
Weihua Meng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2704247/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bio-based phytic acid and tannic acid chelate-mediated interfacial assembly of Mg(OH)2 for simultaneously improved flame retardancy, smoke suppression and mechanical properties of PVC. Composites Part B: Engineering, 2020, 188, 107854.	12.0	78
2	Photocatalytically Stable Superhydrophobic and Translucent Coatings Generated from PDMS-Grafted-SiO ₂ /TiO ₂ @PDMS with Multiple Applications. Langmuir, 2019, 35, 2760-2771.	3.5	65
3	A core–shell-structured APP@COFs hybrid for enhanced flame retardancy and mechanical property of epoxy resinÂ(EP). Advanced Composites and Hybrid Materials, 2022, 5, 1743-1755.	21.1	58
4	Geometric structures, electronic characteristics, stabilities, catalytic activities, and descriptors of graphene-based single-atom catalysts. Nano Materials Science, 2020, 2, 120-131.	8.8	55
5	Application of metallic phytates to poly(vinyl chloride) as efficient biobased phosphorous flame retardants. Journal of Applied Polymer Science, 2018, 135, 46601.	2.6	44
6	Synthesis of ZIF-8 with encapsulated hexachlorocyclotriphosphazene and its quenching mechanism for flame-retardant epoxy resin. Microporous and Mesoporous Materials, 2021, 314, 110885.	4.4	44
7	Green fabrication of superhydrophilic and underwater superoleophobic coatings with applications in oil-water separation, photocatalysis and fire-retardance. Separation and Purification Technology, 2020, 233, 115988.	7.9	33
8	Assembling MXene with bio-phytic acid: Improving the fire safety and comprehensive properties of epoxy resin. Polymer Testing, 2022, 110, 107564.	4.8	33
9	Phosphor nitrile functionalized UiO-66-NH2/graphene hybrid flame retardants for fire safety of epoxy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 635, 128093.	4.7	26
10	Core-Shell Graphitic Carbon Nitride/Zinc Phytate as a Novel Efficient Flame Retardant for Fire Safety and Smoke Suppression in Epoxy Resin. Polymers, 2020, 12, 212.	4.5	24
11	Bioâ€based Mg(OH) ₂ @Mâ€Phyt: improving the flameâ€retardant and mechanical properties of flexible poly(vinyl chloride). Polymer International, 2019, 68, 1759-1766.	3.1	23
12	Fabrication of surface-modified magnesium hydroxide using Ni2+ chelation method and layer-by-layer assembly strategy: Improving the flame retardancy and smoke suppression properties of ethylene-vinyl acetate. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 610, 125712.	4.7	16
13	Novel [BMIM]PF6 modified flake-ANP flame retardant: Synthesis and application in epoxy resin. Polymer Testing, 2021, 101, 107284.	4.8	14
14	Investigation of nickel ammonia phosphate with different morphologies as a new high-efficiency flame retardant for epoxy resin. High Performance Polymers, 2020, 32, 359-370.	1.8	9
15	Chitosan-regulated inorganic oxyacid salt flame retardants: preparation and application in PVC composites. Journal of Thermal Analysis and Calorimetry, 2021, 146, 1629-1639.	3.6	9
16	Nickel ammonium phosphate and reduced graphene oxide <scp>twoâ€dimensional</scp> hybrid material for improving the fire safety and mechanical properties of <scp>poly(vinyl chloride)</scp> . Polymer International, 2020, 69, 1227-1236.	3.1	9
17	Nickel Ammonium Phosphate Nanowires Modified g-C3N4 for Improving the Fire Safety of Epoxy Resin. Fibers and Polymers, 2021, 22, 2664-2672.	2.1	7
18	Biotemplated facile synthesis of threeâ€dimensional micro/nanoporous tin oxide: improving the flammable and mechanical properties of flexible PVC. Micro and Nano Letters, 2019, 14, 828-830.	1.3	4