
Kambiz N Alavian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2707581/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CAV2.3 expression is upregulated in the substantia nigra pars compacta of humans with Parkinson's disease. Brain Disorders, 2022, 5, 100031.	1.1	0
2	The factors for the early and late development of midbrain dopaminergic neurons segregate into two distinct evolutionary clusters. Brain Disorders, 2021, 1, 100002.	1.1	3
3	Mitochondrial (ATP Synthase) Permeability Transition Pore. Biophysical Journal, 2020, 118, 16a.	0.2	0
4	Parkinson's disease protein DJ-1 regulates ATP synthase protein components to increase neuronal process outgrowth. Cell Death and Disease, 2019, 10, 469.	2.7	70
5	The mitochondrial metabolic function of DJâ€l is modulated by 14â€3â€3β. FASEB Journal, 2019, 33, 8925-8934.	0.2	13
6	<i>Post mortem</i> examination of Parkinson's disease brains suggests decline in mitochondrial biomass, reversed by deep brain stimulation of subthalamic nucleus. FASEB Journal, 2019, 33, 6957-6961.	0.2	16
7	PhySpeTree: an automated pipeline for reconstructing phylogenetic species trees. BMC Evolutionary Biology, 2019, 19, 219.	3.2	3
8	Physiological roles of the mitochondrial permeability transition pore. Journal of Bioenergetics and Biomembranes, 2017, 49, 13-25.	1.0	86
9	Mitochondria and Memory: Bioenergetics, Synaptic Plasticity and Neurodegeneration. Biophysical Journal, 2017, 112, 180a.	0.2	4
10	The Mitochondrial Permeability Transition Pore: Molecular Structure and Function in Health and Disease. Biological and Medical Physics Series, 2017, , 69-105.	0.3	3
11	Inhibition of Bcl-xL prevents pro-death actions of ΔN-Bcl-xL at the mitochondrial inner membrane during glutamate excitotoxicity. Cell Death and Differentiation, 2017, 24, 1963-1974.	5.0	38
12	Phylogenetic Profiling of Mitochondrial Proteins and Integration Analysis of Bacterial Transcription Units Suggest Evolution of F1Fo ATP Synthase from Multiple Modules. Journal of Molecular Evolution, 2017, 85, 219-233.	0.8	11
13	PrePhyloPro: phylogenetic profile-based prediction of whole proteome linkages. PeerJ, 2017, 5, e3712.	0.9	15
14	The Mitochondrial Permeability Transition Pore and ATP Synthase. Handbook of Experimental Pharmacology, 2016, 240, 21-46.	0.9	38
15	PTP and LTP: The physiological role of the permeability transition pore in learning and memory. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, e66-e67.	0.5	0
16	Decreased SGK1 Expression and Function Contributes to Behavioral Deficits Induced by Traumatic Stress. PLoS Biology, 2015, 13, e1002282.	2.6	60
17	Isolation, Culture and Long-Term Maintenance of Primary Mesencephalic Dopaminergic Neurons From Embryonic Rodent Brains. Journal of Visualized Experiments, 2015, , .	0.2	20
18	Iron Homeostasis and Pulmonary Hypertension. Circulation Research, 2015, 116, 1680-1690.	2.0	97

Kambiz N Alavian

#	Article	IF	CITATIONS
19	Cell death disguised: The mitochondrial permeability transition pore as the c-subunit of the F1FO ATP synthase. Pharmacological Research, 2015, 99, 382-392.	3.1	70
20	Analysis of Gene Expression Changes in the Rat Hippocampus After Deep Brain Stimulation of the Anterior Thalamic Nucleus. Journal of Visualized Experiments, 2015, , .	0.2	6
21	Bcl-xL Is Necessary for Neurite Outgrowth in Hippocampal Neurons. Antioxidants and Redox Signaling, 2015, 22, 93-108.	2.5	38
22	The Mitochondrial Complex V–Associated Large-Conductance Inner Membrane Current Is Regulated by Cyclosporine and Dexpramipexole. Molecular Pharmacology, 2015, 87, 1-8.	1.0	46
23	Bcl-xL in neuroprotection and plasticity. Frontiers in Physiology, 2014, 5, 355.	1.3	40
24	An uncoupling channel within the c-subunit ring of the F ₁ F _O ATP synthase is the mitochondrial permeability transition pore. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10580-10585.	3.3	502
25	The lifelong maintenance of mesencephalic dopaminergic neurons by Nurr1 and engrailed. Journal of Biomedical Science, 2014, 21, 27.	2.6	47
26	The C-Subunit of the ATP Synthase Forms the Pore of the PTP. Biophysical Journal, 2014, 106, 3a-4a.	0.2	1
27	DJ1 regulates Neuronal Mitochondrial Bioenergetic Efficiency. Biophysical Journal, 2013, 104, 657a.	0.2	Ο
28	A Bcl-xL–Drp1 complex regulates synaptic vesicle membrane dynamics during endocytosis. Nature Cell Biology, 2013, 15, 773-785.	4.6	110
29	F ₁ F _O ATPase Vesicle Preparation and Technique for Performing Patch Clamp Recordings of Submitochondrial Vesicle Membranes. Journal of Visualized Experiments, 2013, , e4394.	0.2	5
30	NAD kinase regulates the size of the NADPH pool and insulin secretion in pancreatic β-cells. American Journal of Physiology - Endocrinology and Metabolism, 2012, 303, E191-E199.	1.8	34
31	The C-Subunit Ring of the F1FO ATP Synthase Constitutes a Leak Channel that Regulates Cellular Metabolic Efficiency by Counteracting the H+ Translocator. Biophysical Journal, 2012, 102, 571a.	0.2	Ο
32	N-terminally cleaved Bcl-xL mediates ischemia-induced neuronal death. Nature Neuroscience, 2012, 15, 574-580.	7.1	70
33	Effects of dexpramipexole on brain mitochondrial conductances and cellular bioenergetic efficiency. Brain Research, 2012, 1446, 1-11.	1.1	46
34	Decrease in a Leak Conductance Associated with Mitochondrial Complex V and Improved Bioenergetic Efficiency may Underlie Cytoprotection of at-Risk Neurons by Dexpramipexole. Biophysical Journal, 2011, 100, 459a.	0.2	0
35	Bcl-xL Determines the Metabolic Efficiency of Neurons, through Interaction with Mitochondrial ATP Synthase. Biophysical Journal, 2011, 100, 459a.	0.2	1
36	Bcl-xL regulates metabolic efficiency of neurons through interaction with the mitochondrial F1FO ATP synthase. Nature Cell Biology, 2011, 13, 1224-1233.	4.6	245

Kambiz N Alavian

#	Article	IF	CITATIONS
37	Recombinant adeno-associated virus type 2 pseudotypes: comparing safety, specificity, and transduction efficiency in the primate striatum. Journal of Neurosurgery, 2011, 114, 672-680.	0.9	18
38	Bcl-xL regulates mitochondrial energetics by stabilizing the inner membrane potential. Journal of Cell Biology, 2011, 195, 263-276.	2.3	182
39	Bcl-x _L regulates mitochondrial energetics by stabilizing the inner membrane potential. Journal of Experimental Medicine, 2011, 208, i29-i29.	4.2	Ο
40	Parkinson's disease candidate gene prioritization based on expression profile of midbrain dopaminergic neurons. Journal of Biomedical Science, 2010, 17, 66.	2.6	5
41	The transcription factor orthodenticle homeobox 2 influences axonal projections and vulnerability of midbrain dopaminergic neurons. Brain, 2010, 133, 2022-2031.	3.7	47
42	BCL-xL Regulates ATP Synthase and Synaptic Efficiency. Biophysical Journal, 2010, 98, 465a.	0.2	0
43	CD15, CD24, and CD29 Define a Surface Biomarker Code for Neural Lineage Differentiation of Stem Cells. Stem Cells, 2009, 27, 2928-2940.	1.4	209
44	Elevated P75NTR expression causes death of engrailed-deficient midbrain dopaminergic neurons by Erk1/2 suppression. Neural Development, 2009, 4, 11.	1.1	31
45	Linkage of cDNA expression profiles of mesencephalic dopaminergic neurons to a genome-wide in situ hybridization database. Molecular Neurodegeneration, 2009, 4, 6.	4.4	8
46	Transcriptional Regulation of Their Survival:. Advances in Experimental Medicine and Biology, 2009, 651, 66-72.	0.8	3
47	Transcriptional regulation of mesencephalic dopaminergic neurons: The full circle of life and death. Movement Disorders, 2008, 23, 319-328.	2.2	76
48	Slow progressive degeneration of nigral dopaminergic neurons in postnatal Engrailed mutant mice. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 15242-15247.	3.3	129
49	The neuregulin receptor, ErbB4, is not required for normal development and adult maintenance of the substantia nigra pars compacta. Journal of Neurochemistry, 2004, 91, 1302-1311.	2.1	44