Michael D Dennis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2703868/publications.pdf

Version: 2024-02-01

42 papers 1,564 citations

304743 22 h-index 35 g-index

42 all docs 42 docs citations

times ranked

42

2274 citing authors

#	Article	IF	CITATIONS
1	$M\tilde{A}^{1}\!\!/\!\!$ ller Glial Expression of REDD1 Is Required for Retinal Neurodegeneration and Visual Dysfunction in Diabetic Mice. Diabetes, 2022, 71, 1051-1062.	0.6	12
2	REDD1 deletion prevents the development of renal dysfunction in diabetic mice. FASEB Journal, 2022, 36, .	0.5	0
3	4Eâ€BP1/2 Deletion Enhances mRNA Capâ€binding Complex Assembly and Protein Synthesis in Immobilized Skeletal Muscle But is Not Sufficient to Prevent Muscle Atrophy. FASEB Journal, 2022, 36, .	0.5	0
4	Retinol-binding protein 4 mRNA translation in hepatocytes is enhanced by activation of mTORC1. American Journal of Physiology - Endocrinology and Metabolism, 2021, 320, E306-E315.	3.5	7
5	The stress response protein REDD1 as a causal factor for oxidative stress in diabetic retinopathy. Free Radical Biology and Medicine, 2021, 165, 127-136.	2.9	16
6	Glucagon Activates mTOR1/2 Signaling via an EPAC/Rap1 Signaling Axis in Hepatocyte Cultures. FASEB Journal, 2021, 35, .	0.5	0
7	Glucagon transiently stimulates mTORC1 by activation of an EPAC/Rap1 signaling axis. Cellular Signalling, 2021, 84, 110010.	3.6	2
8	Retinal Protein O-GlcNAcylation and the Ocular Renin Angiotensin System: Signaling Cross-Roads in Diabetic Retinopathy. Current Diabetes Reviews, 2021, 17, .	1.3	2
9	ATF4-Mediated Upregulation of REDD1 and Sestrin2 Suppresses mTORC1 Activity during Prolonged Leucine Deprivation. Journal of Nutrition, 2020, 150, 1022-1030.	2.9	38
10	Glucagon-dependent suppression of mTORC1 is associated with upregulation of hepatic FGF21 mRNA translation. American Journal of Physiology - Endocrinology and Metabolism, 2020, 319, E26-E33.	3.5	9
11	Diabetes enhances translation of Cd40 mRNA in murine retinal Müller glia via a 4E-BP1/2–dependent mechanism. Journal of Biological Chemistry, 2020, 295, 10831-10841.	3.4	11
12	Angiotensin-(1–7) Attenuates Protein <i>O</i> -GlcNAcylation in the Retina by EPAC/Rap1-Dependent Inhibition of <i>O</i> -GlcNAc Transferase., 2020, 61, 24.		20
13	The stress response protein REDD1 promotes diabetes-induced oxidative stress in the retina by Keap1-independent Nrf2 degradation. Journal of Biological Chemistry, 2020, 295, 7350-7361.	3.4	44
14	REDD1 Activates a ROS-Generating Feedback Loop in the Retina of Diabetic Mice., 2019, 60, 2369.		30
15	O-GlcNAcylation alters the selection of mRNAs for translation and promotes 4E-BP1–dependent mitochondrial dysfunction in the retina. Journal of Biological Chemistry, 2019, 294, 5508-5520.	3.4	21
16	Deletion of the Akt/mTORC1 Repressor REDD1 Prevents Visual Dysfunction in a Rodent Model of Type 1 Diabetes. Diabetes, 2018, 67, 110-119.	0.6	36
17	Consumption of a high fat diet promotes protein O-GlcNAcylation in mouse retina via NR4A1-dependent GFAT2 expression. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 3568-3576.	3.8	25
18	Deletion of the stressâ€response protein REDD1 promotes ceramideâ€induced retinal cell death and JNK activation. FASEB Journal, 2018, 32, 6883-6897.	0.5	15

#	Article	IF	Citations
19	Activation of the Stress Response Kinase JNK (c-Jun N-terminal Kinase) Attenuates Insulin Action in Retina through a p70S6K1-dependent Mechanism. Journal of Biological Chemistry, 2017, 292, 1591-1602.	3.4	28
20	The Translational Repressor 4E-BP1 Contributes to Diabetes-Induced Visual Dysfunction. , 2016, 57, 1327.		20
21	Regulation of protein and mRNA expression of the mTORC1 repressor REDD1 in response to leucine and serum. Biochemistry and Biophysics Reports, 2016, 8, 296-301.	1.3	4
22	Leucine induced dephosphorylation of Sestrin2 promotes mTORC1 activation. Cellular Signalling, 2016, 28, 896-906.	3.6	77
23	Glucosamine induces REDD1 to suppress insulin action in retinal Müller cells. Cellular Signalling, 2016, 28, 384-390.	3.6	12
24	Regulated in Development and DNA Damage 1 Is Necessary for Hyperglycemia-induced Vascular Endothelial Growth Factor Expression in the Retina of Diabetic Rodents. Journal of Biological Chemistry, 2015, 290, 3865-3874.	3.4	43
25	A REDD1/TXNIP pro-oxidant complex regulates ATG4B activity to control stress-induced autophagy and sustain exercise capacity. Nature Communications, 2015, 6, 7014.	12.8	157
26	Amino Acid–Induced Activation of mTORC1 in Rat Liver Is Attenuated by Short-Term Consumption of a High-Fat Diet. Journal of Nutrition, 2015, 145, 2496-2502.	2.9	22
27	mTORC1 and JNK coordinate phosphorylation of the p70S6K1 autoinhibitory domain in skeletal muscle following functional overloading. American Journal of Physiology - Endocrinology and Metabolism, 2014, 306, E1397-E1405.	3.5	42
28	REDD1 enhances protein phosphatase 2A–mediated dephosphorylation of Akt to repress mTORC1 signaling. Science Signaling, 2014, 7, ra68.	3.6	120
29	RhoA modulates signaling through the mechanistic target of rapamycin complex $1\ (mTORC1)$ in mammalian cells. Cellular Signalling, 2014, 26, 461-467.	3.6	48
30	The mTORC1 signaling repressors REDD1/2 are rapidly induced and activation of p70S6K1 by leucine is defective in skeletal muscle of an immobilized rat hindlimb. American Journal of Physiology - Endocrinology and Metabolism, 2013, 304, E229-E236.	3.5	83
31	Regulated in DNA damage and development 1 (REDD1) promotes cell survival during serum deprivation by sustaining repression of signaling through the mechanistic target of rapamycin in complex 1 (mTORC1). Cellular Signalling, 2013, 25, 2709-2716.	3.6	72
32	Mechanistic Target of Rapamycin Complex 1 (mTORC1)-mediated Phosphorylation Is Governed by Competition between Substrates for Interaction with Raptor. Journal of Biological Chemistry, 2013, 288, 10-19.	3.4	30
33	Hyperglycemia Mediates a Shift From Cap-Dependent to Cap-Independent Translation Via a 4E-BP1-Dependent Mechanism. Diabetes, 2013, 62, 2204-2214.	0.6	28
34	Hyperglycemia mediates a shift from capâ€dependent to capindependent mRNA translation through a 4Eâ€BP1 dependent mechanism. FASEB Journal, 2013, 27, 1080.5.	0.5	0
35	Role of p70S6K1-mediated Phosphorylation of eIF4B and PDCD4 Proteins in the Regulation of Protein Synthesis. Journal of Biological Chemistry, 2012, 287, 42890-42899.	3.4	106
36	Mechanisms Involved in the Coordinate Regulation of mTORC1 by Insulin and Amino Acids. Journal of Biological Chemistry, 2011, 286, 8287-8296.	3.4	86

#	Article	IF	CITATIONS
37	Phosphorylation by CK2 Enhances the Rapid Light-induced Degradation of Phytochrome Interacting Factor 1 in Arabidopsis. Journal of Biological Chemistry, 2011, 286, 12066-12074.	3.4	84
38	Hyperglycemia-Induced O-GlcNAcylation and Truncation of 4E-BP1 Protein in Liver of a Mouse Model of Type 1 Diabetes. Journal of Biological Chemistry, 2011, 286, 34286-34297.	3.4	24
39	Differential Phosphorylation of Plant Translation Initiation Factors by Arabidopsis thaliana CK2 Holoenzymes. Journal of Biological Chemistry, 2009, 284, 20602-20614.	3.4	45
40	Phosphorylation of Plant Translation Initiation Factors by CK2 Enhances the in Vitro Interaction of Multifactor Complex Components. Journal of Biological Chemistry, 2009, 284, 20615-20628.	3.4	55
41	Evidence for Variation in the Optimal Translation Initiation Complex: Plant eIF4B, eIF4F, and eIF(iso)4F Differentially Promote Translation of mRNAs. Plant Physiology, 2009, 150, 1844-1854.	4.8	59
42	Expression and Purification of Recombinant Wheat Translation Initiation Factors eIF1, eIF1A, eIF4A, eIF4B, eIF4F, eIF(iso)4F, and eIF5. Methods in Enzymology, 2007, 430, 397-408.	1.0	31