Jordan Macknick

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/270596/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Opportunities and Challenges for Industrial Water Treatment and Reuse. ACS ES&T Engineering, 2022, 2, 465-488.	3.7	19
2	Opportunities for Treatment and Reuse of Agricultural Drainage in the United States. ACS ES&T Engineering, 2022, 2, 292-305.	3.7	7
3	Oil and Gas Produced Water Reuse: Opportunities, Treatment Needs, and Challenges. ACS ES&T Engineering, 2022, 2, 347-366.	3.7	31
4	Pipe Parity Analysis of Seawater Desalination in the United States: Exploring Costs, Energy, and Reliability via Case Studies and Scenarios of Emerging Technology. ACS ES&T Engineering, 2022, 2, 434-445.	3.7	6
5	Zero Liquid Discharge and Water Reuse in Recirculating Cooling Towers at Power Facilities: Review and Case Study Analysis. ACS ES&T Engineering, 2022, 2, 508-525.	3.7	9
6	Analysis of Brackish Water Desalination for Municipal Uses: Case Studies on Challenges and Opportunities. ACS ES&T Engineering, 2022, 2, 306-322.	3.7	15
7	Modeling the ecosystem services of native vegetation management practices at solar energy facilities in the Midwestern United States. Ecosystem Services, 2021, 47, 101227.	2.3	25
8	An enterprise control assessment case study of the energy–water nexus for the ISO New England system. Renewable and Sustainable Energy Reviews, 2021, 141, 110766.	8.2	8
9	Combined land use of solar infrastructure and agriculture for socioeconomic and environmental co-benefits in the tropics. Renewable and Sustainable Energy Reviews, 2021, 151, 111610.	8.2	11
10	Spatiotemporal energy infrastructure datasets for the United States: A review. Renewable and Sustainable Energy Reviews, 2021, 152, 111616.	8.2	6
11	Decomposing supply-side and demand-side impacts of climate change on the US electricity system through 2050. Climatic Change, 2020, 158, 125-139.	1.7	16
12	Impact of climate change on water availability and its propagation through the Western U.S. power grid. Applied Energy, 2020, 276, 115467.	5.1	38
13	Effects of Revegetation on Soil Physical and Chemical Properties in Solar Photovoltaic Infrastructure. Frontiers in Environmental Science, 2020, 8, .	1.5	50
14	The Land Sparing, Water Surface Use Efficiency, and Water Surface Transformation of Floating Photovoltaic Solar Energy Installations. Sustainability, 2020, 12, 8154.	1.6	39
15	Optimization Framework to Assess the Demand Response Capacity of a Water Distribution System. Journal of Water Resources Planning and Management - ASCE, 2020, 146, .	1.3	15
16	Techno–ecological synergies of solar energy for global sustainability. Nature Sustainability, 2019, 2, 560-568.	11.5	187
17	Using a coupled agent-based modeling approach to analyze the role of risk perception in water management decisions. Hydrology and Earth System Sciences, 2019, 23, 2261-2278.	1.9	28
18	Climate-Water Adaptation for Future US Electricity Infrastructure. Environmental Science & amp; Technology, 2019, 53, 14029-14040.	4.6	27

#	Article	IF	CITATIONS
19	Floating Photovoltaic Systems: Assessing the Technical Potential of Photovoltaic Systems on Man-Made Water Bodies in the Continental United States. Environmental Science & Technology, 2019, 53, 1680-1689.	4.6	100
20	A review of the potential impacts of climate change on bulk power system planning and operations in the United States. Renewable and Sustainable Energy Reviews, 2018, 98, 255-267.	8.2	67
21	Examining the Potential for Agricultural Benefits from Pollinator Habitat at Solar Facilities in the United States. Environmental Science & Technology, 2018, 52, 7566-7576.	4.6	50
22	Climate and water resource change impacts and adaptation potential for US power supply. Nature Climate Change, 2017, 7, 793-798.	8.1	103
23	Understanding the life cycle surface land requirements of natural gas-fired electricity. Nature Energy, 2017, 2, 804-812.	19.8	30
24	Assessing the costs and benefits of US renewable portfolio standards. Environmental Research Letters, 2017, 12, 094023.	2.2	44
25	Long-term implications of sustained wind power growth in the United States: Potential benefits and secondary impacts. Applied Energy, 2016, 179, 146-158.	5.1	40
26	The environmental and public health benefits of achieving high penetrations of solar energy in the United States. Energy, 2016, 113, 472-486.	4.5	71
27	A retrospective analysis of benefits and impacts of U.S. renewable portfolio standards. Energy Policy, 2016, 96, 645-660.	4.2	122
28	Colocation opportunities for large solar infrastructures and agriculture in drylands. Applied Energy, 2016, 165, 383-392.	5.1	125
29	A review of water and greenhouse gas impacts of unconventional natural gas development in the United States. MRS Energy & Sustainability, 2015, 2, 1.	1.3	8
30	Planning for Algal Systems: An Energy-Water-Food Nexus Perspective. Industrial Biotechnology, 2014, 10, 202-211.	0.5	16
31	Transitioning to zero freshwater withdrawal in the U.S. for thermoelectric generation. Applied Energy, 2014, 131, 508-516.	5.1	54
32	A Framework for Quantitative Assessment of Impacts Related to Energy and Mineral Resource Development. Natural Resources Research, 2014, 23, 3-17.	2.2	10
33	Implications of high renewable electricity penetration in the U.S. for water use, greenhouse gas emissions, land-use, and materials supply. Applied Energy, 2014, 123, 368-377.	5.1	109
34	Life cycle water use for photovoltaic electricity generation: A review and harmonization of literature estimates. , 2014, , .		3
35	The power of efficiency: Optimizing environmental and social benefits through demand-side-management. Energy, 2014, 76, 502-512.	4.5	23

36 Modeling Climate-Water Impacts on Electricity Sector Capacity Expansion. , 2014, , .

12

Jordan Macknick

#	Article	IF	CITATIONS
37	Modeling biofuel expansion effects on land use change dynamics. Environmental Research Letters, 2013, 8, 015003.	2.2	31
38	The Water Implications of Generating Electricity: Water Consumption Across the United States Based on Different Electricity Pathways through 2050. Proceedings of the Water Environment Federation, 2013, 2013, 221-232.	0.0	0
39	Life Cycle Water Use for Electricity Generation: Implications of the Distribution of Collected Estimates. Proceedings of the Water Environment Federation, 2013, 2013, 425-433.	0.0	1
40	Integrated Energy-Water Planning in the Western and Texas Interconnections. , 2013, , .		1
41	Transboundary Forestry and Water Management in Nicaragua and Honduras: From Conflicts to Opportunities for Cooperation. Journal of Sustainable Forestry, 2012, 31, 376-395.	0.6	7
42	Future Projections of Water Demands for Energy. Proceedings of the Water Environment Federation, 2011, 2011, 772-786.	0.0	1
43	Energy and CO ₂ emission data uncertainties. Carbon Management, 2011, 2, 189-205.	1.2	57
44	Energy Usage and Management at a Large Wastewater Treatment Facility in Boulder, Colorado. , 2011, , .		0
45	More caution about energy and carbon reports. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, E38.	3.3	2