Estela Paz-Artal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2704137/publications.pdf Version: 2024-02-01

FSTELA DAZ-ADTAL

#	Article	IF	CITATIONS
1	An Early Th1 Response Is a Key Factor for a Favorable COVID-19 Evolution. Biomedicines, 2022, 10, 296.	3.2	25
2	Analysis of the factors predicting clinical response to tocilizumab therapy in patients with severe COVID-19. International Journal of Infectious Diseases, 2022, , .	3.3	7
3	Overcoming CAR-Mediated CD19 Downmodulation and Leukemia Relapse with T Lymphocytes Secreting Anti-CD19 T-cell Engagers. Cancer Immunology Research, 2022, 10, 498-511.	3.4	12
4	Novel genes and sex differences in COVID-19 severity. Human Molecular Genetics, 2022, 31, 3789-3806.	2.9	38
5	T-Helper Cell Subset Response Is a Determining Factor in COVID-19 Progression. Frontiers in Cellular and Infection Microbiology, 2021, 11, 624483.	3.9	110
6	Effectiveness of anakinra for tocilizumab-refractory severe COVID-19: A single-centre retrospective comparative study. International Journal of Infectious Diseases, 2021, 105, 319-325.	3.3	10
7	Combination therapy with tocilizumab and corticosteroids for aged patients with severe COVID-19 pneumonia: A single-center retrospective study. International Journal of Infectious Diseases, 2021, 105, 487-494.	3.3	11
8	Next Generation Sequencing for Detecting Somatic FAS Mutations in Patients With Autoimmune Lymphoproliferative Syndrome. Frontiers in Immunology, 2021, 12, 656356.	4.8	12
9	Case Report: Resetting the Humoral Immune Response by Targeting Plasma Cells With Daratumumab in Anti-Phospholipid Syndrome. Frontiers in Immunology, 2021, 12, 667515.	4.8	16
10	IL-6–based mortality prediction model for COVID-19: Validation and update in multicenter and second wave cohorts. Journal of Allergy and Clinical Immunology, 2021, 147, 1652-1661.e1.	2.9	14
11	T cell–mediated response to SARS-CoV-2 in liver transplant recipients with prior COVID-19. American Journal of Transplantation, 2021, 21, 2785-2794.	4.7	17
12	Circulatory follicular helper T lymphocytes associate with lower incidence of CMV infection in kidney transplant recipients. American Journal of Transplantation, 2021, 21, 3946-3957.	4.7	5
13	Primary Immune Regulatory Disorders With an Autoimmune Lymphoproliferative Syndrome-Like Phenotype: Immunologic Evaluation, Early Diagnosis and Management. Frontiers in Immunology, 2021, 12, 671755.	4.8	35
14	Immunologic evaluation and genetic defects of apoptosis in patients with autoimmune lymphoproliferative syndrome (ALPS). Critical Reviews in Clinical Laboratory Sciences, 2021, 58, 253-274.	6.1	14
15	SARS-CoV-2-specific T-cell responses after COVID-19 recovery in patients with rheumatic diseases on immunosuppressive therapy. Seminars in Arthritis and Rheumatism, 2021, 51, 1258-1262.	3.4	3
16	Discordance Between SARS-CoV-2–specific Cell-mediated and Antibody Responses Elicited by mRNA-1273 Vaccine in Kidney and Liver Transplant Recipients. Transplantation Direct, 2021, 7, e794.	1.6	28
17	The Weight of IgA Anti-β2glycoprotein I in the Antiphospholipid Syndrome Pathogenesis: Closing the Gap of Seronegative Antiphospholipid Syndrome. International Journal of Molecular Sciences, 2020, 21, 8972.	4.1	23
18	IL-6–based mortality risk model for hospitalized patients with COVID-19. Journal of Allergy and Clinical Immunology, 2020, 146, 799-807.e9.	2.9	154

ESTELA PAZ-ARTAL

#	Article	IF	CITATIONS
19	Imbalance favoring follicular helper T cells over IL10+ regulatory B cells is detrimental for the kidney allograft. Kidney International, 2020, 98, 732-743.	5.2	13
20	IL-1R blockade is not effective in patients with hematological malignancies and severe SARS-CoV-2 infection. Annals of Hematology, 2020, 99, 2953-2956.	1.8	7
21	Early Posttransplant Mobilization of Monocytic Myeloid-derived Suppressor Cell Correlates With Increase in Soluble Immunosuppressive Factors and Predicts Cancer in Kidney Recipients. Transplantation, 2020, 104, 2599-2608.	1.0	8
22	Longitudinal profile of circulating T follicular helper lymphocytes parallels anti-HLA sensitization in renal transplant recipients. American Journal of Transplantation, 2019, 19, 89-97.	4.7	48
23	Post-transplant hypocomplementemia: A novel marker of cardiovascular risk in kidney transplant recipients?. Atherosclerosis, 2018, 269, 204-210.	0.8	2
24	The Presence of Pretransplant Antiphospholipid Antibodies IgA Anti-β-2-Glycoprotein I as a Predictor of Graft Thrombosis After Renal Transplantation. Transplantation, 2017, 101, 597-607.	1.0	34
25	β ₂ -Glycoprotein I/IgA Immune Complexes. Circulation, 2017, 135, 1922-1934.	1.6	30
26	5-gene differential expression predicts stability of human intestinal allografts. Experimental and Molecular Pathology, 2017, 103, 163-171.	2.1	3
27	Acquired Senescent T-Cell Phenotype Correlates with Clinical Severity in GATA Binding Protein 2-Deficient Patients. Frontiers in Immunology, 2017, 8, 802.	4.8	18
28	Incidence of thromboembolic events in asymptomatic carriers of IgA anti ß2 glycoprotein-l antibodies. PLoS ONE, 2017, 12, e0178889.	2.5	54
29	High frequency of central memory regulatory T cells allows detection of liver recipients at risk of early acute rejection within the first month after transplantation. International Immunology, 2016, 28, 55-64.	4.0	19
30	Circulating Immune Complexes of IgA Bound to Beta 2 Glycoprotein are Strongly Associated with the Occurrence of Acute Thrombotic Events. Journal of Atherosclerosis and Thrombosis, 2016, 23, 1242-1253.	2.0	32
31	Isolated De Novo Antiendothelial Cell Antibodies and Kidney Transplant Rejection. American Journal of Kidney Diseases, 2016, 68, 933-943.	1.9	8
32	Monitoring of intracellular adenosine triphosphate in CD4 ⁺ T cells to predict the occurrence of cytomegalovirus disease in kidney transplant recipients. Transplant International, 2016, 29, 1094-1105.	1.6	11
33	Low Natural Killer Cell Counts and Onset of Invasive Fungal Disease After Solid Organ Transplantation. Journal of Infectious Diseases, 2016, 213, 873-874.	4.0	14
34	Blockade of cell adhesion molecules enhances cell engraftment in a murine model of liver cell transplantation. Transplant Immunology, 2016, 35, 7-11.	1.2	1
35	High proportion of CD95+ and CD38+ in cultured CD8+ T cells predicts acute rejection and infection, respectively, in kidney recipients. Transplant Immunology, 2016, 34, 33-41.	1.2	12
36	High expression of CD38, CD69, CD95 and CD154 biomarkers in cultured peripheral T lymphocytes correlates with an increased risk of acute rejection in liver allograft recipients. Immunobiology, 2016, 221, 595-603.	1.9	12

ESTELA PAZ-ARTAL

#	Article	IF	CITATIONS
37	Early renal graft function deterioration in recipients with preformed anti-MICA antibodies: partial contribution of complement-dependent cytotoxicity. Nephrology Dialysis Transplantation, 2016, 31, 150-160.	0.7	19
38	Autoimmune lymphoproliferative syndrome due to somatic FAS mutation (ALPS-sFAS) combined with a germline caspase-10 (CASP10) variation. Immunobiology, 2016, 221, 40-47.	1.9	25
39	Detection of circulating immune complexes of human IgA and beta 2 glycoprotein I in patients with antiphospholipid syndrome symptomatology. Journal of Immunological Methods, 2015, 422, 51-58.	1.4	21
40	Association of Early Kidney Allograft Failure with Preformed IgA Antibodies to β 2-Glycoprotein I. Journal of the American Society of Nephrology: JASN, 2015, 26, 735-745.	6.1	31
41	Decreased activation-induced cell death by EBV-transformed B-cells from a patient with autoimmune lymphoproliferative syndrome caused by a novel FASLG mutation. Pediatric Research, 2015, 78, 603-608.	2.3	21
42	Kinetics of peripheral blood lymphocyte subpopulations predicts the occurrence of opportunistic infection after kidney transplantation. Transplant International, 2014, 27, 674-685.	1.6	65
43	Isolated IgA Anti- <i>β</i> 2 Glycoprotein I Antibodies in Patients with Clinical Criteria for Antiphospholipid Syndrome. Journal of Immunology Research, 2014, 2014, 1-8.	2.2	68
44	Renal Transplantation Dramatically Reduces IgA Anti-beta-2-glycoprotein I Antibodies in Patients with Endstage Renal Disease. Journal of Immunology Research, 2014, 2014, 1-10.	2.2	24
45	Comparison of several functional methods to evaluate the immune response on stable kidney transplant patients. Journal of Immunological Methods, 2014, 403, 62-65.	1.4	7
46	A case of partial dedicator of cytokinesis 8 deficiency with altered effector phenotype and impaired CD8+ and natural killer cell cytotoxicity. Journal of Allergy and Clinical Immunology, 2014, 134, 218-221.e7.	2.9	12
47	Heterogeneity between Diagnostic Tests for IgA anti-Beta2 Glycoprotein I: Explaining the Controversy in Studies of Association with Vascular Pathology. Analytical Chemistry, 2013, 85, 12093-12098.	6.5	31
48	IgA antibodies against β2 glycoprotein I in hemodialysis patients are an independent risk factor for mortality. Kidney International, 2012, 81, 1239-1244.	5.2	60
49	Cell cycle regulation by FasL and Apo2L/TRAIL in human T-cell blasts. Implications for autoimmune lymphoproliferative syndromes. Journal of Leukocyte Biology, 2008, 84, 488-498.	3.3	17
50	The induction of Bim expression in human T-cell blasts is dependent on nonapoptotic Fas/CD95 signaling. Blood, 2007, 109, 1627-1635.	1.4	25
51	Autoimmune lymphoproliferative syndrome (ALPS) in a patient with a new germline Fas gene mutation. Immunobiology, 2007, 212, 73-83.	1.9	17
52	A homozygous Fas ligand gene mutation in a patient causes a new type of autoimmune lymphoproliferative syndrome. Blood, 2006, 108, 1306-1312.	1.4	117
53	Transcription and weak expression of HLA-DRB6 : a gene with anomalies in exon 1 and other regions Immunogenetics, 1998, 48, 16-21.	2.4	15