Aleksandar R Zeradjanin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2705529/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electrocatalysis Beyond 2020: How to Tune the Preexponential Frequency Factor. ChemElectroChem, 2022, 9, .	1.7	5
2	Perspective on experimental evaluation of adsorption energies at solid/liquid interfaces. Journal of Solid State Electrochemistry, 2021, 25, 33-42.	1.2	4
3	How to minimise destabilising effect of gas bubbles on water splitting electrocatalysts?. Current Opinion in Electrochemistry, 2021, 30, 100797.	2.5	24
4	Expanding the frontiers of hydrogen evolution electrocatalysis–searching for the origins of electrocatalytic activity in the anomalies of the conventional model. Electrochimica Acta, 2021, 388, 138583.	2.6	8
5	Activity and Stability of Oxides During Oxygen Evolution Reactionâ€â€â€From Mechanistic Controversies Toward Relevant Electrocatalytic Descriptors. Frontiers in Energy Research, 2021, 8, .	1.2	45
6	The Effect of Iron Impurities on Transition Metal Catalysts for the Oxygen Evolution Reaction in Alkaline Environment: Activity Mediators or Active Sites?. Catalysis Letters, 2021, 151, 1843-1856.	1.4	46
7	What is the trigger for the hydrogen evolution reaction? – towards electrocatalysis beyond the Sabatier principle. Physical Chemistry Chemical Physics, 2020, 22, 8768-8780.	1.3	41
8	Transition Metal—Carbon Bond Enthalpies as Descriptor for the Electrochemical Stability of Transition Metal Carbides in Electrocatalytic Applications. Journal of the Electrochemical Society, 2020, 167, 021501.	1.3	14
9	Extracting the kinetic parameters of the hydrogen evolution reaction at Pt in acidic media by means of dynamic multi-frequency analysis. Electrochimica Acta, 2019, 308, 328-336.	2.6	21
10	ls a major breakthrough in the oxygen electrocatalysis possible?. Current Opinion in Electrochemistry, 2018, 9, 214-223.	2.5	66
11	Frequent Pitfalls in the Characterization of Electrodes Designed for Electrochemical Energy Conversion and Storage. ChemSusChem, 2018, 11, 1278-1284.	3.6	30
12	Carbon Monoxide as a Promoter of Atomically Dispersed Platinum Catalyst in Electrochemical Hydrogen Evolution Reaction. Journal of the American Chemical Society, 2018, 140, 16198-16205.	6.6	74
13	Cyclodextrin inhibits zinc corrosion by destabilizing point defect formation in the oxide layer. Beilstein Journal of Nanotechnology, 2018, 9, 936-944.	1.5	13
14	Utilization of the catalyst layer of dimensionally stable anodes. Part 2: Impact of spatial current distribution on electrocatalytic performance. Journal of Electroanalytical Chemistry, 2018, 828, 63-70.	1.9	14
15	Stability and Activity of Nonâ€Nobleâ€Metalâ€Based Catalysts Toward the Hydrogen Evolution Reaction. Angewandte Chemie, 2017, 129, 9899-9903.	1.6	17
16	Balanced work function as a driver for facile hydrogen evolution reaction – comprehension and experimental assessment of interfacial catalytic descriptor. Physical Chemistry Chemical Physics, 2017, 19, 17019-17027.	1.3	69
17	Stability and Activity of Nonâ€Nobleâ€Metalâ€Based Catalysts Toward the Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2017, 56, 9767-9771.	7.2	118
18	Screening of material libraries for electrochemical CO2 reduction catalysts – Improving selectivity of Cu by mixing with Co. Journal of Catalysis, 2016, 343, 248-256.	3.1	47

#	Article	IF	CITATIONS
19	Electrochemical dissolution of gold in presence of chloride and bromide traces studied by on-line electrochemical inductively coupled plasma mass spectrometry. Electrochimica Acta, 2016, 222, 1056-1063.	2.6	33
20	A Critical Review on Hydrogen Evolution Electrocatalysis: Reâ€exploring the Volcanoâ€relationship. Electroanalysis, 2016, 28, 2256-2269.	1.5	241
21	Platinum recycling going green via induced surface potential alteration enabling fast and efficient dissolution. Nature Communications, 2016, 7, 13164.	5.8	55
22	Evaluation of kinetic constants on porous, non-noble catalyst layers for oxygen reduction—A comparative study between SECM and hydrodynamic methods. Catalysis Today, 2016, 262, 74-81.	2.2	20
23	Dissolution of Platinum in the Operational Range of Fuel Cells. ChemElectroChem, 2015, 2, 1407-1407.	1.7	3
24	The Effect of the Voltage Scan Rate on the Determination of the Oxygen Reduction Activity of Pt/C Fuel Cell Catalyst. Electrocatalysis, 2015, 6, 237-241.	1.5	36
25	Dissolution of Platinum in the Operational Range of Fuel Cells. ChemElectroChem, 2015, 2, 1471-1478.	1.7	152
26	Stability of nanostructured iridium oxide electrocatalysts during oxygen evolution reaction in acidic environment. Electrochemistry Communications, 2014, 48, 81-85.	2.3	229
27	Impact of the spatial distribution of morphological pattern on the efficiency of electrocatalytic gas evolving reactions. Journal of the Serbian Chemical Society, 2014, 79, 325-330.	0.4	2
28	A Comparative Study on Gold and Platinum Dissolution in Acidic and Alkaline Media. Journal of the Electrochemical Society, 2014, 161, H822-H830.	1.3	239
29	Coupling of a scanning flow cell with online electrochemical mass spectrometry for screening of reaction selectivity. Review of Scientific Instruments, 2014, 85, 104101.	0.6	83
30	Oxygen Electrochemistry as a Cornerstone for Sustainable Energy Conversion. Angewandte Chemie - International Edition, 2014, 53, 102-121.	7.2	1,186
31	Effect of Temperature on Gold Dissolution in Acidic Media. Journal of the Electrochemical Society, 2014, 161, H501-H507.	1.3	32
32	Temperature-Dependent Dissolution of Polycrystalline Platinum in Sulfuric Acid Electrolyte. Electrocatalysis, 2014, 5, 235-240.	1.5	81
33	Towards a comprehensive understanding of platinum dissolution in acidic media. Chemical Science, 2014, 5, 631-638.	3.7	337
34	Rational design of the electrode morphology for oxygen evolution – enhancing the performance for catalytic water oxidation. RSC Advances, 2014, 4, 9579.	1.7	117
35	On the faradaic selectivity and the role of surface inhomogeneity during the chlorine evolution reaction on ternary Ti–Ru–Ir mixed metal oxide electrocatalysts. Physical Chemistry Chemical Physics, 2014, 16, 13741-13747.	1.3	97
36	Dissolution of Noble Metals during Oxygen Evolution in Acidic Media. ChemCatChem, 2014, 6, 2219-2223.	1.8	394

#	Article	IF	CITATIONS
37	Sustainable generation of hydrogen using chemicals with regional oversupply – Feasibility of the electrolysis in acido-alkaline reactor. International Journal of Hydrogen Energy, 2014, 39, 16275-16281.	3.8	9
38	The impact of dissolved reactive gases on platinum dissolution in acidic media. Electrochemistry Communications, 2014, 40, 49-53.	2.3	54
39	Gold dissolution: towards understanding of noble metal corrosion. RSC Advances, 2013, 3, 16516.	1.7	142
40	Application of SECM in tracing of hydrogen peroxide at multicomponent non-noble electrocatalyst films for the oxygen reduction reaction. Catalysis Today, 2013, 202, 55-62.	2.2	33
41	Microstructural impact of anodic coatings on the electrochemical chlorine evolution reaction. Physical Chemistry Chemical Physics, 2012, 14, 7392.	1.3	70
42	Electrochemical characteristics of rechargeable polyaniline/lead dioxide cell. Journal of Power Sources, 2012, 217, 193-198.	4.0	20
43	Role of Water in the Chlorine Evolution Reaction at RuO ₂ â€Based Electrodes—Understanding Electrocatalysis as a Resonance Phenomenon. ChemSusChem, 2012, 5, 1897-1904.	3.6	53
44	Evaluation of the Catalytic Performance of Gasâ€Evolving Electrodes using Local Electrochemical Noise Measurements. ChemSusChem, 2012, 5, 1905-1911.	3.6	51
45	Utilization of the catalyst layer of dimensionally stable anodes—Interplay of morphology and active surface area. Electrochimica Acta, 2012, 82, 408-414.	2.6	49
46	Visualization of Chlorine Evolution at Dimensionally Stable Anodes by Means of Scanning Electrochemical Microscopy. Analytical Chemistry, 2011, 83, 7645-7650.	3.2	57
47	Scanning Electrochemical Microscopy for Investigation of Multicomponent Bioelectrocatalytic Films. ECS Transactions, 2011, 35, 33-44.	0.3	8
48	Electrocatalysis Beyond 2020: How to Tune the Preexponential Frequency Factor. ChemElectroChem, 0, , .	1.7	0