
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2705776/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Future changes in the Baltic Sea acid–base (pH) and oxygen balances. Tellus, Series B: Chemical and<br>Physical Meteorology, 2022, 64, 19586.                                                                         | 0.8 | 84        |
| 2  | Reference state, structure, regime shifts, and regulatory drivers in a coastal sea over the last century: The Central Baltic Sea case. Limnology and Oceanography, 2022, 67, .                                        | 1.6 | 24        |
| 3  | Re-thinking the "ecological envelope―of Eastern Baltic cod ( <i>Gadus morhua</i> ): conditions for productivity, reproduction, and feeding over time. ICES Journal of Marine Science, 2022, 79, 689-708.              | 1.2 | 10        |
| 4  | High spatiotemporal variability of methane concentrations challenges estimates of emissions across vegetated coastal ecosystems. Global Change Biology, 2022, 28, 4308-4322.                                          | 4.2 | 16        |
| 5  | Biogeochemical functioning of the Baltic Sea. Earth System Dynamics, 2022, 13, 633-685.                                                                                                                               | 2.7 | 22        |
| 6  | Origin and fate of dissolved organic matter in four shallow Baltic Sea estuaries. Biogeochemistry, 2021, 154, 385-403.                                                                                                | 1.7 | 16        |
| 7  | Food-web comparisons between two shallow vegetated habitat types in the Baltic Sea. Marine<br>Environmental Research, 2021, 169, 105402.                                                                              | 1.1 | 5         |
| 8  | The Importance of Benthic Nutrient Fluxes in Supporting Primary Production in the Laptev and East<br>Siberian Shelf Seas. Global Biogeochemical Cycles, 2021, 35, e2020GB006849.                                      | 1.9 | 8         |
| 9  | Use of food web knowledge in environmental conservation and management of living resources in the Baltic Sea. ICES Journal of Marine Science, 2021, 78, 2645-2663.                                                    | 1.2 | 6         |
| 10 | Increasing the cost-effectiveness of nutrient reduction targets using different spatial scales. Science of the Total Environment, 2021, 790, 147824.                                                                  | 3.9 | 7         |
| 11 | Anthropogenic Inputs of Terrestrial Organic Matter Influence Carbon Loading and Methanogenesis in<br>Coastal Baltic Sea Sediments. Frontiers in Earth Science, 2021, 9, .                                             | 0.8 | 3         |
| 12 | Potential links between Baltic Sea submarine terraces and groundwater seeping. Earth Surface Dynamics, 2020, 8, 1-15.                                                                                                 | 1.0 | 16        |
| 13 | Macroalgae fuels coastal soft-sediment macrofauna: A triple-isotope approach across spatial scales.<br>Marine Environmental Research, 2020, 162, 105163.                                                              | 1.1 | 12        |
| 14 | Low Abundance of Methanotrophs in Sediments of Shallow Boreal Coastal Zones With High Water<br>Methane Concentrations. Frontiers in Microbiology, 2020, 11, 1536.                                                     | 1.5 | 14        |
| 15 | Removal of phosphorus and nitrogen in sediments of the eutrophic Stockholm archipelago, Baltic<br>Sea. Biogeosciences, 2020, 17, 2745-2766.                                                                           | 1.3 | 24        |
| 16 | Understanding Environmental Changes in Temperate Coastal Seas: Linking Models of Benthic Fauna to<br>Carbon and Nutrient Fluxes. Frontiers in Marine Science, 2020, 7, .                                              | 1.2 | 13        |
| 17 | Letter to editor regarding Kotta et al. 2020: Cleaning up seas using blue growth initiatives: Mussel<br>farming for eutrophication control in the Baltic Sea. Science of the Total Environment, 2020, 727,<br>138665. | 3.9 | 3         |
| 18 | High Emissions of Carbon Dioxide and Methane From the Coastal Baltic Sea at the End of a Summer<br>Heat Wave. Frontiers in Marine Science, 2019, 6, .                                                                 | 1.2 | 41        |

| #  | Article                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Comment on "Understanding the Permafrost–Hydrate System and Associated Methane Releases in the<br>East Siberian Arctic Shelfâ€; Geosciences (Switzerland), 2019, 9, 384.                                                            | 1.0 | 1         |
| 20 | Bathymetric properties of the Baltic Sea. Ocean Science, 2019, 15, 905-924.                                                                                                                                                         | 1.3 | 28        |
| 21 | Sedimentary alkalinity generation and long-term alkalinity development in the Baltic Sea.<br>Biogeosciences, 2019, 16, 437-456.                                                                                                     | 1.3 | 18        |
| 22 | Remineralization rate of terrestrial DOC as inferred from CO <sub>2</sub><br>supersaturated coastal waters. Biogeosciences, 2019, 16, 863-879.                                                                                      | 1.3 | 9         |
| 23 | Reducing agricultural nutrient surpluses in a large catchment – Links to livestock density. Science of the Total Environment, 2019, 648, 1549-1559.                                                                                 | 3.9 | 88        |
| 24 | Opportunities to reduce nutrient inputs to the Baltic Sea by improving manure use efficiency in agriculture. Regional Environmental Change, 2018, 18, 1843-1854.                                                                    | 1.4 | 39        |
| 25 | Nonâ€Redfieldian Dynamics Explain Seasonal pCO <sub>2</sub> Drawdown in the Gulf of Bothnia.<br>Journal of Geophysical Research: Oceans, 2018, 123, 166-188.                                                                        | 1.0 | 21        |
| 26 | Stable silicon isotopic compositions of the Lena River and its tributaries: Implications for silicon delivery to the Arctic Ocean. Geochimica Et Cosmochimica Acta, 2018, 241, 120-133.                                             | 1.6 | 21        |
| 27 | A Century of Legacy Phosphorus Dynamics in a Large Drainage Basin. Global Biogeochemical Cycles, 2018, 32, 1107-1122.                                                                                                               | 1.9 | 67        |
| 28 | Influence of the bordering shelves on nutrient distribution in the Arctic halocline inferred from water column nitrate isotopes. Limnology and Oceanography, 2018, 63, 2154-2170.                                                   | 1.6 | 23        |
| 29 | Direct determination of the airâ€sea CO <sub>2</sub> gas transfer velocity in Arctic sea ice regions.<br>Geophysical Research Letters, 2017, 44, 3770-3778.                                                                         | 1.5 | 43        |
| 30 | Seaâ€air exchange patterns along the central and outer East Siberian Arctic Shelf as inferred from continuous CO <sub>2</sub> , stable isotope, and bulk chemistry measurements. Global Biogeochemical Cycles, 2017, 31, 1173-1191. | 1.9 | 13        |
| 31 | Advances in NANI and NAPI accounting for the Baltic drainage basin: spatial and temporal trends and relationships to watershed TN and TP fluxes. Biogeochemistry, 2017, 133, 245-261.                                               | 1.7 | 67        |
| 32 | Carbon geochemistry of plankton-dominated samples in the Laptev and East Siberian shelves: contrasts in suspended particle composition. Ocean Science, 2017, 13, 735-748.                                                           | 1.3 | 12        |
| 33 | Export of calcium carbonate corrosive waters from the East Siberian Sea. Biogeosciences, 2017, 14, 1811-1823.                                                                                                                       | 1.3 | 24        |
| 34 | Temporal and spatial variations of rock weathering and CO2 consumption in the Baltic Sea catchment.<br>Chemical Geology, 2017, 466, 57-69.                                                                                          | 1.4 | 10        |
| 35 | Methane fluxes from the sea to the atmosphere across the Siberian shelf seas. Geophysical Research<br>Letters, 2016, 43, 5869-5877.                                                                                                 | 1.5 | 83        |
| 36 | Tracing terrestrial DOC in the Baltic Sea—A 3â€Ð model study. Global Biogeochemical Cycles, 2016, 30,<br>134-148.                                                                                                                   | 1.9 | 17        |

3

| #  | Article                                                                                                                                                                           | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Identifying Hot Spots of Agricultural Nitrogen Loss Within the Baltic Sea Drainage Basin. Water, Air,<br>and Soil Pollution, 2016, 227, 1.                                        | 1.1  | 19        |
| 38 | Nitrogen surface water retention in the Baltic Sea drainage basin. Hydrology and Earth System Sciences, 2015, 19, 981-996.                                                        | 1.9  | 23        |
| 39 | Modelling the 13C and 12C isotopes of inorganic and organic carbon in the Baltic Sea. Journal of<br>Marine Systems, 2015, 148, 122-130.                                           | 0.9  | 6         |
| 40 | Application of a novel modeling tool with multistressor functionality to support management of organic contaminants in the Baltic Sea. Ambio, 2015, 44, 498-506.                  | 2.8  | 16        |
| 41 | Seasonal and Regional Patterns in Performance for a Baltic Sea Drainage Basin Hydrologic Model.<br>Journal of the American Water Resources Association, 2015, 51, 550-566.        | 1.0  | 7         |
| 42 | Environmental Impacts—Freshwater Biogeochemistry. Regional Climate Studies, 2015, , 307-336.                                                                                      | 1.2  | 1         |
| 43 | Catchment-scale dissolved carbon concentrations and export estimates across six subarctic streams in northern Sweden. Biogeosciences, 2014, 11, 525-537.                          | 1.3  | 50        |
| 44 | External total alkalinity loads versus internal generation: The influence of nonriverine alkalinity sources in the Baltic Sea. Global Biogeochemical Cycles, 2014, 28, 1358-1370. | 1.9  | 33        |
| 45 | Effects of growth and dissolution on the fractionation of silicon isotopes by estuarine diatoms.<br>Geochimica Et Cosmochimica Acta, 2014, 130, 156-166.                          | 1.6  | 35        |
| 46 | Carbon cycling in the Baltic Sea — The fate of allochthonous organic carbon and its impact on<br>air–sea CO2 exchange. Journal of Marine Systems, 2014, 129, 289-302.             | 0.9  | 56        |
| 47 | Future Nutrient Load Scenarios for the Baltic Sea Due to Climate and Lifestyle Changes. Ambio, 2014, 43, 337-351.                                                                 | 2.8  | 31        |
| 48 | Biogeochemical Control of the Coupled CO2–O2 System of the Baltic Sea: A Review of the Results of<br>Baltic-C. Ambio, 2014, 43, 49-59.                                            | 2.8  | 42        |
| 49 | Reduction of Baltic Sea Nutrient Inputs and Allocation of Abatement Costs Within the Baltic Sea<br>Catchment. Ambio, 2014, 43, 11-25.                                             | 2.8  | 56        |
| 50 | Hydro-economic modelling of cost-effective transboundary water quality management in the Baltic<br>Sea. Water Resources and Economics, 2014, 5, 1-23.                             | 0.9  | 43        |
| 51 | Hypoxia Sustains Cyanobacteria Blooms in the Baltic Sea. Environmental Science & Technology, 2014, 48, 2598-2602.                                                                 | 4.6  | 109       |
| 52 | Global carbon dioxide emissions from inland waters. Nature, 2013, 503, 355-359.                                                                                                   | 13.7 | 1,670     |
| 53 | Modeling Social–Ecological Scenarios in Marine Systems. BioScience, 2013, 63, 735-744.                                                                                            | 2.2  | 13        |
| 54 | Silicon isotope enrichment in diatoms during nutrient-limited blooms in a eutrophied river system.<br>Journal of Geochemical Exploration, 2013, 132, 173-180.                     | 1.5  | 18        |

| #  | Article                                                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Spatiotemporal variations of <i>p</i> CO <sub>2</sub> and Î′ <sup>13</sup> Câ€DIC in subarctic streams in northern Sweden. Global Biogeochemical Cycles, 2013, 27, 176-186.                                                                                          | 1.9 | 28        |
| 56 | Modeling SocialEcological Scenarios in Marine Systems. BioScience, 2013, 63, 735-744.                                                                                                                                                                                | 2.2 | 55        |
| 57 | Riverine nitrogen export in Swedish catchments dominated by atmospheric inputs. Biogeochemistry, 2012, 111, 203-217.                                                                                                                                                 | 1.7 | 14        |
| 58 | Degradation of terrestrial organic carbon, primary production and out-gassing of CO2 in the Laptev<br>and East Siberian Seas as inferred from δ13C values of DIC. Geochimica Et Cosmochimica Acta, 2012, 95,<br>143-159.                                             | 1.6 | 68        |
| 59 | Nitrogen fluxes from the landscape are controlled by net anthropogenic nitrogen inputs and by climate. Frontiers in Ecology and the Environment, 2012, 10, 37-43.                                                                                                    | 1.9 | 281       |
| 60 | A centennial record of fluvial organic matter input from the discontinuous permafrost catchment of<br>Lake TornetrÃ <b>s</b> k. Journal of Geophysical Research, 2012, 117, .                                                                                        | 3.3 | 15        |
| 61 | Net anthropogenic nitrogen inputs to watersheds and riverine N export to coastal waters: a brief overview. Current Opinion in Environmental Sustainability, 2012, 4, 203-211.                                                                                        | 3.1 | 145       |
| 62 | Tracing inputs of terrestrial high molecular weight dissolved organic matter within the Baltic Sea ecosystem. Biogeosciences, 2012, 9, 4465-4475.                                                                                                                    | 1.3 | 52        |
| 63 | Evaluating regional variation of net anthropogenic nitrogen and phosphorus inputs (NANI/NAPI),<br>major drivers, nutrient retention pattern and management implications in the multinational areas of<br>Baltic Sea basin. Ecological Modelling, 2012, 227, 117-135. | 1.2 | 125       |
| 64 | Five critical questions of scale for the coastal zone. Estuarine, Coastal and Shelf Science, 2012, 96,<br>9-21.                                                                                                                                                      | 0.9 | 44        |
| 65 | Inventories and behavior of particulate organic carbon in the Laptev and East Siberian seas. Global<br>Biogeochemical Cycles, 2011, 25, n/a-n/a.                                                                                                                     | 1.9 | 67        |
| 66 | Hypoxia Is Increasing in the Coastal Zone of the Baltic Sea. Environmental Science & Technology, 2011, 45, 6777-6783.                                                                                                                                                | 4.6 | 364       |
| 67 | Nitrogen processes in aquatic ecosystems. , 2011, , 126-146.                                                                                                                                                                                                         |     | 46        |
| 68 | Climate dependent diatom production is preserved in biogenic Si isotope signatures. Biogeosciences, 2011, 8, 3491-3499.                                                                                                                                              | 1.3 | 12        |
| 69 | History and scenarios of future development of Baltic Sea eutrophication. Estuarine, Coastal and Shelf Science, 2011, 92, 307-322.                                                                                                                                   | 0.9 | 87        |
| 70 | Overview of eutrophication indicators to assess environmental status within the European Marine<br>Strategy Framework Directive. Estuarine, Coastal and Shelf Science, 2011, 93, 117-131.                                                                            | 0.9 | 375       |
| 71 | Making the ecosystem approach operational—Can regime shifts in ecological- and governance systems<br>facilitate the transition?. Marine Policy, 2010, 34, 1290-1299.                                                                                                 | 1.5 | 99        |
| 72 | CO <sub>2</sub> supersaturation along the aquatic conduit in Swedish watersheds as constrained by terrestrial respiration, aquatic respiration and weathering. Global Change Biology, 2010, 16, 1966-1978.                                                           | 4.2 | 177       |

| #  | Article                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | The relationship between subsurface hydrology and dissolved carbon fluxes for a sub-arctic catchment. Hydrology and Earth System Sciences, 2010, 14, 941-950.                      | 1.9 | 53        |
| 74 | Nonconservative behavior of dissolved organic carbon across the Laptev and East Siberian seas.<br>Global Biogeochemical Cycles, 2010, 24, .                                        | 1.9 | 107       |
| 75 | An enormous amorphous silica stock in boreal wetlands. Journal of Geophysical Research, 2010, 115, .                                                                               | 3.3 | 46        |
| 76 | Scenario Analysis on Protein Consumption and Climate Change Effects on Riverine N Export to the Baltic Sea. Environmental Science & amp; Technology, 2010, 44, 2379-2385.          | 4.6 | 50        |
| 77 | Stable silicon isotope analysis on nanomole quantities using MC-ICP-MS with a hexapole gas-collision cell. Journal of Analytical Atomic Spectrometry, 2010, 25, 156-162.           | 1.6 | 13        |
| 78 | Estimation of permafrost thawing rates in a sub-arctic catchment using recession flow analysis.<br>Hydrology and Earth System Sciences, 2009, 13, 595-604.                         | 1.9 | 101       |
| 79 | Landscape elements and river chemistry as affected by river regulation – a 3-D perspective. Hydrology and Earth System Sciences, 2009, 13, 1597-1606.                              | 1.9 | 19        |
| 80 | Nitrogen driving force and pressure relationships at contrasting scales: Implications for catchment management. International Journal of River Basin Management, 2009, 7, 221-232. | 1.5 | 6         |
| 81 | How well do ecosystem indicators communicate the effects of anthropogenic eutrophication?.<br>Estuarine, Coastal and Shelf Science, 2009, 82, 583-596.                             | 0.9 | 87        |
| 82 | Landscape variations in stream water SO42â^' and δ34SSO4 in a boreal stream network. Geochimica Et<br>Cosmochimica Acta, 2009, 73, 4648-4660.                                      | 1.6 | 23        |
| 83 | Estimation of permafrost thawing rates in the sub-arctic using recession flow analysis. IOP<br>Conference Series: Earth and Environmental Science, 2009, 6, 092018.                | 0.2 | 2         |
| 84 | Nutrient budgets for European seas: A measure of the effectiveness of nutrient reduction policies.<br>Marine Pollution Bulletin, 2008, 56, 1609-1617.                              | 2.3 | 84        |
| 85 | Modelling nutrient fluxes from sub-arctic basins: Comparison of pristine vs. dammed rivers. Journal of Marine Systems, 2008, 73, 236-249.                                          | 0.9 | 45        |
| 86 | Silicon dynamics in the Oder estuary, Baltic Sea. Journal of Marine Systems, 2008, 73, 250-262.                                                                                    | 0.9 | 26        |
| 87 | Changes in dissolved silicate loads to the Baltic Sea — The effects of lakes and reservoirs. Journal of<br>Marine Systems, 2008, 73, 223-235.                                      | 0.9 | 60        |
| 88 | Past, present and future state of the biogeochemical Si cycle in the Baltic Sea. Journal of Marine Systems, 2008, 73, 338-346.                                                     | 0.9 | 54        |
| 89 | The Baltic Sea a century ago — a reconstruction from model simulations, verified by observations.<br>Journal of Marine Systems, 2008, 74, 485-494.                                 | 0.9 | 109       |
|    |                                                                                                                                                                                    |     |           |

90 Climate-related Change in Terrestrial and Freshwater Ecosystems. , 2008, , 221-308.

12

| #   | Article                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Tracing terrestrial organic matter by δ34S and δ13C signatures in a subarctic estuary. Limnology and<br>Oceanography, 2008, 53, 2594-2602.                                                              | 1.6 | 59        |
| 92  | Nutrient processes and consequences , 2008, , 30-45.                                                                                                                                                    |     | 2         |
| 93  | Management Options and Effects on a Marine Ecosystem: Assessing the Future of the Baltic. Ambio, 2007, 36, 243-249.                                                                                     | 2.8 | 100       |
| 94  | Modeling Riverine Nutrient Transport to the Baltic Sea: A Large-scale Approach. Ambio, 2007, 36, 124-133.                                                                                               | 2.8 | 46        |
| 95  | Riverine transport of biogenic elements to the Baltic Sea – past and possible future perspectives.<br>Hydrology and Earth System Sciences, 2007, 11, 1593-1607.                                         | 1.9 | 35        |
| 96  | Nitrogen budgets of the Polish agriculture 1960–2000: implications for riverine nitrogen loads to the<br>Baltic Sea from transitional countries. Biogeochemistry, 2007, 85, 153-168.                    | 1.7 | 35        |
| 97  | Modeling hydrology and silicon-carbon interactions in taiga and tundra biomes from a landscape perspective: Implications for global warming feedbacks. Global Biogeochemical Cycles, 2006, 20, n/a-n/a. | 1.9 | 40        |
| 98  | Source identification of nitrate by means of isotopic tracers in the Baltic Sea catchments.<br>Biogeosciences, 2006, 3, 663-676.                                                                        | 1.3 | 115       |
| 99  | Decreased Silica Land–sea Fluxes through Damming in the Baltic Sea Catchment – Significance of<br>Particle Trapping and Hydrological Alterations. Biogeochemistry, 2006, 77, 265-281.                   | 1.7 | 138       |
| 100 | River Nutrient Loads and Catchment Size. Biogeochemistry, 2005, 75, 83-107.                                                                                                                             | 1.7 | 59        |
| 101 | Nutrient variations in boreal and subarctic Swedish rivers: Landscape control of land―sea fluxes.<br>Limnology and Oceanography, 2004, 49, 1871-1883.                                                   | 1.6 | 88        |
| 102 | Nutrient land–sea fluxes in oligothrophic and pristine estuaries of the Gulf of Bothnia, Baltic Sea.<br>Estuarine, Coastal and Shelf Science, 2003, 56, 781-793.                                        | 0.9 | 58        |
| 103 | Nitrogen and phosphorus budgets of the Gulf of Gdańsk (Baltic Sea). Estuarine, Coastal and Shelf<br>Science, 2003, 57, 239-248.                                                                         | 0.9 | 56        |
| 104 | Hypoxia in the Baltic Sea and Basin-Scale Changes in Phosphorus Biogeochemistry. Environmental<br>Science & Technology, 2002, 36, 5315-5320.                                                            | 4.6 | 372       |
| 105 | Hydrological alterations with river damming in northern Sweden: Implications for weathering and river biogeochemistry. Global Biogeochemical Cycles, 2002, 16, 12-1-12-13.                              | 1.9 | 83        |
| 106 | A box model approach for a long-term assessment of estuarine eutrophication, Szczecin Lagoon, southern Baltic. Journal of Marine Systems, 2000, 25, 387-403.                                            | 0.9 | 50        |
| 107 | Silicon Retention in River Basins: Far-reaching Effects on Biogeochemistry and Aquatic Food Webs in<br>Coastal Marine Environments. Ambio, 2000, 29, 45-50.                                             | 2.8 | 301       |
| 108 | Perturbed silicon cycle discussed. Eos, 2000, 81, 198.                                                                                                                                                  | 0.1 | 2         |

7

| #   | Article                                                                                                                                                          | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Hydrological Alterations and Marine Biogeochemistry: A Silicate Issue?. BioScience, 2000, 50, 776.                                                               | 2.2  | 131       |
| 110 | The exceptional Oder Flood in summer 1997 — the fate of nutrients and particulate organic matter in the Baltic Sea. Ocean Dynamics, 1998, 50, 169-181.           | 0.2  | 16        |
| 111 | An extensive bloom of the N2-fixing cyanobacterium Trichodesmium erythraeum in the central Arabian<br>Sea. Marine Ecology - Progress Series, 1998, 172, 281-292. | 0.9  | 217       |
| 112 | Effect of Danube River dam on Black Sea biogeochemistry and ecosystem structure. Nature, 1997, 386,<br>385-388.                                                  | 13.7 | 665       |
| 113 | Primary Productivity Regime and Nutrient Removal in the Danube Estuary. Estuarine, Coastal and Shelf<br>Science, 1997, 45, 579-589.                              | 0.9  | 42        |
| 114 | Long-term ecological changes in Romanian coastal Waters of the Black Sea. Marine Pollution<br>Bulletin, 1996, 32, 32-38.                                         | 2.3  | 126       |
| 115 | Nitrogen flows from European regional watersheds to coastal marine waters. , 0, , 271-297.                                                                       |      | 54        |
| 116 | On the decline of eastern Baltic cod: we need to take more holistic views into account. Reply to                                                                 | 1.2  | 0         |

Brander (2022) comment on Svedäg et al. (2022). ICES Journal of Marine Science, 0, , . 116