Diana LD Lima

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/270539/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of organic and inorganic amendments on soil organic matter properties. Geoderma, 2009, 150, 38-45.	2.3	118
2	Using capillary electrophoresis for the determination of organic acids in Port wine. Analytica Chimica Acta, 2004, 513, 163-167.	2.6	69
3	Kinetics of Eucalypt Lignosulfonate Oxidation to Aromatic Aldehydes by Oxygen in Alkaline Medium. Industrial & Engineering Chemistry Research, 2011, 50, 291-298.	1.8	61
4	Photodegradation of sulfamethoxazole in environmental samples: The role of pH, organic matter and salinity. Science of the Total Environment, 2019, 648, 1403-1410.	3.9	60
5	Sorptionâ^'Desorption Behavior of Atrazine on Soils Subjected to Different Organic Long-Term Amendments. Journal of Agricultural and Food Chemistry, 2010, 58, 3101-3106.	2.4	52
6	Development of ELISA methodologies for the direct determination of 17β-estradiol and 17α-ethinylestradiol in complex aqueous matrices. Journal of Environmental Management, 2013, 124, 121-127.	3.8	52
7	Low cost methodology for estrogens monitoring in water samples using dispersive liquid–liquid microextraction and HPLC with fluorescence detection. Talanta, 2013, 115, 980-985.	2.9	49
8	One-step extraction and concentration of estrogens for an adequate monitoring of wastewater using ionic-liquid-based aqueous biphasic systems. Green Chemistry, 2015, 17, 2570-2579.	4.6	46
9	Optimization of phenolic compounds analysis by capillary electrophoresis. Talanta, 2007, 72, 1404-1409.	2.9	34
10	Degradation by Solar Radiation of Estrogenic Hormones Monitored by UV–Visible Spectroscopy and Capillary Electrophoresis. Water, Air, and Soil Pollution, 2011, 215, 441-447.	1.1	33
11	Effect of natural aquatic humic substances on the photodegradation of estrone. Chemosphere, 2016, 145, 249-255.	4.2	31
12	Simultaneous extraction and concentration of water pollution tracers using ionic-liquid-based systems. Journal of Chromatography A, 2018, 1559, 69-77.	1.8	27
13	Photosensitized Degradation of 17β-estradiol and 17α-ethinylestradiol: Role of Humic Substances Fractions. Journal of Environmental Quality, 2016, 45, 693-700.	1.0	26
14	Sorption behavior of EE2 on soils subjected to different long-term organic amendments. Science of the Total Environment, 2012, 423, 120-124.	3.9	24
15	Evaluation of the anthropogenic input of caffeine in surface waters of the north and center of Portugal by ELISA. Science of the Total Environment, 2014, 479-480, 227-232.	3.9	24
16	Adsorption behavior of 17α-ethynylestradiol onto soils followed by fluorescence spectral deconvolution. Chemosphere, 2011, 84, 1072-1078.	4.2	23
17	Application of dispersive liquid–liquid microextraction for estrogens× ³ quantification by enzyme-linked immunosorbent assay. Talanta, 2014, 125, 102-106.	2.9	23
18	Photodegradation behaviour of estriol: An insight on natural aquatic organic matter influence. Chemosphere, 2016, 159, 545-551.	4.2	23

DIANA LD LIMA

#	Article	IF	CITATIONS
19	Photodegradation of sulfadiazine in different aquatic environments – Evaluation of influencing factors. Environmental Research, 2020, 188, 109730.	3.7	21
20	Dispersive liquid-liquid microextraction for the quantification of venlafaxine in environmental waters. Journal of Environmental Management, 2018, 217, 71-77.	3.8	20
21	Development of an ELISA procedure to study sorption of atrazine onto a sewage sludge-amended luvisol soil. Talanta, 2011, 85, 1494-1499.	2.9	18
22	Salicylic acid determination in estuarine and riverine waters using hollow fiber liquid-phase microextraction and capillary zone electrophoresis. Environmental Science and Pollution Research, 2017, 24, 15748-15755.	2.7	13
23	Solid-phase extraction and capillary electrophoresis determination of phenols from soil after alkaline CuO oxidation. Chemosphere, 2007, 69, 561-568.	4.2	12
24	Determination of estrone and 17αâ€ethinylestradiol in digested sludge by ultrasonic liquid extraction and highâ€performance liquid chromatography with fluorescence detection. Journal of Separation Science, 2019, 42, 1585-1592.	1.3	12
25	Oxolinic acid in aquaculture waters: Can natural attenuation through photodegradation decrease its concentration?. Science of the Total Environment, 2020, 749, 141661.	3.9	11
26	Solidified floating organic drop microextraction (SFODME) for the simultaneous analysis of three non-steroidal anti-inflammatory drugs in aqueous samples by HPLC. Analytical and Bioanalytical Chemistry, 2021, 413, 1851-1859.	1.9	11
27	Comparison between MEKC and UV spectral deconvolution to follow sorption experiment in soil. Talanta, 2010, 81, 1489-1493.	2.9	10
28	Biochar in soil mitigates dimethoate hazard to soil pore water exposed biota. Journal of Hazardous Materials, 2020, 400, 123304.	6.5	10
29	Sulfadiazine's photodegradation using a novel magnetic and reusable carbon based photocatalyst: Photocatalytic efficiency and toxic impacts to marine bivalves. Journal of Environmental Management, 2022, 313, 115030.	3.8	10
30	Development and application of a capillary electrophoresis method for the determination of ellagic acid in E. globulus wood and in filtrates from E. globulus kraft pulp. Wood Science and Technology, 2014, 48, 99-108.	1.4	9
31	ELISA as an effective tool to determine spatial and seasonal occurrence of emerging contaminants in the aquatic environment. Analytical Methods, 2020, 12, 2517-2526.	1.3	8
32	Studying the interaction between triazines and humic substances—A new approach using open tubular capillary eletrochromatography. Talanta, 2011, 84, 424-429.	2.9	7
33	Sulfamethoxazole exposure to simulated solar radiation under continuous flow mode: Degradation and antibacterial activity. Chemosphere, 2020, 238, 124613.	4.2	7
34	Application of MEKC to the monitoring of atrazine sorption behaviour on soils. Journal of Separation Science, 2009, 32, 4241-4246.	1.3	6
35	Development of an enzyme-linked immunosorbent assay for atrazine monitoring in water samples. Environmental Science and Pollution Research, 2013, 20, 3157-3164.	2.7	5
36	Optimization of a dispersive liquid–liquid microextraction method followed by UHPLC analysis for fluoxetine quantification in environmental water resources. Journal of Separation Science, 2018, 41, 4246-4252.	1.3	5

#	Article	IF	CITATIONS
37	Impact of UASB reactors operation mode on the removal of estrone and 17α-ethinylestradiol from wastewaters. Science of the Total Environment, 2021, 764, 144291.	3.9	5
38	Bleeding Evaluation of Different SPE Cartridges on Clean-Up of Atrazine From Aqueous Samples Containing Organic Matter. Chromatographia, 2011, 74, 725-729.	0.7	1