Ji Han

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2704676/publications.pdf

Version: 2024-02-01

292 18,547 65 124
papers citations h-index g-index

292 292 7526
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Adaptive Dynamic Programming: An Introduction. IEEE Computational Intelligence Magazine, 2009, 4, 39-47.	3.4	711
2	Neural-Network-Based Near-Optimal Control for a Class of Discrete-Time Affine Nonlinear Systems With Control Constraints. IEEE Transactions on Neural Networks, 2009, 20, 1490-1503.	4.8	567
3	Data-Driven Robust Approximate Optimal Tracking Control for Unknown General Nonlinear Systems Using Adaptive Dynamic Programming Method. IEEE Transactions on Neural Networks, 2011, 22, 2226-2236.	4.8	534
4	A Comprehensive Review of Stability Analysis of Continuous-Time Recurrent Neural Networks. IEEE Transactions on Neural Networks and Learning Systems, 2014, 25, 1229-1262.	7.2	528
5	A Novel Infinite-Time Optimal Tracking Control Scheme for a Class of Discrete-Time Nonlinear Systems via the Greedy HDP Iteration Algorithm. IEEE Transactions on Systems, Man, and Cybernetics, 2008, 38, 937-942.	5.5	438
6	Leader-Based Optimal Coordination Control for the Consensus Problem of Multiagent Differential Games via Fuzzy Adaptive Dynamic Programming. IEEE Transactions on Fuzzy Systems, 2015, 23, 152-163.	6.5	421
7	Near-Optimal Control for Nonzero-Sum Differential Games of Continuous-Time Nonlinear Systems Using Single-Network ADP. IEEE Transactions on Cybernetics, 2013, 43, 206-216.	6.2	377
8	An iterative adaptive dynamic programming method for solving a class of nonlinear zero-sum differential games. Automatica, 2011, 47, 207-214.	3.0	373
9	A Multiagent-Based Consensus Algorithm for Distributed Coordinated Control of Distributed Generators in the Energy Internet. IEEE Transactions on Smart Grid, 2015, 6, 3006-3019.	6.2	352
10	Robust Global Exponential Synchronization of Uncertain Chaotic Delayed Neural Networks via Dual-Stage Impulsive Control. IEEE Transactions on Systems, Man, and Cybernetics, 2010, 40, 831-844.	5.5	343
11	Neural-Network-Based Event-Triggered Adaptive Control of Nonaffine Nonlinear Multiagent Systems With Dynamic Uncertainties. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32, 2239-2250.	7.2	327
12	Global Asymptotic Stability of Recurrent Neural Networks With Multiple Time-Varying Delays. IEEE Transactions on Neural Networks, 2008, 19, 855-873.	4.8	313
13	Data-Driven Optimal Consensus Control for Discrete-Time Multi-Agent Systems With Unknown Dynamics Using Reinforcement Learning Method. IEEE Transactions on Industrial Electronics, 2017, 64, 4091-4100.	5.2	289
14	Stability Analysis of Markovian Jumping Stochastic Cohen–Grossberg Neural Networks With Mixed Time Delays. IEEE Transactions on Neural Networks, 2008, 19, 366-370.	4.8	278
15	Distributed Cooperative Optimal Control for Multiagent Systems on Directed Graphs: An Inverse Optimal Approach. IEEE Transactions on Cybernetics, 2015, 45, 1315-1326.	6.2	275
16	Dynamic Event-Based Control of Nonlinear Stochastic Systems. IEEE Transactions on Automatic Control, 2017, 62, 6544-6551.	3.6	263
17	Notice of Removal: Distributed Adaptive Virtual Impedance Control for Accurate Reactive Power Sharing Based on Consensus Control in Microgrids. IEEE Transactions on Smart Grid, 2017, 8, 1749-1761.	6.2	248
18	Observer-Based Adaptive Neural Network Control for Nonlinear Systems in Nonstrict-Feedback Form. IEEE Transactions on Neural Networks and Learning Systems, 2016, 27, 89-98.	7.2	241

#	Article	IF	Citations
19	T-S Fuzzy-Model-Based Robust \$H_{infty}\$ Design for Networked Control Systems With Uncertainties. IEEE Transactions on Industrial Informatics, 2007, 3, 289-301.	7.2	227
20	Distributed Optimal Energy Management for Energy Internet. IEEE Transactions on Industrial Informatics, 2017, 13, 3081-3097.	7.2	213
21	Online Adaptive Policy Learning Algorithm for \$H_{infty}\$ State Feedback Control of Unknown Affine Nonlinear Discrete-Time Systems. IEEE Transactions on Cybernetics, 2014, 44, 2706-2718.	6.2	203
22	Neural-Network-Based Constrained Optimal Control Scheme for Discrete-Time Switched Nonlinear System Using Dual Heuristic Programming. IEEE Transactions on Automation Science and Engineering, 2014, 11, 839-849.	3.4	198
23	Event-Triggered-Based Distributed Cooperative Energy Management for Multienergy Systems. IEEE Transactions on Industrial Informatics, 2019, 15, 2008-2022.	7.2	197
24	Guaranteed Cost Networked Control for T–S Fuzzy Systems With Time Delays. IEEE Transactions on Systems, Man and Cybernetics, Part C: Applications and Reviews, 2007, 37, 160-172.	3.3	194
25	Adaptive Dynamic Programming for Control. Communications and Control Engineering, 2013, , .	1.0	192
26	Adaptive Fault-Tolerant Tracking Control for MIMO Discrete-Time Systems via Reinforcement Learning Algorithm With Less Learning Parameters. IEEE Transactions on Automation Science and Engineering, 2017, 14, 299-313.	3.4	191
27	State-of-the-art review on frequency response of wind power plants in power systems. Journal of Modern Power Systems and Clean Energy, 2018, 6, 1-16.	3.3	189
28	Off-Policy Actor-Critic Structure for Optimal Control of Unknown Systems With Disturbances. IEEE Transactions on Cybernetics, 2016, 46, 1041-1050.	6.2	180
29	Data-Driven Control for Interlinked AC/DC Microgrids Via Model-Free Adaptive Control and Dual-Droop Control. IEEE Transactions on Smart Grid, 2017, 8, 557-571.	6.2	179
30	Optimal Tracking Control for a Class of Nonlinear Discrete-Time Systems With Time Delays Based on Heuristic Dynamic Programming. IEEE Transactions on Neural Networks, 2011, 22, 1851-1862.	4.8	172
31	Relaxed Stability Conditions for Continuous-Time T–S Fuzzy-Control Systems Via Augmented Multi-Indexed Matrix Approach. IEEE Transactions on Fuzzy Systems, 2011, 19, 478-492.	6.5	170
32	Notice of Removal: Consensus-Based Distributed Control for Accurate Reactive, Harmonic, and Imbalance Power Sharing in Microgrids. IEEE Transactions on Smart Grid, 2018, 9, 2453-2467.	6.2	163
33	Delay-Dependent Guaranteed Cost Control for Uncertain Stochastic Fuzzy Systems With Multiple Time Delays. IEEE Transactions on Systems, Man, and Cybernetics, 2008, 38, 126-140.	5.5	160
34	Observer-Based Finite-Time Adaptive Fuzzy Control for Nontriangular Nonlinear Systems With Full-State Constraints. IEEE Transactions on Cybernetics, 2021, 51, 1110-1120.	6.2	151
35	Networked Synchronization Control of Coupled Dynamic Networks With Time-Varying Delay. IEEE Transactions on Systems, Man, and Cybernetics, 2010, 40, 1468-1479.	5. 5	148
36	Fault Estimation and Fault-Tolerant Control for Switched Fuzzy Stochastic Systems. IEEE Transactions on Fuzzy Systems, 2018, 26, 2993-3003.	6.5	139

#	Article	IF	CITATIONS
37	Hybrid Three-Phase/Single-Phase Microgrid Architecture With Power Management Capabilities. IEEE Transactions on Power Electronics, 2015, 30, 5964-5977.	5.4	128
38	Adaptive Bipartite Event-Triggered Output Consensus of Heterogeneous Linear Multiagent Systems Under Fixed and Switching Topologies. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31, 4816-4830.	7.2	118
39	Data-Core-Based Fuzzy Min–Max Neural Network for Pattern Classification. IEEE Transactions on Neural Networks, 2011, 22, 2339-2352.	4.8	116
40	LMI-Based Approach for Global Asymptotic Stability Analysis of Recurrent Neural Networks with Various Delays and Structures. IEEE Transactions on Neural Networks, 2011, 22, 1032-1045.	4.8	114
41	Bipartite Fixed-Time Output Consensus of Heterogeneous Linear Multiagent Systems. IEEE Transactions on Cybernetics, 2021, 51, 548-557.	6.2	112
42	Distributed Optimal Economic Dispatch for Microgrids Considering Communication Delays. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 49, 1634-1642.	5.9	110
43	Consensus-Based Distributed Economic Dispatch Control Method in Power Systems. IEEE Transactions on Smart Grid, 2019, 10, 941-954.	6.2	107
44	An Estimation Method of Defect Size From MFL Image Using Visual Transformation Convolutional Neural Network. IEEE Transactions on Industrial Informatics, 2019, 15, 213-224.	7.2	107
45	Fault-Tolerant Control for Stochastic Switched IT2 Fuzzy Uncertain Time-Delayed Nonlinear Systems. IEEE Transactions on Cybernetics, 2022, 52, 1335-1346.	6.2	107
46	A Novel Energy Function-Based Stability Evaluation and Nonlinear Control Approach for Energy Internet. IEEE Transactions on Smart Grid, 2017, 8, 1195-1210.	6.2	105
47	Optimal Output Regulation for Heterogeneous Multiagent Systems via Adaptive Dynamic Programming. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28, 18-29.	7.2	105
48	Double-Mode Energy Management for Multi-Energy System via Distributed Dynamic Event-Triggered Newton-Raphson Algorithm. IEEE Transactions on Smart Grid, 2020, 11, 5339-5356.	6.2	105
49	Fuzzy Observer-Based Repetitive Tracking Control for Nonlinear Systems. IEEE Transactions on Fuzzy Systems, 2020, 28, 2401-2415.	6.5	97
50	Discrete-Time Nonzero-Sum Games for Multiplayer Using Policy-Iteration-Based Adaptive Dynamic Programming Algorithms. IEEE Transactions on Cybernetics, 2017, 47, 3331-3340.	6.2	94
51	Command Filter Based Adaptive Fuzzy Finite-Time Control for a Class of Uncertain Nonlinear Systems With Hysteresis. IEEE Transactions on Fuzzy Systems, 2021, 29, 2553-2564.	6.5	94
52	Fault Estimation Observer Design for Discrete-Time Takagi–Sugeno Fuzzy Systems Based on Homogenous Polynomially Parameter-Dependent Lyapunov Functions. IEEE Transactions on Cybernetics, 2017, 47, 2504-2513.	6.2	88
53	Fault-Tolerant Control of a Nonlinear System Based on Generalized Fuzzy Hyperbolic Model and Adaptive Disturbance Observer. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2017, 47, 2289-2300.	5.9	88
54	Fuzzy-Secondary-Controller-Based Virtual Synchronous Generator Control Scheme for Interfacing Inverters of Renewable Distributed Generation in Microgrids. IEEE Transactions on Industry Applications, 2018, 54, 1047-1061.	3.3	84

#	Article	IF	CITATIONS
55	Adaptive Fuzzy Fault-Tolerant Tracking Control for Partially Unknown Systems With Actuator Faults via Integral Reinforcement Learning Method. IEEE Transactions on Fuzzy Systems, 2019, 27, 1986-1998.	6.5	83
56	A Distributed Double-Newton Descent Algorithm for Cooperative Energy Management of Multiple Energy Bodies in Energy Internet. IEEE Transactions on Industrial Informatics, 2021, 17, 5993-6003.	7.2	83
57	Robust state/fault estimation and fault tolerant control for T–S fuzzy systems with sensor and actuator faults. Journal of the Franklin Institute, 2016, 353, 615-641.	1.9	82
58	Event-Driven Guaranteed Cost Control Design for Nonlinear Systems With Actuator Faults via Reinforcement Learning Algorithm. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 50, 4135-4150.	5.9	82
59	Intermediate Observer-Based Robust Distributed Fault Estimation for Nonlinear Multiagent Systems With Directed Graphs. IEEE Transactions on Industrial Informatics, 2020, 16, 7426-7436.	7.2	74
60	Finite-Horizon \$H_{infty} Tracking Control for Unknown Nonlinear Systems With Saturating Actuators. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29, 1200-1212.	7.2	73
61	Reduced-order observer based fault estimation and fault-tolerant control for switched stochastic systems with actuator and sensor faults. ISA Transactions, 2019, 88, 91-101.	3.1	73
62	Robust Optimal Control Scheme for Unknown Constrained-Input Nonlinear Systems via a Plug-n-Play Event-Sampled Critic-Only Algorithm. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 50, 3169-3180.	5.9	70
63	Mode-Dependent Stochastic Synchronization for Markovian Coupled Neural Networks With Time-Varying Mode-Delays. IEEE Transactions on Neural Networks and Learning Systems, 2015, 26, 2621-2634.	7.2	69
64	Robust Fault Detection for Switched Fuzzy Systems With Unknown Input. IEEE Transactions on Cybernetics, 2018, 48, 3056-3066.	6.2	69
65	Distributed Fault Estimation for a Class of Nonlinear Multiagent Systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 50, 3382-3390.	5.9	69
66	Optimal Guaranteed Cost Sliding Mode Control for Constrained-Input Nonlinear Systems With Matched and Unmatched Disturbances. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29, 2112-2126.	7.2	67
67	Event-Triggered Adaptive Dynamic Programming for Non-Zero-Sum Games of Unknown Nonlinear Systems via Generalized Fuzzy Hyperbolic Models. IEEE Transactions on Fuzzy Systems, 2019, 27, 2202-2214.	6. 5	66
68	Dissipativity Analysis and Synthesis for a Class of T–S Fuzzy Descriptor Systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2017, 47, 1774-1784.	5.9	65
69	Event-Triggered Stabilization of Neural Networks With Time-Varying Switching Gains and Input Saturation. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29, 5045-5056.	7.2	65
70	A Distributed Robust Economic Dispatch Strategy for Integrated Energy System Considering Cyber-Attacks. IEEE Transactions on Industrial Informatics, 2022, 18, 880-890.	7.2	64
71	Leader-follower consensus control for linear multi-agent systems by fully distributed edge-event-triggered adaptive strategies. Information Sciences, 2021, 555, 314-338.	4.0	63
72	Adaptive dynamic programming-based optimal control of unknown nonaffine nonlinear discrete-time systems with proof of convergence. Neurocomputing, 2012, 91, 48-55.	3.5	62

#	Article	IF	CITATIONS
73	Leader–follower consensus of multi-agent systems in directed networks with actuator faults. Neurocomputing, 2018, 275, 1177-1185.	3.5	62
74	Robust exponential stability analysis of neural networks with multiple time delays. Neurocomputing, 2007, 70, 2534-2543.	3.5	61
75	Disturbance observer based fault estimation and dynamic output feedback fault tolerant control for fuzzy systems with local nonlinear models. ISA Transactions, 2015, 59, 114-124.	3.1	61
76	Fault Diagnosis Method of Joint Fisher Discriminant Analysis Based on the Local and Global Manifold Learning and Its Kernel Version. IEEE Transactions on Automation Science and Engineering, 2016, 13, 122-133.	3.4	61
77	Robust adaptive tracking control for a class of mechanical systems with unknown disturbances under actuator saturation. International Journal of Robust and Nonlinear Control, 2019, 29, 1893-1908.	2.1	61
78	Event-Triggered Integral Sliding-Mode Control for Nonlinear Constrained-Input Systems With Disturbances via Adaptive Dynamic Programming. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 50, 4086-4096.	5.9	61
79	Novel Zero-Voltage and Zero-Current Switching (ZVZCS) PWM Three-Level DC/DC Converter Using Output Coupled Inductor. IEEE Transactions on Power Electronics, 2014, 29, 1082-1093.	5.4	59
80	<inline-formula> <tex-math notation="LaTeX">\$H_infty\$ </tex-math> </inline-formula> Consensus for Linear Heterogeneous Multiagent Systems Based on Event-Triggered Output Feedback Control Scheme. IEEE Transactions on Cybernetics, 2019, 49, 2268-2279.	6.2	59
81	Neural-Network-Based Robust Control Schemes for Nonlinear Multiplayer Systems With Uncertainties via Adaptive Dynamic Programming. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 49, 579-588.	5.9	58
82	Distributed cooperative output regulation of heterogeneous linear multi-agent systems based on event- and self-triggered control with undirected topology. ISA Transactions, 2020, 99, 191-198.	3.1	58
83	Dissipativity Analysis for Stochastic Memristive Neural Networks With Time-Varying Delays: A Discrete-Time Case. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29, 618-630.	7.2	56
84	Finite-Time Stabilization for Discontinuous Interconnected Delayed Systems via Interval Type-2 T–S Fuzzy Model Approach. IEEE Transactions on Fuzzy Systems, 2019, 27, 249-261.	6.5	56
85	A novel photovoltaic power forecasting model based on echo state network. Neurocomputing, 2019, 325, 182-189.	3.5	56
86	Multiscale Adaptive Fault Diagnosis Based on Signal Symmetry Reconstitution Preprocessing for Microgrid Inverter Under Changing Load Condition. IEEE Transactions on Smart Grid, 2018, 9, 797-806.	6.2	55
87	Adaptive Resilient Event-Triggered Control Design of Autonomous Vehicles With an Iterative Single Critic Learning Framework. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32, 5502-5511.	7.2	54
88	Robust non-fragile proportional plus derivative state feedback control for a class of uncertain Takagi–Sugeno fuzzy singular systems. Journal of the Franklin Institute, 2019, 356, 6208-6225.	1.9	53
89	Distributed Bipartite Consensus of Linear Multiagent Systems Based on Event-Triggered Output Feedback Control Scheme. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51, 6743-6756.	5.9	53
90	Decentralized Event-Triggered Adaptive Control of Discrete-Time Nonzero-Sum Games Over Wireless Sensor-Actuator Networks With Input Constraints. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31, 4254-4266.	7.2	52

#	Article	IF	Citations
91	Robust unknown input observer based fault detection for high-order multi-agent systems with disturbances. ISA Transactions, 2016, 61, 15-28.	3.1	51
92	Neural-Network-Based Robust Optimal Tracking Control for MIMO Discrete-Time Systems With Unknown Uncertainty Using Adaptive Critic Design. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29, 1239-1251.	7.2	51
93	Observer-based fault detection for high-order nonlinear multi-agent systems. Journal of the Franklin Institute, 2016, 353, 72-94.	1.9	50
94	Sampled-Data Synchronization of Markovian Coupled Neural Networks With Mode Delays Based on Mode-Dependent LKF. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28, 2626-2637.	7.2	50
95	A Diagnosis Algorithm for Multiple Open-Circuited Faults of Microgrid Inverters Based on Main Fault Component Analysis. IEEE Transactions on Energy Conversion, 2018, 33, 925-937.	3.7	50
96	Model-free optimal control design for a class of linear discrete-time systems with multiple delays using adaptive dynamic programming. Neurocomputing, 2014, 135, 163-170.	3.5	49
97	New Results on Stability and Stabilization of Networked Control Systems With Short Time-Varying Delay. IEEE Transactions on Cybernetics, 2016, 46, 2772-2781.	6.2	49
98	Composite fault-tolerant control with disturbance observer for stochastic systems with multiple disturbances. Journal of the Franklin Institute, 2018, 355, 4897-4915.	1.9	49
99	A tnGAN-Based Leak Detection Method for Pipeline Network Considering Incomplete Sensor Data. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-10.	2.4	49
100	Decentralized adaptive tracking control scheme for nonlinear large-scale interconnected systems via adaptive dynamic programming. Neurocomputing, 2017, 225, 1-10.	3.5	48
101	Multiple Open-Circuit Fault Diagnosis Based on Multistate Data Processing and Subsection Fluctuation Analysis for Photovoltaic Inverter. IEEE Transactions on Instrumentation and Measurement, 2018, 67, 516-526.	2.4	48
102	Sensor Fault Estimation of Switched Fuzzy Systems with Unknown Input. IEEE Transactions on Fuzzy Systems, 2017, , 1-1.	6.5	47
103	Quick Reconstruction of Arbitrary Pipeline Defect Profiles From MFL Measurements Employing Modified Harmony Search Algorithm. IEEE Transactions on Instrumentation and Measurement, 2018, 67, 2200-2213.	2.4	47
104	Integral reinforcement learning based decentralized optimal tracking control of unknown nonlinear large-scale interconnected systems with constrained-input. Neurocomputing, 2019, 323, 1-11.	3.5	47
105	Reduced order unknown input observer based distributed fault detection for multi-agent systems. Journal of the Franklin Institute, 2017, 354, 1464-1483.	1.9	45
106	Echo State Network-Based Decentralized Control of Continuous-Time Nonlinear Large-Scale Interconnected Systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51, 6293-6303.	5.9	45
107	Discrete-Time Non-Zero-Sum Games With Completely Unknown Dynamics. IEEE Transactions on Cybernetics, 2021, 51, 2929-2943.	6.2	45
108	Adaptive NN fault-tolerant control for discrete-time systems in triangular forms with actuator fault. Neurocomputing, 2015, 152, 209-221.	3.5	44

#	Article	IF	Citations
109	Neural network-based online Hâ^ž control for discrete-time affine nonlinear system using adaptive dynamic programming. Neurocomputing, 2016, 198, 91-99.	3.5	44
110	Event-Triggered Control of Nonlinear Discrete-Time System With Unknown Dynamics Based on HDP(<i> i> i> i>). IEEE Transactions on Cybernetics, 2022, 52, 6046-6058.</i>	6.2	44
111	Cooperative Bipartite Containment Control for Multiagent Systems Based on Adaptive Distributed Observer. IEEE Transactions on Cybernetics, 2022, 52, 5432-5440.	6.2	43
112	Online optimal control of unknown discrete-time nonlinear systems by using time-based adaptive dynamic programming. Neurocomputing, 2015, 165, 163-170.	3.5	42
113	Dynamic output feedback-based fault-tolerant control design for T-S fuzzy systems with model uncertainties. ISA Transactions, 2018, 81, 32-45.	3.1	42
114	Event-Triggered Adaptive Tracking Control for Random Systems With Coexisting Parametric Uncertainties and Severe Nonlinearities. IEEE Transactions on Automatic Control, 2022, 67, 2011-2018.	3.6	42
115	Homogenous Polynomially Parameter-Dependent \$H_{ infty}\$ Filter Designs of Discrete-Time Fuzzy Systems. IEEE Transactions on Systems, Man, and Cybernetics, 2011, 41, 1313-1322.	5.5	41
116	Antiâ€disturbance control for nonlinear system via adaptive disturbance observer. International Journal of Robust and Nonlinear Control, 2017, 27, 2121-2144.	2.1	41
117	Observer-based H â^ž fuzzy control for modified repetitive control systems. Neurocomputing, 2018, 286, 141-149.	3.5	41
118	Identification method for a class of periodic discrete-time dynamic nonlinear systems based on Sinusoidal ESN. Neurocomputing, 2018, 275, 1511-1521.	3.5	41
119	Event-trigger-based robust control for nonlinear constrained-input systems using reinforcement learning method. Neurocomputing, 2019, 340, 158-170.	3.5	41
120	Integral reinforcement learning-based online adaptive event-triggered control for non-zero-sum games of partially unknown nonlinear systems. Neurocomputing, 2020, 377, 243-255.	3.5	41
121	Accurate Current Sharing and Voltage Regulation in Hybrid Wind/Solar Systems: An Adaptive Dynamic Programming Approach. IEEE Transactions on Consumer Electronics, 2022, 68, 261-272.	3.0	41
122	H _{â^ž} Tracking Control of Discrete-Time System With Delays via Data-Based Adaptive Dynamic Programming. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 50, 4078-4085.	5.9	40
123	H â^ž control with constrained input for completely unknown nonlinear systems using data-driven reinforcement learning method. Neurocomputing, 2017, 237, 226-234.	3.5	39
124	Tracking control optimization scheme of continuous-time nonlinear system via online single network adaptive critic design method. Neurocomputing, 2017, 251, 127-135.	3.5	39
125	Decentralized Tracking Optimization Control for Partially Unknown Fuzzy Interconnected Systems via Reinforcement Learning Method. IEEE Transactions on Fuzzy Systems, 2021, 29, 917-926.	6.5	39
126	Stability criterion for delayed neural networks via Wirtinger-based multiple integral inequality. Neurocomputing, 2016, 214, 53-60.	3.5	38

#	Article	IF	CITATIONS
127	Dissipativity-Based Fault Detection for Uncertain Switched Fuzzy Systems With Unmeasurable Premise Variables. IEEE Transactions on Fuzzy Systems, 2019, 27, 2421-2432.	6.5	38
128	Fixed-time time-varying formation tracking for nonlinear multi-agent systems under event-triggered mechanism. Information Sciences, 2021, 564, 45-70.	4.0	38
129	Online finite-horizon optimal learning algorithm for nonzero-sum games with partially unknown dynamics and constrained inputs. Neurocomputing, 2016, 185, 37-44.	3.5	37
130	Echo State Networks Based Data-Driven Adaptive Fault Tolerant Control With Its Application to Electromechanical System. IEEE/ASME Transactions on Mechatronics, 2018, 23, 1372-1382.	3.7	37
131	ADP based optimal tracking control for a class of linear discrete-time system with multiple delays. Journal of the Franklin Institute, 2016, 353, 2117-2136.	1.9	36
132	Data-Based Adaptive Fault Estimation and Fault-Tolerant Control for MIMO Model-Free Systems Using Generalized Fuzzy Hyperbolic Model. IEEE Transactions on Fuzzy Systems, 2018, 26, 3191-3205.	6.5	36
133	Stability Analysis of T–S Fuzzy Control System With Sampled-Dropouts Based on Time-Varying Lyapunov Function Method. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 50, 2566-2577.	5.9	36
134	Adaptive disturbance observerâ€based control for stochastic systems with multiple heterogeneous disturbances. International Journal of Robust and Nonlinear Control, 2019, 29, 5533-5549.	2.1	35
135	An Iterative Stacking Method for Pipeline Defect Inversion With Complex MFL Signals. IEEE Transactions on Instrumentation and Measurement, 2020, 69, 3780-3788.	2.4	35
136	Adaptive Fuzzy Containment Control for Multiagent Systems With State Constraints Using Unified Transformation Functions. IEEE Transactions on Fuzzy Systems, 2022, 30, 162-174.	6.5	35
137	Adaptive disturbance estimation and cancelation for ships under thruster saturation. International Journal of Robust and Nonlinear Control, 2020, 30, 5004-5020.	2.1	35
138	Multisensor Fusion for Magnetic Flux Leakage Defect Characterization Under Information Incompletion. IEEE Transactions on Industrial Electronics, 2021, 68, 4382-4392.	5.2	35
139	Adaptive Fuzzy Control for Nonstrict-Feedback Systems Under Asymmetric Time-Varying Full State Constraints Without Feasibility Condition. IEEE Transactions on Fuzzy Systems, 2021, 29, 976-985.	6.5	35
140	A Dynamic Proportional-Integral Observer-Based Nonlinear Fault-Tolerant Controller Design for Nonlinear System With Partially Unknown Dynamic. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52, 5092-5104.	5.9	35
141	A Fuzzy Adaptive Tracking Control for MIMO Switched Uncertain Nonlinear Systems in Strict-Feedback Form. IEEE Transactions on Fuzzy Systems, 2019, 27, 2443-2452.	6.5	34
142	Optimal Consensus Control Design for Multiagent Systems With Multiple Time Delay Using Adaptive Dynamic Programming. IEEE Transactions on Cybernetics, 2022, 52, 12832-12842.	6.2	34
143	Iterative adaptive dynamic programming methods with neural network implementation for multi-player zero-sum games. Neurocomputing, 2018, 307, 54-60.	3.5	33
144	Data-driven adaptive dynamic programming schemes for non-zero-sum games of unknown discrete-time nonlinear systems. Neurocomputing, 2018, 275, 649-658.	3.5	33

#	Article	IF	CITATIONS
145	Data-driven optimal tracking control for discrete-time systems with delays using adaptive dynamic programming. Journal of the Franklin Institute, 2018, 355, 5649-5666.	1.9	33
146	Adaptive Dynamics Programming for H _{â^ž} Control of Continuous-Time Unknown Nonlinear Systems via Generalized Fuzzy Hyperbolic Models. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 50, 3996-4008.	5.9	33
147	Command-Filter-Based Fixed-Time Bipartite Containment Control for a Class of Stochastic Multiagent Systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52, 3519-3529.	5.9	33
148	Vehicle-Vehicle Energy Interaction Converter of Electric Vehicles: A Disturbance Observer Based Sliding Mode Control Algorithm. IEEE Transactions on Vehicular Technology, 2021, 70, 9910-9921.	3.9	33
149	A Novel Approach to Observer-Based Fault Estimation and Fault-Tolerant Controller Design for T–S Fuzzy Systems With Multiple Time Delays. IEEE Transactions on Fuzzy Systems, 2020, 28, 1679-1693.	6.5	32
150	Optimal Regulation Strategy for Nonzero-Sum Games of the Immune System Using Adaptive Dynamic Programming. IEEE Transactions on Cybernetics, 2023, 53, 1475-1484.	6.2	32
151	Fixed-time leader-following/containment consensus for a class of nonlinear multi-agent systems. Information Sciences, 2021, 555, 58-84.	4.0	32
152	Adaptive Fuzzy Output-Constrained Control for Nonlinear Stochastic Systems With Input Delay and Unknown Control Coefficients. IEEE Transactions on Cybernetics, 2021, 51, 5279-5290.	6.2	32
153	\$H_infty\$ Consensus for Linear Heterogeneous Discrete-Time Multiagent Systems With Output Feedback Control. IEEE Transactions on Cybernetics, 2019, 49, 3713-3721.	6.2	30
154	Robust Synchronization for Under-Actuated Vessels Based on Disturbance Observer. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 5470-5479.	4.7	30
155	Adaptive disturbance rejection for course tracking of marine vessels under actuator constraint. ISA Transactions, 2020, 100, 82-91.	3.1	29
156	Insufficient Data Generative Model for Pipeline Network Leak Detection Using Generative Adversarial Networks. IEEE Transactions on Cybernetics, 2022, 52, 7107-7120.	6.2	29
157	Bipartite finite-time output consensus of heterogeneous multi-agent systems by finite-time event-triggered observer. Neurocomputing, 2019, 365, 86-93.	3.5	28
158	Delay-Dependent \$H_infty\$ Guaranteed Cost Control for Uncertain Switched T–S Fuzzy Systems With Multiple Interval Time-Varying Delays. IEEE Transactions on Fuzzy Systems, 2021, 29, 1065-1080.	6.5	28
159	Observer-Based Output Feedback Event-Triggered Adaptive Control for Linear Multiagent Systems Under Switching Topologies. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33, 7161-7171.	7.2	28
160	Event-triggered fault detection filter design for nonlinear networked systems via fuzzy Lyapunov functions. Journal of the Franklin Institute, 2018, 355, 8392-8411.	1.9	27
161	Small Leak Location for Intelligent Pipeline System via Action-Dependent Heuristic Dynamic Programming. IEEE Transactions on Industrial Electronics, 2022, 69, 11723-11732.	5.2	27
162	Composite anti-disturbance control for stochastic systems with multiple heterogeneous disturbances and input saturation. ISA Transactions, 2020, 100, 436-445.	3.1	26

#	Article	IF	CITATIONS
163	Receiver Signal Analysis on Geometry and Excitation Parameters of Remote Field Eddy Current Probe. IEEE Transactions on Industrial Electronics, 2022, 69, 3088-3098.	5.2	26
164	Online event-triggered adaptive critic design for non-zero-sum games of partially unknown networked systems. Neurocomputing, 2019, 368, 84-98.	3.5	25
165	Integral reinforcement learning off-policy method for solving nonlinear multi-player nonzero-sum games with saturated actuator. Neurocomputing, 2019, 335, 96-104.	3.5	25
166	Value Iteration-Based H _{â^ž} Controller Design for Continuous-Time Nonlinear Systems Subject to Input Constraints. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 50, 3986-3995.	5.9	25
167	Modified Double Auxiliary Resonant Commutated Pole Inverter and its Modulation Strategy. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8, 4467-4481.	3.7	25
168	Fault Estimation and Tolerant Control for Discrete-Time Multiple Delayed Fuzzy Stochastic Systems With Intermittent Sensor and Actuator Faults. IEEE Transactions on Cybernetics, 2021, 51, 6213-6225.	6.2	25
169	Neural network-based Hâ^ž sliding mode control for nonlinear systems with actuator faults and unmatched disturbances. Neurocomputing, 2018, 275, 2009-2018.	3.5	24
170	Bipartite Formation Tracking for Multi-Agent Systems Using Fully Distributed Dynamic Edge-Event-Triggered Protocol. IEEE/CAA Journal of Automatica Sinica, 2022, 9, 847-853.	8.5	24
171	Adaptive dynamic programming for tracking design of uncertain nonlinear systems with disturbances and input constraints. International Journal of Adaptive Control and Signal Processing, 2017, 31, 1567-1583.	2.3	23
172	Hierarchy of stability criterion for time-delay systems based on multiple integral approach. Applied Mathematics and Computation, 2017, 314, 422-428.	1.4	23
173	A distributed Newton–Raphson-based coordination algorithm for multi-agent optimization with discrete-time communication. Neural Computing and Applications, 2020, 32, 4649-4663.	3.2	23
174	Hierarchical Pressure Data Recovery for Pipeline Network via Generative Adversarial Networks. IEEE Transactions on Automation Science and Engineering, 2022, 19, 1960-1970.	3.4	23
175	Event-triggered reinforcement learning <mmi:math altimg="si49.svg" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mm< td=""><td>ຠl:#ລຽ>â^ž∢</td><td>:/n212al:mi></td></mm<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mmi:math>	ຠ l:#ລຽ >â^ž∢	:/n 2 12al:mi>
176	Fuzzy Adaptive Observer-Based Fault and Disturbance Reconstructions for T-S Fuzzy Systems. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, 68, 2453-2457.	2.2	22
177	Robust Fault Estimation and Accommodation for a Class of T–S Fuzzy Systems with Local Nonlinear Models. Circuits, Systems, and Signal Processing, 2016, 35, 3506-3530.	1.2	21
178	Bipartite output consensus of heterogeneous linear multi-agent systems by dynamic triggering observer. ISA Transactions, 2019, 92, 14-22.	3.1	21
179	Global asymptotic regulation control for MIMO mechanical systems with unknown model parameters and disturbances. Nonlinear Dynamics, 2019, 95, 2293-2305.	2.7	21
180	Multi-Switches Fault Diagnosis Based on Small Low-Frequency Data for Voltage-Source Inverters of PMSM Drives. IEEE Transactions on Power Electronics, 2019, 34, 6845-6857.	5.4	21

#	Article	IF	CITATIONS
181	Leader-Following Exponential Consensus of Fractional-Order Descriptor Multiagent Systems With Distributed Event-Triggered Strategy. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52, 3967-3979.	5.9	20
182	Global Asymptotic Stability and Stabilization of Neural Networks With General Noise. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29, 597-607.	7.2	19
183	Stability and Stabilization of T–S Fuzzy Time-Delay System via Relaxed Integral Inequality and Dynamic Delay Partition. IEEE Transactions on Fuzzy Systems, 2021, 29, 2829-2843.	6.5	19
184	Adaptive Fuzzy Prescribed Finite-Time Tracking Control for Nonlinear System With Unknown Control Directions. IEEE Transactions on Fuzzy Systems, 2022, 30, 1993-2003.	6.5	19
185	An Optimal Three-Dimensional Drone Layout Method for Maximum Signal Coverage and Minimum Interference in Complex Pipeline Networks. IEEE Transactions on Cybernetics, 2022, 52, 5897-5907.	6.2	19
186	Fixed-time leader-following/containment consensus of nonlinear multi-agent systems based on event-triggered mechanism. Applied Mathematics and Computation, 2021, 396, 125881.	1.4	19
187	Adaptive adjustable dimension observer based fault estimation for switched fuzzy systems with unmeasurable premise variables. Fuzzy Sets and Systems, 2023, 452, 149-167.	1.6	19
188	Disturbance observer-based elegant anti-disturbance saturation control for a class of stochastic systems. International Journal of Control, 2020, 93, 2859-2871.	1.2	18
189	Containment control of general linear multi-agent systems by event-triggered control mechanisms. Neurocomputing, 2021, 433, 263-274.	3.5	18
190	Stability-Oriented Droop Coefficients Region Identification for Inverters Within Weak Grid: An Impedance-Based Approach. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51, 2258-2268.	5.9	18
191	Energy-Management Strategy of Battery Energy Storage Systems in DC Microgrids: A Distributed Dynamic Event-Triggered <i>H</i> _{â^ž} Consensus Control. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52, 5692-5701.	5.9	18
192	Stability analysis and controller design of discrete-time polynomial fuzzy time-varying delay systems. Journal of the Franklin Institute, 2015, 352, 5661-5685.	1.9	17
193	Finite-time adaptive neural control for nonstrict-feedback stochastic nonlinear systems with input delay and output constraints. Applied Mathematics and Computation, 2021, 393, 125756.	1.4	17
194	Adaptive Bipartite Output Tracking Consensus in Switching Networks of Heterogeneous Linear Multiagent Systems Based on Edge Events. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34, 79-89.	7.2	17
195	Consensus control for nonlinear multi-agent systems with event-triggered communications. Applied Mathematics and Computation, 2021, 408, 126341.	1.4	17
196	A Novel Sliding Mode Control for a Class of Stochastic Polynomial Fuzzy Systems Based on SOS Method. IEEE Transactions on Cybernetics, 2020, 50, 1037-1046.	6.2	16
197	Cooperative output regulation of heterogeneous linear multi-agent systems via fully distributed event-triggered adaptive control. Neurocomputing, 2020, 393, 38-45.	3 . 5	16
198	Fully distributed bipartite leaderâ€following consensus for uncertain linear multiâ€agent systems with eventâ€triggered mechanism. International Journal of Robust and Nonlinear Control, 2021, 31, 1375-1394.	2.1	16

#	Article	IF	CITATIONS
199	Proportional plus derivative state feedback controller design for a class of fuzzy descriptor systems. International Journal of Systems Science, 2019, 50, 2249-2260.	3.7	15
200	Distributed fault detection for nonâ€linear multiâ€agent systems: an adjustable dimension observer design method. IET Control Theory and Applications, 2019, 13, 2407-2415.	1.2	14
201	Guaranteed-performance consensus for descriptor nonlinear multi-agent systems based on distributed nonlinear consensus protocol. Neurocomputing, 2020, 383, 359-367.	3.5	14
202	The Decoupling Cooperative Control With Dominant Poles Assignment. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52, 1205-1213.	5.9	14
203	Speed Control of Pipeline Inner Detector Based on Interval Dynamic Matrix Control With Additional Margin. IEEE Transactions on Industrial Electronics, 2021, 68, 12657-12667.	5.2	14
204	Adaptive Event-Triggered Leader-Follower Consensus of Linear Multiagent Systems Under Directed Graph With Nonzero Leader Input. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69, 1442-1446.	2.2	14
205	Neurodynamic programming and tracking control scheme of constrained-input systems via a novel event-triggered PI algorithm. Applied Soft Computing Journal, 2019, 83, 105629.	4.1	13
206	Fully distributed bipartite output consensus of heterogeneous linear multiagent systems based on eventâ€triggered transmission mechanism. International Journal of Robust and Nonlinear Control, 2020, 30, 3382-3410.	2.1	13
207	State and Fault Estimations for Discrete-Time T-S Fuzzy Systems With Sensor and Actuator Faults. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, 68, 3326-3330.	2.2	13
208	Practical fixed-time bipartite consensus control for nonlinear multi-agent systems: A barrier Lyapunov function-based approach. Information Sciences, 2022, 607, 519-536.	4.0	13
209	Dissipativity analysis on switched uncertain nonlinear T–S fuzzy Systems with stochastic perturbation and time delay. Journal of the Franklin Institute, 2020, 357, 13410-13429.	1.9	12
210	Elegant antidisturbance faultâ€tolerant control for stochastic systems with multiple heterogeneous disturbances. International Journal of Robust and Nonlinear Control, 2020, 30, 2533-2549.	2.1	12
211	Multiple intermittent fault estimation and tolerant control for switched T-S fuzzy stochastic systems with multiple time-varying delays. Applied Mathematics and Computation, 2020, 377, 125114.	1.4	12
212	Data Recovery of Magnetic Flux Leakage Data Gaps Using Multifeature Conditional Risk. IEEE Transactions on Automation Science and Engineering, 2021, 18, 1064-1073.	3.4	12
213	Cooperative output regulation of heterogeneous linear multi-agent systems based on the event-triggered distributed control under switching topologies. Applied Mathematics and Computation, 2021, 390, 125611.	1.4	12
214	Adaptive saturation compensation for strictâ€feedback systems with unknown control coefficient and input saturation. International Journal of Adaptive Control and Signal Processing, 2021, 35, 1083-1098.	2.3	12
215	Cooperative Bipartite Containment Control for Heterogeneous Networks With Structurally Balanced Graph. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, 68, 2885-2889.	2.2	12
216	Distributed finite-time fault estimation and fault-tolerant control for cyber-physical systems with matched uncertainties. Applied Mathematics and Computation, 2021, 403, 126195.	1.4	12

#	Article	IF	CITATIONS
217	Stability-Oriented Minimum Switching/Sampling Frequency for Cyber-Physical Systems: Grid-Connected Inverters Under Weak Grid. IEEE Transactions on Circuits and Systems I: Regular Papers, 2022, 69, 946-955.	3.5	12
218	Disturbance observer based control for dynamically positioned ships with ocean environmental disturbances and actuator saturation. International Journal of Robust and Nonlinear Control, 2022, 32, 4113-4128.	2.1	12
219	Stability analysis of heuristic dynamic programming algorithm for nonlinear systems. Neurocomputing, 2015, 149, 1461-1468.	3.5	11
220	Unknown input based observer synthesis for an interval type-2 polynomial fuzzy system with time delays and uncertainties. Neurocomputing, 2019, 339, 171-181.	3.5	11
221	Semi-global leader-following output consensus for heterogeneous fractional-order multi-agent systems with input saturation via observer-based protocol. Neurocomputing, 2020, 402, 298-306.	3.5	11
222	Intermediate variable observer based fault estimation and fault-tolerant control for nonlinear stochastic system with exogenous disturbance. Journal of the Franklin Institute, 2020, 357, 5380-5401.	1.9	11
223	Full Information Control for Switched Neural Networks Subject to Fault and Disturbance. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34, 703-714.	7.2	11
224	Non-fragile control for interval type-2 TSK fuzzy logic control systems with time-delay. Journal of the Franklin Institute, 2017, 354, 7997-8014.	1.9	10
225	A new method of fault estimation and tolerant control for fuzzy systems against time-varying delay. Nonlinear Analysis: Hybrid Systems, 2020, 38, 100942.	2.1	10
226	Dissipativity-Based Finite-Time Filtering for Uncertain Semi-Markovian Jump Random Systems With Multiple Time Delays and State Constraints. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33, 2995-3009.	7.2	10
227	Eventâ€triggered control for a class of nonlinear random systems involving timeâ€varying delay and exogenous disturbances. Asian Journal of Control, 2022, 24, 973-984.	1.9	10
228	Accurate Power Sharing and Voltage Regulation for AC Microgrids: An Event-Triggered Coordinated Control Approach. IEEE Transactions on Cybernetics, 2022, 52, 13001-13011.	6.2	10
229	Resilient Model Free Adaptive Distributed LFC for Multi-Area Power Systems Against Jamming Attacks. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34, 4120-4129.	7.2	10
230	TBDA-Net: A Task-Based Bias Domain Adaptation Network Under Industrial Small Samples. IEEE Transactions on Industrial Informatics, 2022, 18, 6109-6119.	7.2	10
231	Observerâ€based actuator fault estimation and proportional derivative fault tolerant control for continuousâ€time singular systems. Optimal Control Applications and Methods, 2019, 40, 979-997.	1.3	9
232	Critic-only adaptive dynamic programming algorithms' applications to the secure control of cyber–physical systems. ISA Transactions, 2020, 104, 138-144.	3.1	9
233	Online Dual-Network-Based Adaptive Dynamic Programming for Solving Partially Unknown Multi-Player Non-Zero-Sum Games With Control Constraints. IEEE Access, 2020, 8, 182295-182306.	2.6	9
234	The Bipartite Edge-Based Event-Triggered Output Tracking of Heterogeneous Linear Multiagent Systems. IEEE Transactions on Cybernetics, 2023, 53, 967-978.	6.2	9

#	Article	IF	CITATIONS
235	Distributed edge-event triggered consensus control for multi-agent systems by edge-based asynchronous communications. Applied Mathematics and Computation, 2021, 397, 125920.	1.4	9
236	Finite-Time Event-Triggered Output Consensus of Heterogeneous Fractional-Order Multiagent Systems With Intermittent Communication. IEEE Transactions on Cybernetics, 2023, 53, 2164-2176.	6.2	9
237	Adaptive Event-Triggered Consensus of Linear Multiagent Systems With Resilience to Communication Link Faults for Digraphs. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69, 3249-3253.	2.2	9
238	Reinforcement learning-based online adaptive controller design for a class of unknown nonlinear discrete-time systems with time delays. Neural Computing and Applications, 2018, 30, 1733-1745.	3.2	8
239	Fixedâ€time cooperative control for robotic manipulators with motion constraints using unified transformation function. International Journal of Robust and Nonlinear Control, 2021, 31, 6826-6844.	2.1	8
240	<pre><mml:math altimg="si3.svg" display="inline" id="d1e132" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="double-struck">Q</mml:mi></mml:math>-learning algorithm in solving consensusability problem of discrete-time multi-agent systems. Automatica, 2021, 128, 109576.</pre>	3.0	8
241	Online <mml:math altimg="si1.svg" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:m< td=""><td>mi>â^ž<td>nml:mi></td></td></mml:m<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math>	mi>â^ž <td>nml:mi></td>	nml:mi>
242	Online event-based adaptive critic design with experience replay to solve partially unknown multi-player nonzero-sum games. Neurocomputing, 2021, 458, 219-231.	3.5	8
243	Fully Distributed Event-Triggered Bipartite Formation Tracking Control for Heterogeneous Multi-Agent Systems on Signed Digraph. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69, 2181-2185.	2.2	8
244	Identification-oriented robust finite memory fault detection filter design for networked industrial process with fading channel communication. Neurocomputing, 2017, 267, 624-634.	3.5	7
245	A novel double-level observer-based fault estimation for Takagi–Sugeno fuzzy systems with unknown nonlinear dynamics. Transactions of the Institute of Measurement and Control, 2019, 41, 3372-3384.	1.1	7
246	Dissipativityâ€based fault estimation for switched nonâ€linear systems with process and sensor faults. IET Control Theory and Applications, 2019, 13, 2983-2993.	1.2	7
247	Design of PID Controller Based on Echo State Network With Time-Varying Reservoir Parameter. IEEE Transactions on Cybernetics, 2022, 52, 6615-6626.	6.2	7
248	Optimal tracking control of switched systems applied in grid-connected hybrid generation using reinforcement learning. Neural Computing and Applications, 2021, 33, 9363-9374.	3.2	7
249	Neurodynamic Programming and Tracking Control for Nonlinear Stochastic Systems by PI Algorithm. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69, 2892-2896.	2.2	7
250	A Design Framework of Nonlinear H _{â^ž} PD Observer for One-Sided Lipschitz Singular Systems With Disturbances. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69, 3304-3308.	2.2	7
251	A New Stochastic Sliding-Mode Design for Descriptor Fuzzy Systems With Time-Varying Delay. IEEE Transactions on Cybernetics, 2021, 51, 3858-3870.	6.2	6
252	An SOS-Based Sliding Mode Controller Design for a Class of Polynomial Fuzzy Systems. IEEE Transactions on Fuzzy Systems, 2019, 27, 749-759.	6.5	6

#	Article	IF	Citations
253	Adjustable dimension descriptor observer based fault estimation of nonlinear system with unknown input. Applied Mathematics and Computation, 2021, 396, 125899.	1.4	6
254	Integral reinforcement learning-based guaranteed cost control for unknown nonlinear systems subject to input constraints and uncertainties. Applied Mathematics and Computation, 2021, 408, 126336.	1.4	6
255	Data-Driven Finite-Horizon <i>H</i> _{â^ž} Tracking Control With Event-Triggered Mechanism for the Continuous-Time Nonlinear Systems. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34, 4687-4701.	7.2	6
256	Event-based formation control of heterogeneous multiagent systems with leader agent of nonzero input. Information Sciences, 2022, 598, 157-181.	4.0	6
257	Chaos synchronization control for stochastic nonlinear systems of interior PMSMs based on fixed-time stability theorem. Applied Mathematics and Computation, 2022, 430, 127115.	1.4	6
258	TDDA-Net: A transitive distant domain adaptation network for industrial sample enhancement. Information Sciences, 2022, 606, 927-944.	4.0	6
259	Reduced-order intermediate variable observer based fault estimation and fault-tolerant control for fuzzy stochastic systems with exogenous disturbance. Information Sciences, 2022, 608, 202-221.	4.0	6
260	Photocatalytic Activity of Synthetic Nâ€doped TiO ₂ /Reduced Graphene Oxide Crystalline Composites. Chemical Engineering and Technology, 2017, 40, 1347-1353.	0.9	5
261	Reliable Hâ^ž guaranteed cost control for uncertain switched fuzzy stochastic systems with multiple time-varying delays and intermittent actuator and sensor faults. Neural Computing and Applications, 2021, 33, 1343-1365.	3.2	5
262	Robust normalization and Hâ^ž stabilization for uncertain Takagi-Sugeno fuzzy singular systems with time-delays. Applied Mathematics and Computation, 2021, 388, 125534.	1.4	5
263	Fully distributed event-triggered time-varying formation control of multi-agent systems subject to mode-switching denial-of-service attacks. Applied Mathematics and Computation, 2022, 414, 126645.	1.4	5
264	Event-Based Fuzzy Adaptive Consensus FTC for Microgrids With Nonlinear Item via Prescribed Fixed-Time Performance. IEEE Transactions on Circuits and Systems I: Regular Papers, 2022, 69, 2982-2993.	3.5	5
265	Fault detection for high-order multi-agent systems with disturbances. , 2015, , .		4
266	Echo state networks with double-reservoir for time-series prediction. , 2016, , .		4
267	Sliding-Mode Control for Fuzzy Stochastic Systems With Different Local-Input Matrices. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51, 4761-4772.	5.9	4
268	Adaptive Fault Estimation and Fault-Tolerant Control for Nonlinear System With Unknown Nonlinear Dynamic. IEEE Access, 2019, 7, 136720-136728.	2.6	4
269	Elegant anti-disturbance control for stochastic systems with multiple heterogeneous disturbances based on fuzzy logic systems. Transactions of the Institute of Measurement and Control, 2020, 42, 2611-2621.	1.1	4
270	Multiple delay-dependent noise-to-state stability for a class of uncertain switched random nonlinear systems with intermittent sensor and actuator faults. Applied Intelligence, 2021, 51, 265-282.	3.3	4

#	Article	IF	CITATIONS
271	Adjustable dimension descriptor observer based fault estimation for switched nonlinear systems with partially unknown nonlinear dynamics. Nonlinear Analysis: Hybrid Systems, 2021, 42, 101083.	2.1	4
272	Time-varying formation control with general linear multi-agent systems by distributed event-triggered mechanisms under fixed and switching topologies. Neural Computing and Applications, 2022, 34, 4277-4294.	3.2	4
273	Overview of the recent research progress for stability and control on random nonlinear systems. Annual Reviews in Control, 2022, 53, 70-82.	4.4	4
274	A Topology-Reconfigurable Fault-Tolerant Two-and-Single Stage AC–DC Converter for High Reliability Applications. IEEE Transactions on Industrial Electronics, 2023, 70, 3708-3716.	5.2	4
275	Event-triggered adaptive integral reinforcement learning method for zero-sum differential games of nonlinear systems with incomplete known dynamics. Neural Computing and Applications, 2022, 34, 10775-10786.	3.2	4
276	A neural network-based approach for solving quantized discrete-time Hâ^ž optimal control with input constraint over finite-horizon. Neurocomputing, 2019, 333, 248-260.	3.5	3
277	Echo state network-based online optimal control for discrete-time nonlinear systems. Applied Mathematics and Computation, 2021, 409, 126324.	1.4	3
278	Observer-based adaptive control and faults estimation for T-S fuzzy singular fractional order systems. Neural Computing and Applications, 2022, 34, 4265-4275.	3.2	3
279	Disturbance Decoupling Control for a Class of Nonlinear Time-Delay System. , 2006, , .		2
280	Multiple delay-dependent H â^ž guaranteed cost control for uncertain semi-Markovian jump random nonlinear systems with intermittent actuator and sensor faults and input constraint. International Journal of Systems Science, 2021, 52, 57-85.	3.7	2
281	Event-based Integral Reinforcement Learning Algorithm for Non-zero-sum Games of Partially Unknown Nonlinear Systems. , 2021, , .		2
282	Multiple delay-dependent guaranteed cost control for uncertain switched random nonlinear systems against intermittent sensor and actuator faults. Nonlinear Analysis: Hybrid Systems, 2021, 42, 101079.	2.1	2
283	Fault estimation based on Kalman filtering for Takagi-Sugeno fuzzy systems. , 2017, , .		1
284	Composite hierarchical anti-disturbance control for stochastic systems with multiple heterogeneous disturbances. Transactions of the Institute of Measurement and Control, 2019, 41, 4398-4408.	1.1	1
285	Cooperative Fault Diagnosis of Fuzzy Fractional Order Time-Varying Multi-Agent System With Directed Networks. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69, 1447-1451.	2.2	1
286	Fault Estimation for Discrete-Time T–S Fuzzy Systems With Unmeasurable Premise Variables Based on Fuzzy Lyapunov Functions. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69, 1297-1301.	2.2	1
287	Asymptotic stability of a class of generalized hopfield neural networks with time delay and nonsymmetric interconnecting structure. , 0 , , .		0
288	Adaptive state disturbance observer design for nonlinear system with unknown Lipschitz constant. , 2015, , .		0

#	Article	IF	CITATIONS
289	Sensor Fault Estimation for Lipschitz Nonlinear System with Disturbance. , 2019, , .		O
290	Static Output Feedback Control of Discrete-time T-S Fuzzy Systems with Immeasurable Premise Variables. , 2019, , .		0
291	An Event-Triggered Control Approach with Single-Critic Architecture for a Class of Nonlinear Systems. , 2020, , .		O
292	Intermediate Observer based Fault-Tolerant Control for Fuzzy Stochastic Systems with Actuator Fault*., 2022,,.		0