Madeleine RÃ¥dinger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2707325/publications.pdf

Version: 2024-02-01

304743 289244 1,797 55 22 citations h-index papers

g-index 55 55 55 2856 docs citations times ranked citing authors all docs

40

#	Article	IF	CITATIONS
1	MicroRNA-155 is essential for TH2-mediated allergen-induced eosinophilic inflammation in the lung. Journal of Allergy and Clinical Immunology, 2014, 133, 1429-1438.e7.	2.9	192
2	The multiple roles of phosphoinositide 3-kinase in mast cell biology. Trends in Immunology, 2008, 29, 493-501.	6.8	131
3	EFFECTS OF THE ANTIFUNGAL IMIDAZOLE KETOCONAZOLE ON CYP1A AND CYP3A IN RAINBOW TROUT AND KILLIFISH. Environmental Toxicology and Chemistry, 2004, 23, 1326.	4.3	107
4	MicroRNA-155 is a critical regulator of type 2 innate lymphoid cells and IL-33 signaling in experimental models of allergic airway inflammation. Journal of Allergy and Clinical Immunology, 2017, 139, 1007-1016.e9.	2.9	101
5	Spotlight on microRNAs in allergy and asthma. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 1661-1678.	5.7	98
6	Measuring Mast Cell Mediator Release. Current Protocols in Immunology, 2010, 91, Unit7.38.	3.6	94
7	Generation, Isolation, and Maintenance of Human Mast Cells and Mast Cell Lines Derived from Peripheral Blood or Cord Blood. Current Protocols in Immunology, 2010, 90, Unit 7.37.	3.6	80
8	Btk-dependent Rac activation and actin rearrangement following FcεRI aggregation promotes enhanced chemotactic responses of mast cells. Journal of Cell Science, 2010, 123, 2576-2585.	2.0	78
9	Mast cell exosomes promote lung adenocarcinoma cell proliferation – role of KIT-stem cell factor signaling. Cell Communication and Signaling, 2014, 12, 64.	6.5	63
10	Eosinophil progenitors in allergy and asthma â€" Do they matter?. , 2009, 121, 174-184.		50
11	The Airway Epithelium—A Central Player in Asthma Pathogenesis. International Journal of Molecular Sciences, 2020, 21, 8907.	4.1	47
12	Sepsis-Like Systemic Inflammation Induced by Nano-Sized Extracellular Vesicles From Feces. Frontiers in Microbiology, 2018, 9, 1735.	3.5	45
13	Changes in the prevalence of asthma and respiratory symptoms in western Sweden between 2008 and 2016. Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 1703-1715.	5.7	45
14	Eotaxin-2 regulates newly produced and CD34+ airway eosinophils after allergen exposure. Journal of Allergy and Clinical Immunology, 2004, 113, 1109-1116.	2.9	38
15	Altered miRâ€155 Expression in Allergic Asthmatic Airways. Scandinavian Journal of Immunology, 2017, 85, 300-307.	2.7	37
16	<i>Camellia japonica</i> suppresses immunoglobulin Eâ€mediated allergic response by the inhibition of Syk kinase activation in mast cells. Clinical and Experimental Allergy, 2008, 38, 794-804.	2.9	36
17	Bone marrow type 2 innate lymphoid cells: a local source of interleukinâ€5 in interleukinâ€33â€driven eosinophilia. Immunology, 2018, 153, 268-278.	4.4	34
18	Local proliferation and mobilization of CCR3+â€fCD34+ eosinophil-lineage-committed cells in the lung. Immunology, 2011, 132, 144-154.	4.4	30

#	Article	IF	CITATIONS
19	Airway allergen exposure stimulates bone marrow eosinophilia partly via IL-9. Respiratory Research, 2005, 6, 33.	3.6	28
20	Cohort profile: the West Sweden Asthma Study (WSAS): a multidisciplinary population-based longitudinal study of asthma, allergy and respiratory conditions in adults. BMJ Open, 2019, 9, e027808.	1.9	26
21	Furry Animal Allergen Component Sensitization and Clinical Outcomes in Adult Asthma and Rhinitis. Journal of Allergy and Clinical Immunology: in Practice, 2019, 7, 1230-1238.e4.	3.8	26
22	Severe Asthma in a General Population Study: Prevalence and Clinical Characteristics. Journal of Asthma and Allergy, 2021, Volume 14, 1105-1115.	3.4	26
23	Circulating microRNAs correlate to clinical parameters in individuals with allergic and non-allergic asthma. Respiratory Research, 2020, 21, 107.	3.6	25
24	Decreased COPD prevalence in Sweden after decades of decrease in smoking. Respiratory Research, 2020, 21, 283.	3.6	24
25	Interferonâ€ <i>γ</i> enhances both the antiâ€bacterial and the proâ€inflammatory response of human mast cells to <i>Staphylococcus aureus</i> lmmunology, 2015, 146, 470-485.	4.4	23
26	Immunophenotyping of Circulating T Helper Cells Argues for Multiple Functions and Plasticity of T Cells In Vivo in Humans - Possible Role in Asthma. PLoS ONE, 2012, 7, e40012.	2.5	23
27	Interplay Between the IL-33/ST2 Axis and Bone Marrow ILC2s in Protease Allergen-Induced IL-5-Dependent Eosinophilia. Frontiers in Immunology, 2020, 11, 1058.	4.8	22
28	Glycogen Synthase Kinase $3\hat{l}^2$ Activation Is a Prerequisite Signal for Cytokine Production and Chemotaxis in Human Mast Cells. Journal of Immunology, 2010, 184, 564-572.	0.8	21
29	Current Update on Eosinophilic Lung Diseases and Anti-IL-5 Treatment. Recent Patents on Anti-infective Drug Discovery, 2011, 6, 189-205.	0.8	21
30	GATA Transcription Factors Regulate the Expression of the Human Eosinophil-derived Neurotoxin (RNase 2) Gene. Journal of Biological Chemistry, 2009, 284, 13099-13109.	3.4	20
31	New Production of Eosinophils and the Corresponding Th1/Th2 Balance in the Lungs after Allergen Exposure in BALB/ <i>c</i> i> and C57BL/6 Mice. Scandinavian Journal of Immunology, 2010, 71, 176-185.	2.7	19
32	Regulation of allergen-induced bone marrow eosinophilopoiesis: role of CD4+and CD8+T cells. Allergy: European Journal of Allergy and Clinical Immunology, 2007, 62, 1410-1418.	5.7	14
33	Adiponectin/AdipoR1 Axis Promotes IL-10 Release by Human Regulatory T Cells. Frontiers in Immunology, 2021, 12, 677550.	4.8	14
34	Assay of Mast Cell Mediators. Methods in Molecular Biology, 2015, 1220, 307-323.	0.9	14
35	Expansion of CD4+CD25+ and CD25-T-Bet, GATA-3, Foxp3 and RORγt Cells in Allergic Inflammation, Local Lung Distribution and Chemokine Gene Expression. PLoS ONE, 2011, 6, e19889.	2.5	13
36	Glycogen Synthase Kinase- $3\hat{l}^2$ Is a Prosurvival Signal for the Maintenance of Human Mast Cell Homeostasis. Journal of Immunology, 2011, 187, 5587-5595.	0.8	13

#	Article	IF	Citations
37	T2 and T17 cytokines alter the cargo and function of airway epithelium-derived extracellular vesicles. Respiratory Research, 2020, 21, 155.	3.6	13
38	MicroRNAs in type 2 immunity. Cancer Letters, 2018, 425, 116-124.	7.2	12
39	Sex steroid hormones and asthma in women: state-of-the-art and future research perspectives. Expert Review of Respiratory Medicine, 2020, 14, 543-545.	2.5	11
40	Precursor B Cells Increase in the Lung during Airway Allergic Inflammation: A Role for B Cell-Activating Factor. PLoS ONE, 2016, 11, e0161161.	2.5	10
41	Lanosterol Synthase Regulates Human Rhinovirus Replication in Human Bronchial Epithelial Cells. American Journal of Respiratory Cell and Molecular Biology, 2018, 59, 713-722.	2.9	9
42	House Dust Mite Induces Bone Marrow IL-33-Responsive ILC2s and TH Cells. International Journal of Molecular Sciences, 2020, 21, 3751.	4.1	9
43	The triad of current asthma, rhinitis and eczema is uncommon among adults: Prevalence, sensitization profiles, and risk factors. Respiratory Medicine, 2021, 176, 106250.	2.9	9
44	Regulatory role of CD8+ T lymphocytes in bone marrow eosinophilopoiesis. Respiratory Research, 2006, 7, 83.	3.6	8
45	Sex Disparities in Asthma Development and Clinical Outcomes: Implications for Treatment Strategies. Journal of Asthma and Allergy, 2022, Volume 15, 231-247.	3.4	8
46	No difference in human mast cells derived from peanut allergic versus nonâ€allergic subjects. Immunity, Inflammation and Disease, 2018, 6, 416-427.	2.7	6
47	MicroRNA-155 expression suggests a sex disparity in innate lymphoid cells at the single-cell level. Cellular and Molecular Immunology, 2020, 17, 544-546.	10.5	5
48	Eosinophilic airway diseases: basic science, clinical manifestations and future challenges. European Clinical Respiratory Journal, 2022, 9, 2040707.	1.5	5
49	Immune-Associated Proteins Are Enriched in Lung Tissue-Derived Extracellular Vesicles during Allergen-Induced Eosinophilic Airway Inflammation. International Journal of Molecular Sciences, 2021, 22, 4718.	4.1	4
50	Rapamycin Dampens Inflammatory Properties of Bone Marrow ILC2s in IL-33-Induced Eosinophilic Airway Inflammation. Frontiers in Immunology, 2022, 13, .	4.8	4
51	Repeated allergen exposure reduce early phase airway response and leukotriene release despite upregulation of 5â€lipoxygenase pathways. Clinical and Translational Allergy, 2012, 2, 7.	3.2	3
52	CD34+ Eosinophil-Lineage-Committed Cells in the Mouse Lung. Methods in Molecular Biology, 2014, 1178, 29-43.	0.9	2
53	Identification of Biological and Pharmaceutical Mast Cell―and Basophilâ€Related Targets. Scandinavian Journal of Immunology, 2016, 83, 465-472.	2.7	1
54	Circulating eosinophil progenitors express major trafficking related molecules and are more activated compared to mature eosinophils in patients with asthma. Clinical and Translational Allergy, 2013, 3, P7.	3.2	0

Madeleine RÃ¥dinger

#	Article	IF	CITATIONS
55	Tollâ€ike receptor expression in severe asthma with chronic rhinosinusitis. Clinical and Translational Allergy, 2013, 3, O2.	3.2	0