernels for Opinion Mining of Online Product Reviews 2010, Aspects across Software Life Cycle: A Goal-Driven Approach. Lecture Notes in Computer Science, 2009, 83-110 Mining Infrequent Itemsets Based on Multiple Level Minimum Supports 2007, Sensing Urban Transportation Events from Multi-Channel Social Signals with the Word2vec Fusion		12 12 12
178 177 176	An Approach Based on Tree Kernels for Opinion Mining of Online Product Reviews 2010, Aspects across Software Life Cycle: A Goal-Driven Approach. Lecture Notes in Computer Science, 2009, 83-110 Mining Infrequent Itemsets Based on Multiple Level Minimum Supports 2007, Sensing Urban Transportation Events from Multi-Channel Social Signals with the Word2vec Fusion Model. Sensors, 2018, 18, Recommending scientific paper via heterogeneous knowledge embedding based attentive	3.8	12 12 12
178 177 176 175	An Approach Based on Tree Kernels for Opinion Mining of Online Product Reviews 2010, Aspects across Software Life Cycle: A Goal-Driven Approach. Lecture Notes in Computer Science, 2009, 83-110 Mining Infrequent Itemsets Based on Multiple Level Minimum Supports 2007, Sensing Urban Transportation Events from Multi-Channel Social Signals with the Word2vec Fusion Model. Sensors, 2018, 18, Recommending scientific paper via heterogeneous knowledge embedding based attentive recurrent neural networks. Knowledge-Based Systems, 2021, 215, 106744 Wide-grained capsule network with sentence-level feature to detect meteorological event in social	3.8 7-3	12 12 12 12

170	Variability Modeling for Product Line Viewpoints Integration 2010,		11
169	Exploratory Metamorphic Testing for Scientific Software. <i>Computing in Science and Engineering</i> , 2018 , 22, 78-87	1.5	11
168	Using Adverse Weather Data in Social Media to Assist with City-Level Traffic Situation Awareness and Alerting. <i>Applied Sciences (Switzerland)</i> , 2018 , 8, 1193	2.6	11
167	Requirements Engineering in the Days of Artificial Intelligence. <i>IEEE Software</i> , 2020 , 37, 7-10	1.5	10
166	Social weather: A review of crowdsourcing-assisted meteorological knowledge services through social cyberspace. <i>Geoscience Data Journal</i> , 2020 , 7, 61-79	2.5	10
165	Concept coupling learning for improving concept lattice-based document retrieval. <i>Engineering Applications of Artificial Intelligence</i> , 2018 , 69, 65-75	7.2	10
164	Automatic approval prediction for software enhancement requests. <i>Automated Software Engineering</i> , 2018 , 25, 347-381	1.5	10
163	Identification of generalization refactoring opportunities. <i>Automated Software Engineering</i> , 2013 , 20, 81-110	1.5	10
162	ASELM: Adaptive semi-supervised ELM with application in question subjectivity identification. <i>Neurocomputing</i> , 2016 , 207, 599-609	5.4	10
161	Deep learning techniques for rating prediction: a survey of the state-of-the-art. <i>Artificial Intelligence Review</i> , 2021 , 54, 95-135	9.7	10
160	User preferences prediction approach based on embedded deep summaries. <i>Expert Systems With Applications</i> , 2019 , 132, 87-98	7.8	9
159	Long-Term Product Line Sustainability with Planned Staged Investments. <i>IEEE Software</i> , 2013 , 30, 63-69	9 1.5	9
158	A Chromatic Transient Visual Evoked Potential Based Encoding/Decoding Approach for BrainComputer Interface. <i>IEEE Journal on Emerging and Selected Topics in Circuits and Systems</i> , 2011 , 1, 578-589	5.2	9
157	CGMF: Coupled Group-Based Matrix Factorization for Recommender System. <i>Lecture Notes in Computer Science</i> , 2013 , 189-198	0.9	9
156	CNN with depthwise separable convolutions and combined kernels for rating prediction. <i>Expert Systems With Applications</i> , 2021 , 170, 114528	7.8	9
155	Visual Cortex Inspired CNN Model for Feature Construction in Text Analysis. <i>Frontiers in Computational Neuroscience</i> , 2016 , 10, 64	3.5	9
154	In-Place Traceability for Automated Production Systems: A Survey of PLC and SysML Tools. <i>IEEE Transactions on Industrial Informatics</i> , 2019 , 15, 3155-3162	11.9	9
153	Scientific Software Testing Goes Serverless: Creating and Invoking Metamorphic Functions. <i>IEEE Software</i> , 2020 , 38, 61-67	1.5	9

Hierarchical metamorphic relations for testing scientific software 2018, 152 9 Recommending Refactoring Solutions Based on Traceability and Code Metrics. IEEE Access, 2018, 6, 49460, 4947, 5 151 A Two-Step Resume Information Extraction Algorithm. Mathematical Problems in Engineering, 2018, 150 1.1 9 2018, 1-8 Using Semantics-Enabled Information Retrieval in Requirements Tracing: An Ongoing Experimental 149 Investigation 2010, On the Role of Structural Holes in Requirements Identification. ACM Transactions on Management 8 148 2 Information Systems, **2015**, 6, 1-30 Attentive Dual Embedding for Understanding Medical Concepts in Electronic Health Records 2019, 147 Topological reorganization after partial auditory deprivation-a structural connectivity study in 146 7 3.9 single-sided deafness. Hearing Research, 2019, 380, 75-83 A Novel Coupling Pattern in Computational Science and Engineering Software 2017, 145 7 Traceability for Automated Production Systems: A Position Paper 2017, 7 144 Evaluating software clustering algorithms in the context of program comprehension 2013, 143 7 News topic detection based on hierarchical clustering and named entity 2011, 142 7 Unit Tests of Scientific Software: A Study on SWMM. Lecture Notes in Computer Science, 2020, 413-427 0.9 141 Automatic generation of meteorological briefing by event knowledge guided summarization 140 7.3 7 model. Knowledge-Based Systems, 2020, 192, 105379 Social Signal-Driven Knowledge Automation: A Focus on Social Transportation. IEEE Transactions on 139 4.5 Computational Social Systems, 2021, 8, 737-753 Identifying Helpful Online Reviews with Word Embedding Features. Lecture Notes in Computer 138 0.9 7 Science, 2016, 123-133 Automated Recommendation of Software Refactorings Based on Feature Requests 2019, 137 7 . IEEE Transactions on Knowledge and Data Engineering, 2019, 31, 152-165 136 4.2 7 Hybrid microblog recommendation with heterogeneous features using deep neural network. 7.8 135 Expert Systems With Applications, 2021, 167, 114191

134	Review text based rating prediction approaches: preference knowledge learning, representation and utilization. <i>Artificial Intelligence Review</i> , 2021 , 54, 1171-1200	9.7	7
133	Sentiment Analysis Model on Weather Related Tweets with Deep Neural Network 2018,		7
132	An opinion based cross-regional meteorological event detection model. Weather, 2019 , 74, 51-55	0.9	6
131	A Clustering-Based Approach to Enriching Code Foraging Environment. <i>IEEE Transactions on Cybernetics</i> , 2016 , 46, 1962-73	10.2	6
130	Predicting the Post-therapy Severity Level (UPDRS-III) of Patients With Parkinson's Disease After Drug Therapy by Using the Dynamic Connectivity Efficiency of fMRI. <i>Frontiers in Neurology</i> , 2019 , 10, 668	4.1	6
129	Authorship Identification of Source Codes. Lecture Notes in Computer Science, 2017, 282-296	0.9	6
128	An Initial Study on Refactoring Tactics 2012 ,		6
127	Semi-supervised Learning of Text Classification on Bacterial Protein-Protein Interaction Documents 2009 ,		6
126	Feature requests-based recommendation of software refactorings. <i>Empirical Software Engineering</i> , 2020 , 25, 4315-4347	3.3	6
125	A Deep Hybrid Model for Recommendation by jointly leveraging ratings, reviews and metadata information. <i>Engineering Applications of Artificial Intelligence</i> , 2021 , 97, 104066	7.2	6
124	Improving University Faculty Evaluations via multi-view Knowledge Graph. <i>Future Generation Computer Systems</i> , 2021 , 117, 181-192	7.5	6
123	Using Obstacle Analysis to Support SysML-Based Model Testing for Cyber Physical Systems 2018 ,		6
122	Mining Security Requirements from Common Vulnerabilities and Exposures for Agile Projects 2018,		6
121	Unified Profiling of Attackers via Domain Modeling 2016 ,		5
120	Conflict resolution support for parallel software development. IET Software, 2013, 7, 1-11	1	5
119	Improving Top-NRecommendation Performance Using Missing Data. <i>Mathematical Problems in Engineering</i> , 2015 , 2015, 1-13	1.1	5
118	Automatic labeling of software requirements clusters 2012,		5
117	Combining a segmentation-like approach and a density-based approach in content extraction. <i>Tsinghua Science and Technology</i> , 2012 , 17, 256-264	3.4	5

116	2012,		5
115	An Ontology-Based Query System for Digital Libraries 2008,		5
114	Faulty Requirements Made Valuable: On the Role of Data Quality in Deep Learning 2020,		5
113	Deep Learning Based Program Generation from Requirements Text: Are We There Yet?. <i>IEEE Transactions on Software Engineering</i> , 2020 , 1-1	3.5	5
112	MHCPDP: multi-source heterogeneous cross-project defect prediction via multi-source transfer learning and autoencoder. <i>Software Quality Journal</i> , 2021 , 29, 405	1.2	5
111	Pragmatic Software Reuse in Bioinformatics: How Can Social Network Information Help?. <i>Lecture Notes in Computer Science</i> , 2016 , 247-264	0.9	5
110	Complementarity in Requirements Tracing. <i>IEEE Transactions on Cybernetics</i> , 2020 , 50, 1395-1404	10.2	5
109	Requirements Socio-Technical Graphs for Managing Practitioners Traceability Questions. <i>IEEE Transactions on Computational Social Systems</i> , 2018 , 5, 1152-1162	4.5	5
108	Joint Deep Recommendation Model Exploiting Reviews and Metadata Information. Neurocomputing, 2020 , 402, 256-265	5.4	4
107	A Novel Community Detection Method Based on Cluster Density Peaks. <i>Lecture Notes in Computer Science</i> , 2018 , 515-525	0.9	4
106	Assuring Virtual PLC in the Context of SysML Models. Lecture Notes in Computer Science, 2018, 121-136	0.9	4
105	Facilitating end-user developers by estimating time cost of foraging a webpage 2017,		4
104	Solving the class imbalance problems using RUSMultiBoost ensemble 2015,		4
103	A cost-benefit approach to recommending conflict resolution for parallel software development 2012 ,		4
102	Domain-specific term extraction from free texts 2012 ,		4
101	Combining Collaborative Filtering and Sequential Pattern Mining for Recommendation in E-Learning Environment. <i>Lecture Notes in Computer Science</i> , 2011 , 305-313	0.9	4
100	A K-means Approach Based on Concept Hierarchical Tree for Search Results Clustering 2009 ,		4
99	Extraction of Informative Blocks from Web Pages 2008 ,		4

98	Managing Terminological Interference in Goal Models with Repertory Grid 2006,		4
97	Learning Semantic Concepts and Temporal Alignment for Narrated Video Procedural Captioning 2020 ,		4
96	Personalized Web Search Using Clickthrough Data and Web Page Rating. <i>Journal of Computers</i> , 2012 , 7,	1.4	4
95	EKGTF: A knowledge-enhanced model for optimizing social network-based meteorological briefings. <i>Information Processing and Management</i> , 2021 , 58, 102564	6.3	4
94	On the impact of social network information diversity on end-user programming productivity: a foraging-theoretic study 2016 ,		4
93	SysML Modeling Mistakes and Their Impacts on Requirements 2019 ,		4
92	Releasing Scientific Software in GitHub: A Case Study on SWMM2PEST 2019 ,		4
91	Semi-Automatic Annotation for Citation Function Classification 2018,		4
90	Mechanisms to improve clustering uncertain data with UKmeans. <i>Data and Knowledge Engineering</i> , 2018 , 116, 61-79	1.5	4
89	Detecting Software Security Vulnerabilities via Requirements Dependency Analysis. <i>IEEE Transactions on Software Engineering</i> , 2020 , 1-1	3.5	3
88	Citation Function Classification Based on Ontologies and Convolutional Neural Networks. <i>Communications in Computer and Information Science</i> , 2018 , 105-115	0.3	3
87	Distribution based ensemble for class imbalance learning 2015,		3
86	Concept Based Query Expansion 2013 ,		3
85	2010,		3
84	Faceted Navigation for Software Exploration 2011,		3
83	A novel approach to tracing safety requirements and state-based design models 2020 ,		3
82	Blog Opinion Retrieval Based on Topic-Opinion Mixture Model. <i>Lecture Notes in Computer Science</i> , 2010 , 249-260	0.9	3
81	A Novel Knowledge Extraction Framework for Resumes Based on Text Classifier. <i>Lecture Notes in Computer Science</i> , 2015 , 540-543	0.9	3

(2008-2011)

80	A Probability Model for Related Entity Retrieval Using Relation Pattern. <i>Lecture Notes in Computer Science</i> , 2011 , 318-330	0.9	3
79	Conceptual Clustering. Lecture Notes in Electrical Engineering, 2014, 1-8	0.2	3
78	Deep residual network for highly accelerated fMRI reconstruction using variable density spiral trajectory. <i>Neurocomputing</i> , 2020 , 398, 338-346	5.4	3
77	Unit and regression tests of scientific software: A study on SWMM. <i>Journal of Computational Science</i> , 2021 , 53, 101347-101347	3.4	3
76	Ethnographic field work in requirements engineering. Enterprise Information Systems, 2017, 11, 137-15	9 3.5	2
75	Hierarchical Text-Label Integrated Attention Network for Document Classification 2019,		2
74	How skill balancing impact the elderly player experience? 2016,		2
73	Answering the requirements traceability questions 2018,		2
72	An agent-based linked data integration system 2014 ,		2
71	A Coupled User Clustering Algorithm Based on Mixed Data for Web-Based Learning Systems. <i>Mathematical Problems in Engineering</i> , 2015 , 2015, 1-14	1.1	2
70	A Personalized User Evaluation Model for Web-Based Learning Systems 2014 ,		2
69	Adaptive Learning Objects Assembly with compound constraints 2014,		2
68	An Study on Personalized Recommendation Model Based on Search Behaviors and Resource Properties 2010 ,		2
67	Active Learning Algorithm for Threshold of Decision Probability on Imbalanced Text Classification Based on Protein-Protein Interaction Documents 2010 ,		2
66	A user evaluation framework for web-based learning systems 2011,		2
65	Time Series Analysis of NASDAQ Composite Based on Seasonal ARIMA Model 2009 ,		2
64	VAR Model of PM2.5, Weather and Traffic in Los Angeles-Long Beach Area 2009 ,		2
63	The modification of AODV by utilizing the communication intervals 2008,		2

62	A New Scheme for Citation Classification based on Convolutional Neural Networks 2018,		2
61	Recommending Learning Objects through Attentive Heterogeneous Graph Convolution and Operation-Aware Neural Network. <i>IEEE Transactions on Knowledge and Data Engineering</i> , 2021 , 1-1	4.2	2
60	An Exploratory Case Study on Exploiting Aspect Orientation in Mobile Game Porting. <i>Advances in Intelligent Systems and Computing</i> , 2014 , 241-261	0.4	2
59	A Multi-news Timeline Summarization Algorithm Based on Aging Theory. <i>Lecture Notes in Computer Science</i> , 2015 , 449-460	0.9	2
58	Learning Strategy Recommendation Agent. Advances in Intelligent Systems and Computing, 2012, 205-2	16.4	2
57	A Collaborative Filtering Recommendation Algorithm Based on Tag Clustering. <i>Lecture Notes in Electrical Engineering</i> , 2014 , 177-183	0.2	2
56	A Personalized Genetic Algorithm Approach for Test Sheet Assembling. <i>Lecture Notes in Computer Science</i> , 2011 , 164-173	0.9	2
55	Discovering Metamorphic Relations for Scientific Software From User Forums. <i>Computing in Science and Engineering</i> , 2020 , 23, 65-72	1.5	2
54	Finding Metamorphic Relations for Scientific Software 2021,		2
53	A brain-region-based meta-analysis method utilizing the Apriori algorithm. <i>BMC Neuroscience</i> , 2016 , 17, 23	3.2	2
52	The Brain Effective Connectivity of Chinese during Rhyming Task. <i>PLoS ONE</i> , 2016 , 11, e0162158	3.7	2
51	Answer Extraction Based on Merging Score Strategy of Hot Terms. <i>Chinese Journal of Electronics</i> , 2016 , 25, 614-620	0.9	2
50	Multi-Scale Deformable CNN for Answer Selection. <i>IEEE Access</i> , 2019 , 7, 164986-164995	3.5	2
49	Improving Citation Sentiment and Purpose Classification Using Hybrid Deep Neural Network Model. <i>Advances in Intelligent Systems and Computing</i> , 2019 , 327-336	0.4	2
48	Modeling positive and negative feedback for improving document retrieval. <i>Expert Systems With Applications</i> , 2019 , 120, 253-261	7.8	2
47	Creating Socio-Technical Patches for Information Foraging: A Requirements Traceability Case Study 2018 ,		2
46	A first look at developersIlive chat on Gitter 2021 ,		2
45	XAI tools in the public sector: a case study on predicting combined sewer overflows 2021 ,		2

44	Efficiently extracting frequent patterns from continuous uncertain data 2019, 42, 225-235		1
43	A Novel Method for Clustering Web Search Results with Wikipedia Disambiguation Pages. <i>Lecture Notes in Computer Science</i> , 2015 , 3-16	0.9	1
42	Literature search framework by analyzing key aspects 2016 ,		1
41	Citation Classification Using Multitask Convolutional Neural Network Model. <i>Lecture Notes in Computer Science</i> , 2018 , 232-243	0.9	1
40	A Survey of Learner and Researcher Related Challenges in E-learning Recommender Systems. <i>Communications in Computer and Information Science</i> , 2017 , 122-132	0.3	1
39	Porting mobile games in an aspect-oriented way: An industrial case study 2013 ,		1
38	Data Analysis in Los Angeles Long Beach with Seasonal Time Series Model 2010 ,		1
37	A Pattern Based Anti-Fraud Method in C2C Ecommerce Environment 2010 ,		1
36	Document Classification for Mining Host Pathogen Protein-Protein Interactions 2008,		1
35	Efficient Multiplier over Finite Field Represented in Type II Optimal Normal Basis 2006,		1
34	Heterogeneous Knowledge Learning of Predictive Academic Intelligence in Transportation. <i>IEEE Transactions on Intelligent Transportation Systems</i> , 2020 , 1-19	6.1	1
33	Co-AI: A Colab-Based Tool for Abstraction Identification 2021 ,		1
32	Contextual Understanding and Improvement of Metamorphic Testing in Scientific Software Development 2021 ,		1
31	Lean Learning of Risks in Students Agile Teams 2019 , 263-281		1
30	An Approach for Identifying Author Profiles of Blogs. Lecture Notes in Computer Science, 2017, 475-487	0.9	1
29	Unsupervised Automatic Text Style Transfer Using LSTM. Lecture Notes in Computer Science, 2018, 281-2	282)	1
28	A Discretization Algorithm of Numerical Attributes for Digital Library Evaluation Based on Data Mining Technology. <i>Lecture Notes in Computer Science</i> , 2011 , 70-76	0.9	1
27	Product Features Categorization Using Constrained Spectral Clustering. <i>Lecture Notes in Computer Science</i> , 2013 , 285-290	0.9	1

26	Evaluation Algorithm about Digital Library Collections Based on Data Mining Technology. <i>Lecture Notes in Computer Science</i> , 2010 , 266-267	0.9	1
25	A Novel Method for Identifying Optimal Number of Clusters with Marginal Differential Entropy. <i>Lecture Notes in Computer Science</i> , 2013 , 371-382	0.9	1
24	Classification of Opinion Questions. Lecture Notes in Computer Science, 2013, 714-717	0.9	1
23	Towards Efficient Distributed SPARQL Queries on Linked Data. <i>Lecture Notes in Computer Science</i> , 2014 , 259-272	0.9	1
22	Relating the Empirical Foundations of Attack Generation and Vulnerability Discovery 2020,		1
21	TCIC_FS: Total correlation information coefficient-based feature selection method for high-dimensional data. <i>Knowledge-Based Systems</i> , 2021 , 231, 107418	7.3	1
20	I/O Associations in Scientific Software: A Study of SWMM. Lecture Notes in Computer Science, 2021, 375	-389	1
19	Multi-level Attention Map Network for Multimodal Sentiment Analysis. <i>IEEE Transactions on Knowledge and Data Engineering</i> , 2022 , 1-1	4.2	1
18	Learning deep relevance couplings for ad-hoc document retrieval. <i>Expert Systems With Applications</i> , 2021 , 183, 115335	7.8	0
17	E-CapsGan: Generative adversarial network using capsule network as feature encoder. <i>Multimedia Tools and Applications</i> ,1	2.5	O
16	Learning I/O Variables from Scientific Software User Manuals. Lecture Notes in Computer Science, 2022 , 503-516	0.9	0
15	Extractive Summarization via Overlap-Based Optimized Picking. <i>Lecture Notes in Computer Science</i> , 2017 , 135-149	0.9	
14	Special issue on just-in-time requirements engineering for software integration. <i>Journal of Industrial Information Integration</i> , 2019 , 14, 1-2	7	
13	A Deep Reinforced Training Method for Location-Based Image Captioning. <i>Lecture Notes in Computer Science</i> , 2018 , 878-890	0.9	
12	Safety Patterns for SysML: What Does OMG Specify?. Lecture Notes in Computer Science, 2020, 19-34	0.9	
11	Learning Trend Analysis and Prediction Based on Knowledge Tracing and Regression Analysis. Lecture Notes in Computer Science, 2015, 29-41	0.9	
10	A Novel Recommendation Relevancy Measure for Collaborative Filtering. <i>Lecture Notes in Computer Science</i> , 2015 , 32-41	0.9	
9	Case Retrieval Based on Formal Concept Analysis. <i>Journal of Computational and Theoretical Nanoscience</i> , 2016 , 13, 4211-4222	0.3	

LIST OF PUBLICATIONS

Active Discovery Based Query Federation over the Web of Linked Data. *Advances in Intelligent and Soft Computing*, **2011**, 239-248

7	Extracting Fine-Grained Entities Based on Coordinate Graph. <i>Lecture Notes in Computer Science</i> , 2013 , 367-371	0.9
6	Building Enhanced Link Context by Logical Sitemap. Lecture Notes in Computer Science, 2013, 36-47	0.9
5	Representation and Verification of Attribute Knowledge. Lecture Notes in Computer Science, 2013, 473	-482)
4	Chinese Named Entity Recognition Using Improved Bi-gram Model Based on Dynamic Programming. <i>Advances in Intelligent Systems and Computing</i> , 2014 , 441-451	0.4
3	Considering Rating as Probability Distribution of Attitude in Recommender System. <i>Lecture Notes in Computer Science</i> , 2014 , 393-402	0.9
2	A Federation Layer for Query Processing over the Web of Linked Data. <i>Lecture Notes in Computer Science</i> , 2014 , 347-350	0.9
1	Corrections to R equirements Socio-Technical Graphs for Managing Practitioners T raceability Ouestions [JEFF Transactions on Computational Social Systems 2019 , 6, 190-190	4.5