List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2704702/publications.pdf Version: 2024-02-01

ENDIOLLE VASCO

#	Article	IF	CITATIONS
1	Growth of Single-Crystalline KNbO3Nanostructures. Journal of Physical Chemistry B, 2006, 110, 58-61.	1.2	157
2	Ionic conduction in zirconia films of nanometer thickness. Acta Materialia, 2005, 53, 5161-5166.	3.8	103
3	Low resistivity cubic phase CdS films by chemical bath deposition technique. Applied Physics Letters, 1994, 65, 1278-1280.	1.5	96
4	Growth Kinetics of One-Dimensional KNbO3Nanostructures by Hydrothermal Processing Routes. Journal of Physical Chemistry B, 2005, 109, 14331-14334.	1.2	53
5	Growth dynamics and strain relaxation mechanisms inBaTiO3pulsed laser deposited onSrRuO3â^•SrTiO3. Physical Review B, 2006, 73, .	1.1	48
6	Early self-assembled stages in epitaxial SrRuO3 on LaAlO3. Applied Physics Letters, 2003, 82, 2497-2499.	1.5	47
7	Impact of the top-electrode material on the permittivity of single-crystalline Ba0.7Sr0.3TiO3 thin films. Applied Physics Letters, 2005, 86, 202908.	1.5	41
8	Sharp ferroelectric phase transition in strained single-crystalline SrRuO3/Ba0.7Sr0.3TiO3/SrRuO3 capacitors. Applied Physics Letters, 2003, 83, 5011-5013.	1.5	38
9	Diffusion and nucleation of yttrium atoms on Si(111)7×7: A growth model. Physical Review B, 2002, 66, .	1.1	34
10	Postcoalescence Evolution of Growth Stress in Polycrystalline Films. Physical Review Letters, 2013, 110, 056101.	2.9	34
11	Growth evolution of ZnO films deposited by pulsed laser ablation. Journal of Physics Condensed Matter, 2001, 13, L663-L672.	0.7	33
12	Direct observation of a fully strained dead layer at Ba0.7Sr0.3TiO3â^•SrRuO3 interface. Applied Physics Letters, 2005, 87, 062901.	1.5	31
13	Submicron structure and acoustic properties of ZnO films deposited on (100) InP by pulsed laser deposition. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2001, 19, 224.	1.6	24
14	Role of Cluster Transient Mobility in Pulsed Laser Deposition-Type Growth Kinetics. Physical Review Letters, 2007, 98, 036104.	2.9	24
15	Morphology evolution of thermally annealed polycrystalline thin films. Physical Review B, 2011, 84, .	1.1	22
16	Intrinsic Compressive Stress in Polycrystalline Films is Localized at Edges of the Grain Boundaries. Physical Review Letters, 2017, 119, 256102.	2.9	22
17	Fabrication of arrays of SrZrO3nanowires by pulsed laser deposition. Nanotechnology, 2004, 15, S122-S125.	1.3	21
18	Epitaxial growth of Y-stabilised zirconia films on (100)InP substrates by pulsed laser deposition. Journal of Crystal Growth, 2000, 209, 883-889.	0.7	20

#	Article	IF	CITATIONS
19	Aggregation mechanisms in the adsorption of metals onSi(111)7×7. Physical Review B, 2003, 67, .	1.1	20
20	Growth atomic mechanisms of pulsed laser deposited La modified- \$mathsf{PbTiO_3}\$ perovskites. European Physical Journal B, 2003, 35, 49-55.	0.6	15
21	SrZrO3Nanopatterning Using Self-Organized SrRuO3as a Template. Advanced Materials, 2005, 17, 281-284.	11.1	15
22	Surface deformation and ferroelectric domain switching induced by a force microscope tip on a La-modified PbTiO3 thin film. Applied Physics Letters, 2003, 83, 2028-2030.	1.5	14
23	Metal-cluster nanoarrays onSi(111)7×7:Rate equations and kinetic Monte Carlo simulations. Physical Review B, 2004, 69, .	1.1	13
24	Origin and control of the lead-enriched near-surface region of (Pb, La)TiO3. Applied Physics Letters, 2001, 78, 2037-2039.	1.5	12
25	Mechanisms of preferential adsorption on the Si(111)7×7 surface. Surface Science, 2005, 575, 247-259.	0.8	12
26	Surface slope distribution with mathematical molding on Au(111) thin film growth. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2009, 27, 1012-1016.	0.9	12
27	Growth kinetics of epitaxial Y-stabilized ZrO2films deposited on InP. Journal of Physics Condensed Matter, 2004, 16, 8201-8211.	0.7	11
28	Preventing Kinetic Roughening in Physical Vapor-Phase-Deposited Films. Physical Review Letters, 2008, 100, 016102.	2.9	11
29	A multi-technique approach to understanding delithiation damage in LiCoO2 thin films. Scientific Reports, 2021, 11, 12027.	1.6	11
30	Oxygen desorption process in CdS thin films studied by thermally stimulated current measurements. Materials Letters, 1996, 29, 107-110.	1.3	9
31	Mapping stress in polycrystals with sub-10 nm spatial resolution. Nanoscale, 2017, 9, 13938-13946.	2.8	9
32	Nucleation and growth of SrTiO 3 /Si(100) observed by atomic force microscopy. Applied Surface Science, 1998, 125, 58-64.	3.1	8
33	Piezoelectric Pb 0.7 La 0.2 TiO 3 prepared by pulsed laser deposition on (100)InP. Applied Physics A: Materials Science and Processing, 1999, 69, S827-S831.	1.1	8
34	Microstructure of epitaxial Ba0.7Sr0.3TiO3â^•SrRuO3 bilayer films on SrTiO3 substrates. Journal of Applied Physics, 2005, 97, 104907.	1.1	8
35	Very low resistivity CdS films by annealing in Pd-purified H2. Materials Letters, 1995, 25, 205-207.	1.3	7
36	Fabrication of stress-induced SrRuO3 nanostructures by pulsed laser deposition. Applied Physics A: Materials Science and Processing, 2004, 79, 1461-1464.	1.1	7

#	Article	IF	CITATIONS
37	Pulsed laser deposition-type growth kinetics: control by moderate-sized mobile clusters. New Journal of Physics, 2006, 8, 253-253.	1.2	7
38	Chemical Characterization of ZnO Films Pulsed Laser Deposited on InP. Journal of Physical Chemistry C, 2007, 111, 3505-3511.	1.5	7
39	Geometric shadowing from rippledSrRuO3â^•SrTiO3surface templates induces self-organization of epitaxialSrZrO3nanowires. Physical Review B, 2006, 74, .	1.1	6
40	Local slope evolution during thermal annealing of polycrystalline Au films. Journal Physics D: Applied Physics, 2012, 45, 435301.	1.3	6
41	Lead zirconate titanate deposited on RuO2 by pulsed laser ablation. Applied Surface Science, 1997, 109-110, 299-304.	3.1	5
42	Interpretation of the roughness for a competitive columnar growth. Applied Physics Letters, 2007, 90, 013112.	1.5	5
43	Slope selection-driven Ostwald ripening in ZnO thin film growth. Physical Review B, 2012, 86, .	1.1	5
44	Disclosing the origin of the postcoalescence compressive stress in polycrystalline films by nanoscale stress mapping. Physical Review B, 2018, 98, .	1.1	5
45	Preferential orientation of modified SrBi 2 Nb 2 O 9 ferroelectric thin films prepared by pulsed laser deposition. Applied Physics A: Materials Science and Processing, 1999, 69, S833-S836.	1.1	4
46	Theoretical optimization of the self-organized growth of nanoscale arrays through a figure of merit. Applied Physics Letters, 2004, 85, 3714-3716.	1.5	4
47	Nucleation of strontium titanate films grown by PLD on silicon: a kinetic model. Thin Solid Films, 1997, 307, 306-310.	0.8	3
48	Effects of particle size on the phase transition in Pb(Zr, Ti)O3 grown by the sol–gel technique. Materials Letters, 1998, 34, 326-331.	1.3	3
49	Composition Profile of PLT Films on YSZ-Buffered (100)InP. Chemistry of Materials, 2001, 13, 1061-1067.	3.2	3
50	Routes for the integration of high and low dielectric constant oxides on InP. Materials Science in Semiconductor Processing, 2002, 5, 183-187.	1.9	3
51	Pulsed laser deposition of SrTiO3 on InP and integration of ferro-piezo-electric Pb0.775La0.15TiO3. Applied Surface Science, 2003, 208-209, 512-517.	3.1	3
52	Bulk characterization in a Monte Carlo particle-deposition model with a novel adherence-potential barrier. Journal of Applied Physics, 2016, 120, .	1.1	3
53	Integration of piezoelectric (Pb, La)TiO[sub 3] on (100)InP by using a CeO[sub 2] buffer layer. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2001, 19, 812.	1.6	2
54	Ferroelectric Domain Structure and Local Piezoelectric Properties of La-Modified PbTiO 3 Thin Films Prepared by Pulsed Laser Deposition. Ferroelectrics, 2002, 269, 27-32.	0.3	2

#	Article	IF	CITATIONS
55	Reducing the surface roughness beyond the pulsed-laser-deposition limit. Physical Review E, 2009, 80, 041604.	0.8	2
56	Comment on "Correlation of shape changes of grain surfaces and reversible stress evolution during interruptions of polycrystalline film growth―[Appl. Phys. Lett. 104, 141913 (2014)]. Applied Physics Letters, 2014, 105, 246101.	1.5	2
57	Scanning tunneling microscopy study of the surface electrical properties of ZnO films grown by pulsed laser deposition. Physica Status Solidi A, 2003, 195, 183-187.	1.7	1
58	Clamping effect by the substrate on the intrinsic stress in polycrystalline films. Journal Physics D: Applied Physics, 2015, 48, 025301.	1.3	1
59	Morphology of films and nanostructures grown on trenched substrates by Monte Carlo simulations. Thin Solid Films, 2019, 690, 137448.	0.8	1
60	Kinetics of intrinsic stress in nanocrystalline films. Scripta Materialia, 2021, 202, 114015.	2.6	1
61	Properties of chemical bath deposited CdS films at different annealing conditions. AIP Conference Proceedings, 1996, , .	0.3	0
62	A study of selected slope values in growth fronts of Au thin films. Surface Science, 2010, 604, 974-980.	0.8	0
63	Depósito mediante ablación con láser de láminas delgadas de (Pb,La) TiO ₃ y ZnO sobre (100) InP. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 1999, 38, 458-463.	0.9	Ο
64	Understanding the intrinsic compression in polycrystalline films through a mean-field atomistic model. Journal Physics D: Applied Physics, 2021, 54, 065302.	1.3	0