Charles Onyutha

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2707162/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Comparison of different statistical downscaling methods for climate change rainfall projections over the Lake Victoria basin considering CMIP3 and CMIP5. Journal of Hydro-Environment Research, 2016, 12, 31-45.	1.0	76
2	Identification of sub-trends from hydro-meteorological series. Stochastic Environmental Research and Risk Assessment, 2016, 30, 189-205.	1.9	74
3	Analyses of rainfall trends in the Nile River Basin. Journal of Hydro-Environment Research, 2016, 13, 36-51.	1.0	66
4	Negative emotions about climate change are related to insomnia symptoms and mental health: Cross-sectional evidence from 25 countries. Current Psychology, 2023, 42, 845-854.	1.7	61
5	Statistical analyses of potential evapotranspiration changes over the period 1930–2012 in the Nile River riparian countries. Agricultural and Forest Meteorology, 2016, 226-227, 80-95.	1.9	54
6	Contribution of climatic variability and human activities to stream flow changes in the Haraz River basin, northern Iran. Journal of Hydro-Environment Research, 2019, 25, 12-24.	1.0	54
7	Spatial and temporal variability of rainfall in the Nile Basin. Hydrology and Earth System Sciences, 2015, 19, 2227-2246.	1.9	48
8	Decadal Analysis of River Flow Extremes Using Quantile-Based Approaches. Water Resources Management, 2017, 31, 3371-3387.	1.9	41
9	Trends and variability in African long-term precipitation. Stochastic Environmental Research and Risk Assessment, 2018, 32, 2721-2739.	1.9	36
10	Graphical-statistical method to explore variability of hydrological time series. Hydrology Research, 2021, 52, 266-283.	1.1	35
11	On Rigorous Drought Assessment Using Daily Time Scale: Non-Stationary Frequency Analyses, Revisited Concepts, and a New Method to Yield Non-Parametric Indices. Hydrology, 2017, 4, 48.	1.3	34
12	Statistical Uncertainty in Hydrometeorological Trend Analyses. Advances in Meteorology, 2016, 2016, 1-26.	0.6	32
13	Analyses of rainfall extremes in East Africa based on observations from rain gauges and climate change simulations by CORDEX RCMs. Climate Dynamics, 2020, 54, 4841-4864.	1.7	32
14	African food insecurity in a changing climate: The roles of science and policy. Food and Energy Security, 2019, 8, e00160.	2.0	28
15	Influence of spatial and temporal scales on statistical analyses of rainfall variability in the River Nile basin. Dynamics of Atmospheres and Oceans, 2017, 77, 26-42.	0.7	27
16	Geospatial Trends and Decadal Anomalies in Extreme Rainfall over Uganda, East Africa. Advances in Meteorology, 2016, 2016, 1-15.	0.6	25
17	Variability of seasonal and annual rainfall in the River Nile riparian countries and possible linkages to ocean–atmosphere interactions. Hydrology Research, 2016, 47, 171-184.	1.1	24
18	A hydrological model skill score and revised R-squared. Hydrology Research, 2022, 53, 51-64.	1.1	24

CHARLES ONYUTHA

#	Article	IF	CITATIONS
19	African crop production trends are insufficient to guarantee food security in the sub-Saharan region by 2050 owing to persistent poverty. Food Security, 2018, 10, 1203-1219.	2.4	23
20	Uncertainty in calibrating generalised Pareto distribution to rainfall extremes in Lake Victoria basin. Hydrology Research, 2015, 46, 356-376.	1.1	21
21	Influence of Hydrological Model Selection on Simulation of Moderate and Extreme Flow Events: A Case Study of the Blue Nile Basin. Advances in Meteorology, 2016, 2016, 1-28.	0.6	21
22	Spaceâ€ŧime variability of extreme rainfall in the River Nile basin. International Journal of Climatology, 2017, 37, 4915-4924.	1.5	21
23	Observed and Future Precipitation and Evapotranspiration in Water Management Zones of Uganda: CMIP6 Projections. Atmosphere, 2021, 12, 887.	1.0	21
24	Combined Use of Graphical and Statistical Approaches for Analyzing Historical Precipitation Changes in the Black Sea Region of Turkey. Water (Switzerland), 2020, 12, 705.	1.2	20
25	How well do climate models reproduce variability in observed rainfall? A case study of the Lake Victoria basin considering CMIP3, CMIP5 and CORDEX simulations. Stochastic Environmental Research and Risk Assessment, 2019, 33, 687-707.	1.9	18
26	Historical Rainfall and Evapotranspiration Changes over Mpologoma Catchment in Uganda. Advances in Meteorology, 2020, 2020, 1-19.	0.6	18
27	Uncertainties in Flow-Duration-Frequency Relationships of High and Low Flow Extremes in Lake Victoria Basin. Water (Switzerland), 2013, 5, 1561-1579.	1.2	16
28	Empirical statistical characterization and regionalization of amplitude–duration–frequency curves for extreme peak flows in the Lake Victoria Basin, East Africa. Hydrological Sciences Journal, 2015, 60, 997-1012.	1.2	15
29	Temporal and spatial variability of extreme river flow quantiles in the Upper Vistula River basin, Poland. Hydrological Processes, 2017, 31, 1510-1526.	1.1	15
30	Hydrological Model Supported by a Step-Wise Calibration against Sub-Flows and Validation of Extreme Flow Events. Water (Switzerland), 2019, 11, 244.	1.2	14
31	Analyses of Precipitation and Evapotranspiration Changes across the Lake Kyoga Basin in East Africa. Water (Switzerland), 2020, 12, 1134.	1.2	14
32	East African population exposure to precipitation extremes under 1.5 °C and 2.0 °C warming levels based on CMIP6 models. Environmental Research Letters, 2022, 17, 044051.	2.2	13
33	Impacts of climate variability and changing land use/land cover on River Mpanga flows in Uganda, East Africa. Environmental Challenges, 2021, 5, 100273.	2.0	12
34	Investigating false start of the main growing season: A case of Uganda in East Africa. Heliyon, 2021, 7, e08428.	1.4	12
35	COVIDiSTRESS diverse dataset on psychological and behavioural outcomes one year into the COVID-19 pandemic. Scientific Data, 2022, 9, .	2.4	12
36	Trends and variability of temperature and evaporation over the African continent: Relationships with precipitation. , 0, , .		11

CHARLES ONYUTHA

#	Article	IF	CITATIONS
37	Modelling chlorine residuals in drinking water: a review. International Journal of Environmental Science and Technology, 2022, 19, 11613-11630.	1.8	11
38	STATISTICAL MODELLING OF FDC AND RETURN PERIODS TO CHARACTERISE QDF AND DESIGN THRESHOLD OF HYDROLOGICAL EXTREMES. Journal of Urban and Environmental Engineering, 2012, 6, 132-148.	0.3	10
39	Investigation of flow-rainfall co-variation for catchments selected based on the two main sources of River Nile. Stochastic Environmental Research and Risk Assessment, 2018, 32, 623-641.	1.9	9
40	Suitability of averaged outputs from multiple rainfall-runoff models for hydrological extremes: a case of River Kafu catchment in East Africa. International Journal of Energy and Water Resources, 2021, 5, 43-56.	1.3	8
41	Projected changes in rainfall over Uganda based on CMIP6 models. Theoretical and Applied Climatology, 2022, 149, 1117-1134.	1.3	8
42	Performance of rainfall–runoff models in reproducing hydrological extremes: a case of the River Malaba sub-catchment. SN Applied Sciences, 2021, 3, 1.	1.5	7
43	Hydrodynamic Modelling of Floods and Estimating Socio-economic Impacts of Floods in Ugandan River Malaba Sub-catchment. Earth Systems and Environment, 2022, 6, 45-67.	3.0	7
44	Changes in precipitation and evapotranspiration over Lokok and Lokere catchments in Uganda. Bulletin of Atmospheric Science and Technology, 2021, 2, 1.	0.4	6
45	Long-term climatic water availability trends and variability across the African continent. Theoretical and Applied Climatology, 2021, 146, 1-17.	1.3	6
46	Water availability trends across water management zones in Uganda. Atmospheric Science Letters, 2021, 22, e1059.	0.8	5
47	Contributions of Human Activities and Climatic Variability to Changes in River Rwizi Flows in Uganda, East Africa. Hydrology, 2021, 8, 145.	1.3	4
48	Assessment of the Effects of Procurement Planning Processes on Performance of Construction Contracts in Local Governments in Uganda. Journal of Civil Construction and Environmental Engineering, 2020, 5, 151.	0.2	3
49	Comparison of the inter-item correlations of the Big Five Inventory-10 (BFI-10) between Western and non-Western contexts. Personality and Individual Differences, 2022, 196, 111751.	1.6	3
50	Analyses of community willingness-to-pay and the influencing factors towards restoration of River Malaba floodplains. Environmental Challenges, 2021, 4, 100160.	2.0	1
51	Impacts of upstream water abstraction and climate variability on River Mpanga hydropower production in Uganda. International Journal of Energy and Water Resources, 0, , 1.	1.3	1
52	Tap versus Bottled Water in Kampala, Uganda: Analyses of Consumers' Perception alongside Bacteriological and Physicochemical Quality. Journal of Environmental and Public Health, 2022, 2022, 1-13.	0.4	0
53	Drought across East Africa under climate variability. , 2022, , 159-173.		0