
Rolf Rüfenacht

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2706929/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	EUNADICS-AV early warning system dedicated to supporting aviation in the case of a crisis from natural airborne hazards and radionuclide clouds. Natural Hazards and Earth System Sciences, 2021, 21, 3367-3405.	3.6	8
2	Study of the dependence of long-term stratospheric ozone trends on local solar time. Atmospheric Chemistry and Physics, 2020, 20, 8453-8471.	4.9	7
3	Investigation of Arctic middle-atmospheric dynamics using 3 years of H ₂ O and O ₃ measurements from microwave radiometers at Ny-Ãlesund. Atmospheric Chemistry and Physics, 2019, 19. 9927-9947.	4.9	3
4	Continuous Middle-Atmospheric Wind Profile Observations by Doppler Microwave Radiometry. , 2019, , 635-647.		2
5	Middle Atmosphere Variability and Model Uncertainties as Investigated in the Framework of the ARISE Project. , 2019, , 845-887.		17
6	WIRA-C: a compact 142-GHz-radiometer for continuous middle-atmospheric wind measurements. Atmospheric Measurement Techniques, 2018, 11, 5007-5024.	3.1	14
7	Intercomparison of middle-atmospheric wind in observations and models. Atmospheric Measurement Techniques, 2018, 11, 1971-1987.	3.1	24
8	The importance of signals in the Doppler broadening range for middle-atmospheric microwave wind and ozone radiometry. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 199, 77-88.	2.3	6
9	Quasi 18†h wave activity in ground-based observed mesospheric H ₂ O over Bern, Switzerland. Atmospheric Chemistry and Physics, 2017, 17, 14905-14917.	4.9	2
10	First continuous ground-based observations of long period oscillations in the vertically resolved wind field of the stratosphere and mesosphere. Atmospheric Chemistry and Physics, 2016, 16, 4915-4925.	4.9	9
11	Results from the validation campaign of the ozone radiometer GROMOS-C at the NDACC station of Réunion island. Atmospheric Chemistry and Physics, 2016, 16, 7531-7543.	4.9	11
12	Introduction to the MaÃ-do Lidar Calibration Campaign dedicated to the validation of upper air meteorological parameters. Journal of Applied Remote Sensing, 2015, 9, 094099.	1.3	13
13	Middle-atmospheric zonal and meridional wind profiles from polar, tropical and midlatitudes with the ground-based microwave Doppler wind radiometer WIRA. Atmospheric Measurement Techniques, 2014, 7, 4491-4505.	3.1	39
14	First middle-atmospheric zonal wind profile measurements with a new ground-based microwave Doppler-spectro-radiometer. Atmospheric Measurement Techniques, 2012, 5, 2647-2659.	3.1	53