Rodolphe Barrangou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2705180/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CRISPR Provides Acquired Resistance Against Viruses in Prokaryotes. Science, 2007, 315, 1709-1712.	6.0	4,956
2	Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E2579-86.	3.3	2,217
3	An updated evolutionary classification of CRISPR–Cas systems. Nature Reviews Microbiology, 2015, 13, 722-736.	13.6	2,081
4	Evolution and classification of the CRISPR–Cas systems. Nature Reviews Microbiology, 2011, 9, 467-477.	13.6	2,078
5	CRISPR/Cas, the Immune System of Bacteria and Archaea. Science, 2010, 327, 167-170.	6.0	1,995
6	The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature, 2010, 468, 67-71.	13.7	1,897
7	Evolutionary classification of CRISPR–Cas systems: a burst of class 2 and derived variants. Nature Reviews Microbiology, 2020, 18, 67-83.	13.6	1,427
8	Comparative genomics of the lactic acid bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 15611-15616.	3.3	1,303
9	Phage Response to CRISPR-Encoded Resistance in <i>Streptococcus thermophilus</i> . Journal of Bacteriology, 2008, 190, 1390-1400.	1.0	1,110
10	Diversity, Activity, and Evolution of CRISPR Loci in <i>Streptococcus thermophilus</i> . Journal of Bacteriology, 2008, 190, 1401-1412.	1.0	748
11	CRISPR-Cas Systems in Bacteria and Archaea: Versatile Small RNAs for Adaptive Defense and Regulation. Annual Review of Genetics, 2011, 45, 273-297.	3.2	747
12	Applications of CRISPR technologies in research and beyond. Nature Biotechnology, 2016, 34, 933-941.	9.4	735
13	The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Research, 2011, 39, 9275-9282.	6.5	701
14	CRISPR-Cas Systems: Prokaryotes Upgrade to Adaptive Immunity. Molecular Cell, 2014, 54, 234-244.	4.5	633
15	Complete genome sequence of the probiotic lactic acid bacterium Lactobacillus acidophilus NCFM. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 3906-3912.	3.3	565
16	Expanding the biotechnology potential of lactobacilli through comparative genomics of 213 strains and associated genera. Nature Communications, 2015, 6, 8322.	5.8	488
17	The genome sequence of the probiotic intestinal bacterium Lactobacillus johnsonii NCC 533. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 2512-2517.	3.3	476
18	Cas3 is a single-stranded DNA nuclease and ATP-dependent helicase in the CRISPR/Cas immune system. FMBO Journal, 2011, 30, 1335-1342.	3.5	363

#	Article	IF	CITATIONS
19	Programmable Removal of Bacterial Strains by Use of Genome-Targeting CRISPR-Cas Systems. MBio, 2014, 5, e00928-13.	1.8	315
20	Identifying and Visualizing Functional PAM Diversity across CRISPR-Cas Systems. Molecular Cell, 2016, 62, 137-147.	4.5	290
21	Comparative analysis of CRISPR loci in lactic acid bacteria genomes. International Journal of Food Microbiology, 2009, 131, 62-70.	2.1	255
22	Functional and comparative genomic analyses of an operon involved in fructooligosaccharide utilization by Lactobacillus acidophilus. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 8957-8962.	3.3	245
23	A decade of discovery: CRISPR functions and applications. Nature Microbiology, 2017, 2, 17092.	5.9	238
24	In vitro reconstitution of Cascade-mediated CRISPR immunity in Streptococcus thermophilus. EMBO Journal, 2013, 32, 385-394.	3.5	220
25	Guide RNA Functional Modules Direct Cas9 Activity and Orthogonality. Molecular Cell, 2014, 56, 333-339.	4.5	214
26	crRNA and tracrRNA guide Cas9-mediated DNA interference in <i>Streptococcus thermophilus</i> . RNA Biology, 2013, 10, 841-851.	1.5	203
27	Genomic Encyclopedia of Type Strains of the Genus Bifidobacterium. Applied and Environmental Microbiology, 2014, 80, 6290-6302.	1.4	203
28	Global analysis of carbohydrate utilization by Lactobacillus acidophilus using cDNA microarrays. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 3816-3821.	3.3	185
29	The roles of CRISPR–Cas systems in adaptive immunity and beyond. Current Opinion in Immunology, 2015, 32, 36-41.	2.4	185
30	Strong bias in the bacterial CRISPR elements that confer immunity to phage. Nature Communications, 2013, 4, 1430.	5.8	180
31	Genomic features of lactic acid bacteria effecting bioprocessing and health. FEMS Microbiology Reviews, 2005, 29, 393-409.	3.9	176
32	CRISPR as systems and RNAâ€guided interference. Wiley Interdisciplinary Reviews RNA, 2013, 4, 267-278.	3.2	168
33	Advances in Industrial Biotechnology Using CRISPR-Cas Systems. Trends in Biotechnology, 2018, 36, 134-146.	4.9	166
34	Bile salt hydrolases: Gatekeepers of bile acid metabolism and host-microbiome crosstalk in the gastrointestinal tract. PLoS Pathogens, 2019, 15, e1007581.	2.1	163
35	CRISPR: New Horizons in Phage Resistance and Strain Identification. Annual Review of Food Science and Technology, 2012, 3, 143-162.	5.1	162
36	Harnessing CRISPR–Cas systems for bacterial genome editing. Trends in Microbiology, 2015, 23, 225-232.	3.5	154

#	Article	IF	CITATIONS
37	Analysis of the Genome Sequence of <i>Lactobacillus gasseri</i> ATCC 33323 Reveals the Molecular Basis of an Autochthonous Intestinal Organism. Applied and Environmental Microbiology, 2008, 74, 4610-4625.	1.4	152
38	CRISPR Immunity Drives Rapid Phage Genome Evolution in Streptococcus thermophilus. MBio, 2015, 6, .	1.8	151
39	Comparison of the Complete Genome Sequences of <i>Bifidobacterium animalis</i> subsp. <i>lactis</i> DSM 10140 and Bl-04. Journal of Bacteriology, 2009, 191, 4144-4151.	1.0	147
40	The Population and Evolutionary Dynamics of Phage and Bacteria with CRISPR–Mediated Immunity. PLoS Genetics, 2013, 9, e1003312.	1.5	147
41	Analysis of the Lactobacillus casei supragenome and its influence in species evolution and lifestyle adaptation. BMC Genomics, 2012, 13, 533.	1.2	144
42	Phylogenetic Diversity of the Enteric Pathogen Salmonella enterica subsp. enterica Inferred from Genome-Wide Reference-Free SNP Characters. Genome Biology and Evolution, 2013, 5, 2109-2123.	1.1	139
43	Persisting Viral Sequences Shape Microbial CRISPR-based Immunity. PLoS Computational Biology, 2012, 8, e1002475.	1.5	136
44	Genome editing using the endogenous type I CRISPR-Cas system in <i>Lactobacillus crispatus</i> . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15774-15783.	3.3	133
45	Species- and site-specific genome editing in complex bacterial communities. Nature Microbiology, 2022, 7, 34-47.	5.9	127
46	CRISPR-based screening of genomic island excision events in bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8076-8081.	3.3	125
47	Novel Virulence Gene and Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) Multilocus Sequence Typing Scheme for Subtyping of the Major Serovars of <i>Salmonella enterica</i> subsp. <i>enterica</i> . Applied and Environmental Microbiology, 2011, 77, 1946-1956.	1.4	124
48	Advances in CRISPR-Cas9 genome engineering: lessons learned from RNA interference. Nucleic Acids Research, 2015, 43, 3407-3419.	6.5	124
49	<i>In Vivo</i> Targeting of Clostridioides difficile Using Phage-Delivered CRISPR-Cas3 Antimicrobials. MBio, 2020, 11, .	1.8	123
50	Genomic features of lactic acid bacteria effecting bioprocessing and health. FEMS Microbiology Reviews, 2005, 29, 393-409.	3.9	101
51	Transcriptional and functional analysis of galactooligosaccharide uptake by <i>lacS</i> in <i>Lactobacillus acidophilus</i> . Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 17785-17790.	3.3	99
52	Characterization and evolution of Salmonella CRISPR-Cas systems. Microbiology (United Kingdom), 2015, 161, 374-386.	0.7	98
53	Phage mutations in response to <scp>CRISPR</scp> diversification in a bacterial population. Environmental Microbiology, 2013, 15, 463-470.	1.8	97
54	Subtyping Salmonella enterica Serovar Enteritidis Isolates from Different Sources by Using Sequence Typing Based on Virulence Genes and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs). Applied and Environmental Microbiology, 2011, 77, 4520-4526.	1.4	93

#	Article	IF	CITATIONS
55	Using CRISPR-Cas systems as antimicrobials. Current Opinion in Microbiology, 2017, 37, 155-160.	2.3	93
56	<i>Lactobacillus</i> bile salt hydrolase substrate specificity governs bacterial fitness and host colonization. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	92
57	The <i>Lactobacillus</i> Bile Salt Hydrolase Repertoire Reveals Niche-Specific Adaptation. MSphere, 2018, 3, .	1.3	91
58	<i>Lactobacillus acidophilus</i> Metabolizes Dietary Plant Glucosides and Externalizes Their Bioactive Phytochemicals. MBio, 2017, 8, .	1.8	90
59	Phage-Induced Expression of CRISPR-Associated Proteins Is Revealed by Shotgun Proteomics in Streptococcus thermophilus. PLoS ONE, 2012, 7, e38077.	1.1	88
60	The three major types of <scp>CRISPR</scp> â€ <scp>Cas</scp> systems function independently in <scp>CRISPR RNA</scp> biogenesis in <scp><i>S</i></scp> <i>treptococcus thermophilus</i> . Molecular Microbiology, 2014, 93, 98-112.	1.2	81
61	Characterizing the activity of abundant, diverse and active CRISPR-Cas systems in lactobacilli. Scientific Reports, 2018, 8, 11544.	1.6	81
62	Metagenomic reconstructions of bacterial CRISPR loci constrain population histories. ISME Journal, 2016, 10, 858-870.	4.4	80
63	CRISPRdisco: An Automated Pipeline for the Discovery and Analysis of CRISPR-Cas Systems. CRISPR Journal, 2018, 1, 171-181.	1.4	80
64	The combination of CRISPR-MVLST and PFGE provides increased discriminatory power for differentiating human clinical isolates of Salmonella enterica subsp. enterica serovar Enteritidis. Food Microbiology, 2013, 34, 164-173.	2.1	79
65	Genotyping by PCR and High-Throughput Sequencing of Commercial Probiotic Products Reveals Composition Biases. Frontiers in Microbiology, 2016, 7, 1747.	1.5	79
66	CRISPR-Based Typing and Next-Generation Tracking Technologies. Annual Review of Food Science and Technology, 2016, 7, 395-411.	5.1	78
67	Characterization of the tre Locus and Analysis of Trehalose Cryoprotection in Lactobacillus acidophilus NCFM. Applied and Environmental Microbiology, 2006, 72, 1218-1225.	1.4	77
68	Cas9 Targeting and the CRISPR Revolution. Science, 2014, 344, 707-708.	6.0	77
69	Comparative Genomics and Transcriptional Analysis of Prophages Identified in the Genomes of Lactobacillus gasseri, Lactobacillus salivarius, and Lactobacillus casei. Applied and Environmental Microbiology, 2006, 72, 3130-3146.	1.4	75
70	The Bacterial Origins of the CRISPR Genome-Editing Revolution. Human Gene Therapy, 2015, 26, 413-424.	1.4	75
71	The Evolutionary Divergence of Shiga Toxin-Producing Escherichia coli Is Reflected in Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) Spacer Composition. Applied and Environmental Microbiology, 2013, 79, 5710-5720.	1.4	74
72	Diversity of CRISPR-Cas immune systems and molecular machines. Genome Biology, 2015, 16, 247.	3.8	74

RODOLPHE BARRANGOU

#	Article	IF	CITATIONS
73	Conserved S-Layer-Associated Proteins Revealed by Exoproteomic Survey of S-Layer-Forming Lactobacilli. Applied and Environmental Microbiology, 2016, 82, 134-145.	1.4	74
74	Identification and Characterization of Leuconostoc fallax Strains Isolated from an Industrial Sauerkraut Fermentation. Applied and Environmental Microbiology, 2002, 68, 2877-2884.	1.4	73
75	Occurrence and Diversity of CRISPR-Cas Systems in the Genus Bifidobacterium. PLoS ONE, 2015, 10, e0133661.	1.1	73
76	Targeted transcriptional modulation with type I CRISPR–Cas systems in human cells. Nature Biotechnology, 2019, 37, 1493-1501.	9.4	73
77	Transcriptional Analysis of Prebiotic Uptake and Catabolism by Lactobacillus acidophilus NCFM. PLoS ONE, 2012, 7, e44409.	1.1	71
78	Functional Analysis of an S-Layer-Associated Fibronectin-Binding Protein in Lactobacillus acidophilus NCFM. Applied and Environmental Microbiology, 2016, 82, 2676-2685.	1.4	71
79	CRISPR-based engineering of next-generation lactic acid bacteria. Current Opinion in Microbiology, 2017, 37, 79-87.	2.3	68
80	Functional Genomics of Probiotic Lactobacilli. Journal of Clinical Gastroenterology, 2008, 42, S160-S162.	1.1	67
81	Transcriptional analysis of oligosaccharide utilization by Bifidobacterium lactisBl-04. BMC Genomics, 2013, 14, 312.	1.2	65
82	Characterization and Exploitation of CRISPR Loci in Bifidobacterium longum. Frontiers in Microbiology, 2017, 8, 1851.	1.5	64
83	CRISPR-MVLST subtyping of Salmonella enterica subsp. entericaserovars Typhimurium and Heidelberg and application in identifying outbreak isolates. BMC Microbiology, 2013, 13, 254.	1.3	63
84	Lactobacillus buchneri Genotyping on the Basis of Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) Locus Diversity. Applied and Environmental Microbiology, 2014, 80, 994-1001.	1.4	62
85	Subtyping of Salmonella enterica Serovar Newport Outbreak Isolates by CRISPR-MVLST and Determination of the Relationship between CRISPR-MVLST and PFGE Results. Journal of Clinical Microbiology, 2013, 51, 2328-2336.	1.8	60
86	CRISPRâ€Based Technologies and the Future of Food Science. Journal of Food Science, 2015, 80, R2367-72.	1.5	60
87	CRISPR Diversity and Microevolution in <i>Clostridium difficile</i> . Genome Biology and Evolution, 2016, 8, 2841-2855.	1.1	60
88	A CRISPR design for next-generation antimicrobials. Genome Biology, 2014, 15, 516.	3.8	57
89	Exploiting CRISPR–Cas immune systems for genome editing in bacteria. Current Opinion in Biotechnology, 2016, 37, 61-68.	3.3	57
90	Characterization of Six Leuconostoc fallax Bacteriophages Isolated from an Industrial Sauerkraut Fermentation. Applied and Environmental Microbiology, 2002, 68, 5452-5458.	1.4	54

#	Article	IF	CITATIONS
91	Genomic impact of CRISPR immunization against bacteriophages. Biochemical Society Transactions, 2013, 41, 1383-1391.	1.6	54
92	RNA-mediated programmable DNA cleavage. Nature Biotechnology, 2012, 30, 836-838.	9.4	52
93	Antibiotic Resistance in Salmonella enterica Serovar Typhimurium Associates with CRISPR Sequence Type. Antimicrobial Agents and Chemotherapy, 2013, 57, 4282-4289.	1.4	51
94	Construction of vectors for inducible and constitutive gene expression in <i>Lactobacillus</i> . Microbial Biotechnology, 2011, 4, 357-367.	2.0	50
95	Immune loss as a driver of coexistence during host-phage coevolution. ISME Journal, 2018, 12, 585-597.	4.4	50
96	The repurposing of type I-E CRISPR-Cascade for gene activation in plants. Communications Biology, 2019, 2, 383.	2.0	50
97	Strain-Specific Genotyping of <i>Bifidobacterium animalis</i> subsp. <i>lactis</i> by Using Single-Nucleotide Polymorphisms, Insertions, and Deletions. Applied and Environmental Microbiology, 2009, 75, 7501-7508.	1.4	48
98	CRISPR Visualizer: rapid identification and visualization of CRISPR loci via an automated high-throughput processing pipeline. RNA Biology, 2019, 16, 577-584.	1.5	47
99	Isolation and Characterization of Bacteriophages from Fermenting Sauerkraut. Applied and Environmental Microbiology, 2002, 68, 973-976.	1.4	46
100	Comparative Analyses of Prophage-Like Elements Present in Bifidobacterial Genomes. Applied and Environmental Microbiology, 2009, 75, 6929-6936.	1.4	45
101	Comparative genomics and evolution of trans-activating RNAs in Class 2 CRISPR-Cas systems. RNA Biology, 2019, 16, 435-448.	1.5	45
102	CRISPR-Cas Technologies and Applications in Food Bacteria. Annual Review of Food Science and Technology, 2017, 8, 413-437.	5.1	44
103	Recombination between phages and CRISPRâ~cas loci facilitates horizontal gene transfer in staphylococci. Nature Microbiology, 2019, 4, 956-963.	5.9	42
104	Occurrence and activity of a type II CRISPR-Cas system in Lactobacillus gasseri. Microbiology (United) Tj ETQq0 0	0 ₀ gBT /O	verlock 10 Ti 42
105	Association of Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) Elements with Specific Serotypes and Virulence Potential of Shiga Toxin-Producing Escherichia coli. Applied and Environmental Microbiology, 2014, 80, 1411-1420.	1.4	41
106	Harnessing CRISPR-Cas systems for precision engineering of designer probiotic lactobacilli. Current Opinion in Biotechnology, 2019, 56, 163-171.	3.3	41
107	Comparative Analysis of Lactobacillus gasseri and Lactobacillus crispatus Isolated From Human Urogenital and Gastrointestinal Tracts. Frontiers in Microbiology, 2019, 10, 3146.	1.5	41

¹⁰⁸Building a Resilient, Sustainable, and Healthier Food Supply Through Innovation and Technology.
Annual Review of Food Science and Technology, 2021, 12, 1-28.5.141

RODOLPHE BARRANGOU

#	Article	IF	CITATIONS
109	The S-layer Associated Serine Protease Homolog PrtX Impacts Cell Surface-Mediated Microbe-Host Interactions of Lactobacillus acidophilus NCFM. Frontiers in Microbiology, 2017, 8, 1185.	1.5	39
110	Characterization and Repurposing of Type I and Type II CRISPR–Cas Systems in Bacteria. Journal of Molecular Biology, 2019, 431, 21-33.	2.0	39
111	Applications of CRISPR Technologies Across the Food Supply Chain. Annual Review of Food Science and Technology, 2019, 10, 133-150.	5.1	38
112	Outcomes and characterization of chromosomal self-targeting by native CRISPR-Cas systems in <i>Streptococcus thermophilus</i> . FEMS Microbiology Letters, 2019, 366, .	0.7	36
113	Characterization and applications of Type I CRISPR-Cas systems. Biochemical Society Transactions, 2020, 48, 15-23.	1.6	35
114	Applications of CRISPR-Cas systems in lactic acid bacteria. FEMS Microbiology Reviews, 2020, 44, 523-537.	3.9	34
115	Deletion-based escape of CRISPR-Cas9 targeting in Lactobacillus gasseri. Microbiology (United) Tj ETQq1 1 0.784	314 rgBT 0.7	/Overlock 10
116	The evolutionary history and diagnostic utility of the CRISPR-Cas system within <i>Salmonella enterica</i> ssp. <i>enterica</i> . PeerJ, 2014, 2, e340.	0.9	31
117	Bifidobacterium animalis subsp. lactis ATCC 27673 Is a Genomically Unique Strain within Its Conserved Subspecies. Applied and Environmental Microbiology, 2013, 79, 6903-6910.	1.4	30
118	Bacteriophage exclusion, a new defenseÂsystem. EMBO Journal, 2015, 34, 134-135.	3.5	30
119	CRISPR-Directed Microbiome Manipulation across the Food Supply Chain. Trends in Microbiology, 2019, 27, 489-496.	3.5	30
120	Influence of the Dairy Environment on Gene Expression and Substrate Utilization in Lactic Acid Bacteria1, ,. Journal of Nutrition, 2007, 137, 748S-750S.	1.3	29
121	Complete Genome Sequence of Probiotic Strain Lactobacillus acidophilus La-14. Genome Announcements, 2013, 1, .	0.8	28
122	Investigating the Effect of Growth Phase on the Surface-Layer Associated Proteome of Lactobacillus acidophilus Using Quantitative Proteomics. Frontiers in Microbiology, 2017, 8, 2174.	1.5	28
123	Comprehensive Mining and Characterization of CRISPR-Cas Systems in Bifidobacterium. Microorganisms, 2020, 8, 720.	1.6	28
124	Strain-Dependent Inhibition of <i>Clostridioides difficile</i> by Commensal <i>Clostridia</i> Carrying the Bile Acid-Inducible (<i>bai</i>) Operon. Journal of Bacteriology, 2020, 202, .	1.0	28
125	Combining omics technologies with CRISPR-based genome editing to study food microbes. Current Opinion in Biotechnology, 2020, 61, 198-208.	3.3	26
126	Genome Editing of Food-Grade Lactobacilli To Develop Therapeutic Probiotics. Microbiology Spectrum, 2017, 5, .	1.2	25

RODOLPHE BARRANGOU

#	Article	IF	CITATIONS
127	Recent insight into oligosaccharide uptake and metabolism in probiotic bacteria. Biocatalysis and Biotransformation, 2013, 31, 226-235.	1.1	23
128	Phenotypic and genotypic diversity of Lactobacillus buchneri strains isolated from spoiled, fermented cucumber. International Journal of Food Microbiology, 2018, 280, 46-56.	2.1	23
129	Complete Genome Sequences of Probiotic Strains Bifidobacterium animalis subsp. lactis B420 and Bi-07. Journal of Bacteriology, 2012, 194, 4131-4132.	1.0	22
130	Transcriptional and Functional Analysis of Bifidobacterium animalis subsp. lactis Exposure to Tetracycline. Applied and Environmental Microbiology, 2018, 84, .	1.4	22
131	Enabling the Rise of a CRISPR World. CRISPR Journal, 2018, 1, 205-208.	1.4	22
132	Microbial Ecology of Watery Kimchi. Journal of Food Science, 2015, 80, M1031-8.	1.5	21
133	Unraveling the potential of CRISPR-Cas9 for gene therapy. Expert Opinion on Biological Therapy, 2015, 15, 311-314.	1.4	21
134	Phylogenetic Analysis of the Bifidobacterium Genus Using Glycolysis Enzyme Sequences. Frontiers in Microbiology, 2016, 7, 657.	1.5	21
135	Host and body site-specific adaptation of Lactobacillus crispatus genomes. NAR Genomics and Bioinformatics, 2020, 2, Iqaa001.	1.5	21
136	Whole-genome sequencing analysis and CRISPR genotyping of rare antibiotic-resistant Salmonella enterica serovars isolated from food and related sources. Food Microbiology, 2021, 93, 103601.	2.1	21
137	Insights into the Human Virome Using CRISPR Spacers from Microbiomes. Viruses, 2018, 10, 479.	1.5	19
138	Analysis of the human intestinal epithelial cell transcriptional response to Lactobacillus acidophilus, Lactobacillus salivarius, Bifidobacterium lactis and Escherichia coli. Beneficial Microbes, 2010, 1, 283-295.	1.0	18
139	S-layer associated proteins contribute to the adhesive and immunomodulatory properties of Lactobacillus acidophilus NCFM. BMC Microbiology, 2020, 20, 248.	1.3	18
140	Portable CRISPR-Cas9 ^N System for Flexible Genome Engineering in Lactobacillus acidophilus, Lactobacillus gasseri, and Lactobacillus paracasei. Applied and Environmental Microbiology, 2021, 87, .	1.4	18
141	The CRISPR System Protects Microbes against Phages, Plasmids. Microbe Magazine, 2009, 4, 224-230.	0.4	18
142	Expanding the CRISPR Toolbox: Targeting RNA with Cas13b. Molecular Cell, 2017, 65, 582-584.	4.5	17
143	Engineering Components of the Lactobacillus S-Layer for Biotherapeutic Applications. Frontiers in Microbiology, 2018, 9, 2264.	1.5	17
144	Collaborative networks in gene editing. Nature Biotechnology, 2019, 37, 1107-1109.	9.4	17

#	Article	IF	CITATIONS
145	RNA-guided genome editing à la carte. Cell Research, 2013, 23, 733-734.	5.7	16
146	Prediction and Validation of Native and Engineered Cas9 Guide Sequences. Cold Spring Harbor Protocols, 2016, 2016, pdb.prot086785.	0.2	16
147	Deletion of Lipoteichoic Acid Synthase Impacts Expression of Genes Encoding Cell Surface Proteins in Lactobacillus acidophilus. Frontiers in Microbiology, 2017, 8, 553.	1.5	16
148	Deciphering and shaping bacterial diversity through CRISPR. Current Opinion in Microbiology, 2016, 31, 101-108.	2.3	15
149	Reactions to the National Academies/Royal Society Report on <i>Heritable Human Genome Editing</i> . CRISPR Journal, 2020, 3, 332-349.	1.4	15
150	Genomic characterization of Lactobacillus fermentum DSM 20052. BMC Genomics, 2020, 21, 328.	1.2	15
151	Deletion of S-Layer Associated Ig-Like Domain Protein Disrupts the Lactobacillus acidophilus Cell Surface. Frontiers in Microbiology, 2020, 11, 345.	1.5	14
152	<i>In Vivo</i> Transcriptome of Lactobacillus acidophilus and Colonization Impact on Murine Host Intestinal Gene Expression. MBio, 2021, 12, .	1.8	14
153	Guide RNAs: A Glimpse at the Sequences that Drive CRISPR–Cas Systems. Cold Spring Harbor Protocols, 2016, 2016, pdb.top090902.	0.2	13
154	Predicting and visualizing features of CRISPR–Cas systems. Methods in Enzymology, 2019, 616, 1-25.	0.4	13
155	On the global CRISPR array behavior in class I systems. Biology Direct, 2017, 12, 20.	1.9	12
156	Comparative genomics of eight Lactobacillus buchneri strains isolated from food spoilage. BMC Genomics, 2019, 20, 902.	1.2	12
157	(Broken) Promises of Sustainable Food and Agriculture through New Biotechnologies: The CRISPR Case. CRISPR Journal, 2021, 4, 25-31.	1.4	12
158	CRISPRclassify: Repeat-Based Classification of CRISPR Loci. CRISPR Journal, 2021, 4, 558-574.	1.4	12
159	Short communication: The complete genome sequence of Bifidobacterium animalis subspecies animalis ATCC 25527T and comparative analysis of growth in milk with B. animalis subspecies lactis DSM 10140T. Journal of Dairy Science, 2011, 94, 5864-5870.	1.4	10
160	Keep Calm and CRISPR On. CRISPR Journal, 2018, 1, 1-3.	1.4	10
161	Using glycolysis enzyme sequences to inform Lactobacillus phylogeny. Microbial Genomics, 2018, 4, .	1.0	9
162	Repurposing CRISPR-Cas systems as DNA-based smart antimicrobials. Cell & Gene Therapy Insights, 2017, 3, 63-72.	0.1	9

#	Article	IF	CITATIONS
163	Comparative Genomic Analyses and CRISPR-Cas Characterization of Cutibacterium acnes Provide Insights Into Genetic Diversity and Typing Applications. Frontiers in Microbiology, 2021, 12, 758749.	1.5	8
164	Genetics of Lactic Acid Bacteria. , 2011, , 35-56.		7
165	Conserved Genome Organization and Core Transcriptome of the Lactobacillus acidophilus Complex. Frontiers in Microbiology, 2018, 9, 1834.	1.5	7
166	Toward inclusive global governance of human genome editing. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	7
167	Metabolomic Analysis of Lactobacillus acidophilus, L. gasseri, L. crispatus, and Lacticaseibacillus rhamnosus Strains in the Presence of Pomegranate Extract. Frontiers in Microbiology, 2022, 13, .	1.5	7
168	Adaptive response to iterative passages of five Lactobacillus species in simulated vaginal fluid. BMC Microbiology, 2020, 20, 339.	1.3	6
169	Lactic Acid Bacteria Defenses Against Phages. , 2011, , 459-478.		5
170	A Snapshot into the Metabolism of Isomalto-oligosaccharides in Probiotic Bacteria. Journal of Applied Glycoscience (1999), 2013, 60, 95-100.	0.3	5
171	Short communication: Determination of Salmonella clustered regularly interspaced short palindromic repeats (CRISPR) diversity on dairy farms in Wisconsin and Minnesota. Journal of Dairy Science, 2014, 97, 6370-6377.	1.4	5
172	CRISPR Craziness: A Response to the EU Court Ruling. CRISPR Journal, 2018, 1, 251-252.	1.4	5
173	Sharing the CRISPR Toolbox with an Expanding Community. CRISPR Journal, 2020, 3, 248-252.	1.4	5
174	Clustered Regularly Interspaced Short Palindromic Repeats Genotyping of Multidrug-Resistant Salmonella Heidelberg Strains Isolated From the Poultry Production Chain Across Brazil. Frontiers in Microbiology, 0, 13, .	1.5	4
175	Genomic Perspectives on Probiotic Lactic Acid Bacteria. Bioscience and Microflora, 2005, 24, 31-33.	0.5	3
176	Short communication: Transcriptional response to a large genomic island deletion in the dairy starter culture Streptococcus thermophilus. Journal of Dairy Science, 2019, 102, 7800-7806.	1.4	3
177	Determination of Factors Driving the Genome Editing Field in the CRISPR Era Using Bibliometrics. CRISPR Journal, 2021, 4, 728-738.	1.4	3
178	Bacteria get vaccinated. Nature, 2014, 513, 175-176.	13.7	2
179	Protection against Foreign DNA. , 0, , 333-348.		2
180	Procedures for Generating CRISPR Mutants with Novel Spacers Acquired from Viruses or Plasmids. Methods in Molecular Biology, 2015, 1311, 195-222.	0.4	2

#	Article	IF	CITATIONS
181	Mining for novel bacterial defence systems. Nature Microbiology, 2018, 3, 535-536.	5.9	2
182	Lactobacillus gasseri CRISPR-Cas9 characterization In Vitro reveals a flexible mode of protospacer-adjacent motif recognition. PLoS ONE, 2018, 13, e0192181.	1.1	2
183	Genome Editing of Food-Grade Lactobacilli To Develop Therapeutic Probiotics. , 0, , 389-408.		2
184	Turning CRISPR on with antibiotics. Cell Host and Microbe, 2022, 30, 12-14.	5.1	2
185	Applications of the Versatile CRISPR-Cas Systems. , 2013, , 267-286.		1
186	QnAs with Rodolphe Barrangou. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7183-7184.	3.3	1
187	Cultivating CRISPR. CRISPR Journal, 2018, 1, 99-100.	1.4	1
188	Pulling the genome in opposite directions to dissect gene networks. Genome Biology, 2018, 19, 42.	3.8	1
189	CRISPR Crossroads for Genome Editing. CRISPR Journal, 2018, 1, 349-350.	1.4	1
190	The Democratization of CRISPR. CRISPR Journal, 2018, 1, 203-204.	1.4	1
191	Taking CRISPR to New Heights. CRISPR Journal, 2019, 2, 133-133.	1.4	1
192	Thinking About CRISPR: The Ethics of Human Genome Editing. CRISPR Journal, 2019, 2, 247-248.	1.4	1
193	Foresight is 2020: Ten Bold Predictions for the New CRISPR Year. CRISPR Journal, 2019, 2, 341-342.	1.4	1
194	Complete Genome Sequence of Lactobacillus johnsonii NCK2677, Isolated from Mice. Microbiology Resource Announcements, 2020, 9, .	0.3	1
195	Shutting down RNA-targeting CRISPR. Science, 2020, 369, 31-32.	6.0	1
196	Applications of the Versatile CRISPR-Cas Systems. , 2013, , 267-286.		1
197	Guest editorial: CRISPRcas9: CRISPR-Cas systems: at the cutting edge of microbiology. Current Opinion in Microbiology, 2017, 37, vii-viii.	2.3	0
198	Pomp and Circumstance: Making the Case for CRISPR. CRISPR Journal, 2018, 1, 253-254.	1.4	0

#	Article	IF	CITATIONS
199	Expanding the CRISPR Landscape on a cas by cas Basis. CRISPR Journal, 2018, 1, 303-303.	1.4	Ο
200	Bringing CRISPR to the Cinema. CRISPR Journal, 2019, 2, 187-187.	1.4	0
201	Time To Let CRISPR B.E.?. CRISPR Journal, 2019, 2, 67-67.	1.4	0
202	CRISPR on the Move in 2019. CRISPR Journal, 2019, 2, 1-2.	1.4	0
203	Partnering with bioRxiv. CRISPR Journal, 2019, 2, 342-342.	1.4	0
204	CRISPR Shields: Fending Off Diverse Cas Nucleases with Nucleus-like Structures. Molecular Cell, 2020, 77, 934-936.	4.5	0
205	Todd R. Klaenhammer, an inspirational food microbiologist who leaves a lasting legacy. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2107754118.	3.3	Ο