
Magdalena Rogulska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2705771/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Crosslinked 4-Vinylpyridine Monodisperse Functional Microspheres for Sorption of Ibuprofen and Ketoprofen. Polymers, 2022, 14, 2080.	4.5	7
2	Porous DMN-co-GMA copolymers modified with 1-(2-hydroxyethyl)-2-pyrrolidone. Journal of Thermal Analysis and Calorimetry, 2021, 144, 699-711.	3.6	3
3	Synthesis and characterization of porous copolymers of 2â€hydroxyethyl methacrylate with ethylene glycol dimethacrylate. Polymers for Advanced Technologies, 2021, 32, 2566-2575.	3.2	2
4	Regular Polymeric Microspheres with Highly Developed Internal Structure and Remarkable Thermal Stability. Materials, 2021, 14, 2240.	2.9	9
5	New thermoplastic poly(carbonate-urethane)s based on diphenylethane derivative chain extender. Journal of Thermal Analysis and Calorimetry, 2020, 139, 1049-1068.	3.6	12
6	New thermoplastic poly(carbonate-urethane)s based on diphenylethane-derivative chain extenders—the effect of chain extender structure on thermal and mechanical properties. Journal of Thermal Analysis and Calorimetry, 2020, 139, 3107-3121.	3.6	3
7	TG/DSC/FTIR study of porous copolymeric beads based on the dimethacrylate derivative of m-xylene. Journal of Thermal Analysis and Calorimetry, 2020, 141, 1351-1360.	3.6	4
8	A Multiproxy Approach to the Reconstruction of an Ancient Manufacturing Technology: A Case Study of a Faience Ptolemaic Bowl from Tell Atrib (Nile Delta). Minerals (Basel, Switzerland), 2020, 10, 785.	2.0	3
9	Insight into functionalized DMN-co-GMA copolymers. Journal of Thermal Analysis and Calorimetry, 2019, 138, 4485-4495.	3.6	3
10	Synthesis and characterization of VPâ \in DMN polymeric sorbents. Adsorption, 2019, 25, 419-427.	3.0	1
11	Studies of thermal properties of di(methacryloyloxymethyl)naphthalene–divinylbenzene (DMN–DVB) copolymer and its alkyl-bonded derivatives. Journal of Thermal Analysis and Calorimetry, 2019, 138, 4385-4393.	3.6	3
12	Polycarbonate-based thermoplastic polyurethane elastomers modified by DMPA. Polymer Bulletin, 2019, 76, 4719-4733.	3.3	13
13	Transparent sulfur-containing thermoplastic polyurethanes with polyether and polycarbonate soft segments. Polymer Bulletin, 2018, 75, 1211-1235.	3.3	13
14	Influence of DMPA content on the properties of new thermoplastic poly(ether-urethane) elastomers. Journal of Elastomers and Plastics, 2018, 50, 140-150.	1.5	6
15	The effect of chain extender structure on the properties of new thermoplastic poly(carbonate–urethane)s derived from MDI. Journal of Thermal Analysis and Calorimetry, 2017, 127, 2325-2339.	3.6	21
16	New thermoplastic poly(carbonate-urethane)s based on chain extenders with sulfur atoms. Chemical Papers, 2017, 71, 1195-1204.	2.2	18
17	Aliphatic polycarbonate-based thermoplastic polyurethane elastomers containing diphenyl sulfide units. Journal of Thermal Analysis and Calorimetry, 2016, 126, 225-243.	3.6	25
18	New thermoplastic polyurethane elastomers based on aliphatic–aromatic chain extenders with different content of sulfur atoms, lournal of Thermal Analysis and Calorimetry, 2015, 121, 397-410	3.6	32

#	Article	IF	CITATIONS
19	New thermoplastic poly(thiourethane-urethane) elastomers based on hexane-1,6-diyl diisocyanate (HDI). Journal of Thermal Analysis and Calorimetry, 2013, 114, 903-916.	3.6	50
20	New thermoplastic segmented polyurethanes with hard segments derived from 4,4′â€diphenylmethane diisocyanate and methylenebis(1,4â€phenylenemethylenethio)dialcanols. Journal of Applied Polymer Science, 2012, 123, 331-346.	2.6	20
21	New thermoplastic poly(carbonate-urethane) elastomers. Polish Journal of Chemical Technology, 2011, 13, 23-30.	0.5	17
22	The effect of softâ€segment structure on the properties of novel thermoplastic polyurethane elastomers based on an unconventional chain extender. Polymer International, 2011, 60, 652-659.	3.1	54
23	The synthesis and characterization of new thermoplastic poly(carbonate-urethane) elastomers derived from HDI and aliphatic–aromatic chain extenders. European Polymer Journal, 2009, 45, 2629-2643.	5.4	81
24	The synthesis and characterization of new thermoplastic poly(thiourethaneâ€urethane)s. Journal of Polymer Science Part A, 2008, 46, 1770-1782.	2.3	41
25	Studies on thermoplastic polyurethanes based on new diphenylethaneâ€derivative diols. III. The effect of molecular weight and structure of soft segment on some properties of segmented polyurethanes. Journal of Applied Polymer Science, 2008, 110, 1677-1689.	2.6	25
26	Studies on thermoplastic polyurethanes based on new diphenylethane-derivative diols. II. Synthesis and characterization of segmented polyurethanes from HDI and MDI. European Polymer Journal, 2007, 43, 1402-1414.	5.4	76
27	Studies on thermoplastic polyurethanes based on new diphenylethane-derivative diols. I. Synthesis and characterization of nonsegmented polyurethanes from HDI and MDI. European Polymer Journal, 2006, 42, 1786-1797.	5.4	67

Polyurethanes: Products of 4,4?-bis(6-hydroxyhexylthio)diphenyl ether and methylene bis(4-phenyl) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50