List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2703802/publications.pdf Version: 2024-02-01

Δςςλλη Μλςρι

#	Article	IF	CITATIONS
1	On the Effects of Carbon Dioxide as a Diluent on Precursor Nanoparticles and Soot in Axi-symmetric Laminar Coflow Diffusion Flames. Combustion Science and Technology, 2022, 194, 946-962.	1.2	2
2	Turbulent spray flames of kerosene issuing from a hybrid electrohydrodynamic-air-blast atomiser. Combustion and Flame, 2022, 239, 111573.	2.8	6
3	A flamelet LES of turbulent dense spray flame using a detailed high-resolution VOF simulation of liquid fuel atomization. Combustion and Flame, 2022, 237, 111742.	2.8	10
4	Effects of ammonia and hydrogen on the sooting characteristics of laminar coflow flames of ethylene and methane. Fuel, 2022, 307, 121914.	3.4	35
5	Detailed investigation of the mixing field and stability of natural gas and propane in highly turbulent planar flames. Fuel, 2022, 309, 122222.	3.4	6
6	Experiment-Based Modeling of Turbulent Flames with Inhomogeneous Inlets. Flow, Turbulence and Combustion, 2022, 108, 1043-1067.	1.4	3
7	Comparative Study of the Catalytic Oxidation of Hydrocarbons on Platinum and Palladium Wires and Nanoparticles. Energy & Fuels, 2022, 36, 2044-2057.	2.5	4
8	Review of Flow Blurring Atomization: Advances and Perspectives. Energy & Fuels, 2022, 36, 4224-4233.	2.5	6
9	A coupled MMC-LES and sectional kinetic scheme for soot formation in a turbulent flame. Combustion and Flame, 2022, 241, 112089.	2.8	5
10	Numerical analysis of dilute methanol spray flames in vitiated coflow using extended flamelet generated manifold model. Physics of Fluids, 2022, 34, .	1.6	4
11	The role of DME addition on the evolution of soot and soot precursors in laminar ethylene jet flames. Proceedings of the Combustion Institute, 2021, 38, 5319-5329.	2.4	13
12	Modelling of a turbulent premixed flame series using a new MMC-LES model with a shadow position reference variable. Proceedings of the Combustion Institute, 2021, 38, 3057-3065.	2.4	4
13	Structure and stability characteristics of turbulent planar flames with inhomogeneous jet in a concentric flow slot burner. Proceedings of the Combustion Institute, 2021, 38, 2597-2606.	2.4	9
14	Fragmentation dynamics of single agglomerate-to-wall impaction. Powder Technology, 2021, 378, 561-575.	2.1	14
15	Atomization behaviour of a hybrid air-blast-electrostatic atomizer for spray combustion. Fuel, 2021, 288, 119716.	3.4	13
16	Improved MMC-LES to compute the structure of a mixed-mode turbulent flame series. Proceedings of the Combustion Institute, 2021, 38, 2607-2615.	2.4	3
17	Challenges for turbulent combustion. Proceedings of the Combustion Institute, 2021, 38, 121-155.	2.4	48
18	Spontaneous Raman–LIF–CO–OH measurements of species concentration in turbulent spray flames. Proceedings of the Combustion Institute, 2021, 38, 1779-1786.	2.4	4

#	Article	IF	CITATIONS
19	Characterization of multi-regime reaction zones in a piloted inhomogeneous jet flame with local extinction. Proceedings of the Combustion Institute, 2021, 38, 2571-2579.	2.4	5
20	Soot formation in turbulent flames of ethylene/hydrogen/ammonia. Combustion and Flame, 2021, 226, 315-324.	2.8	33
21	Extending the range of back-lit imaging in two-phase flows using an interrogation-window based method. Measurement: Journal of the International Measurement Confederation, 2021, 176, 109155.	2.5	4
22	A sectional soot formation kinetics scheme with a new model for coagulation efficiency. Combustion and Flame, 2021, 230, 111444.	2.8	9
23	Spray Atomization and Links to Flame Stability over a Range of Weber Numbers and Pressure Ratios. Energy & Fuels, 2021, 35, 16115-16127.	2.5	7
24	On the effects of varying coflow oxygen on soot and precursor nanoparticles in ethylene laminar diffusion flames. Fuel, 2021, 300, 120913.	3.4	3
25	An LES-DFSD study of transient premixed propane/air flames propagating past obstacles. Fuel, 2021, 302, 121099.	3.4	1
26	Characterization of Flow-Focusing and Flow-Blurring Modes of Atomization. Energy & Fuels, 2021, 35, 7144-7155.	2.5	7
27	Assessment of the stabilization mechanisms of turbulent lifted jet flames at elevated pressure using combined 2-D diagnostics. Combustion and Flame, 2020, 214, 323-335.	2.8	17
28	Soot formation in laminar flames of ethylene/ammonia. Combustion and Flame, 2020, 220, 210-218.	2.8	63
29	Heat release zones in turbulent, moderately dense spray flames of ethanol and biodiesel. Combustion and Flame, 2020, 220, 298-311.	2.8	15
30	Large eddy simulation of polydispersed inertial particles using two-way coupled PDF-PBE. International Journal of Heat and Fluid Flow, 2020, 83, 108585.	1.1	2
31	Volume measurement of atomizing fragments using image slicing. Experimental Thermal and Fluid Science, 2020, 115, 110102.	1.5	10
32	Chirped-probe-pulse femtosecond CARS thermometry in turbulent spray flames. Proceedings of the Combustion Institute, 2019, 37, 1383-1391.	2.4	14
33	Sparse MMC-LES of a Sydney swirl flame. Proceedings of the Combustion Institute, 2019, 37, 2191-2198.	2.4	25
34	Effects of shear inhomogeneities on the structure of turbulent premixed flames. Combustion and Flame, 2019, 208, 63-78.	2.8	9
35	Detachment mechanisms of turbulent non-premixed jet flames at atmospheric and elevated pressures. Combustion and Flame, 2019, 202, 219-227.	2.8	13
36	PDF-PBE modelling of polydisperse inertial particles in a turbulent recirculating flow. International Journal of Multiphase Flow, 2019, 117, 42-52.	1.6	6

#	Article	IF	CITATIONS
37	Experimental study of the beating behavior of thermoacoustic self-excited instabilities in dual swirl combustors. Experimental Thermal and Fluid Science, 2019, 105, 1-10.	1.5	18
38	The influence of fuel type and partial premixing on the structure and behaviour of turbulent autoigniting flames. Proceedings of the Combustion Institute, 2019, 37, 2277-2285.	2.4	4
39	An experimental study of turbulent lifted flames at elevated pressures. Combustion and Flame, 2019, 203, 301-312.	2.8	14
40	Influence of biodiesel carbon chain length on in-cylinder soot processes in a small bore optical diesel engine. Fuel, 2019, 235, 1184-1194.	3.4	29
41	Five kHz thermometry in turbulent spray flames using chirped-probe pulse femtosecond CARS, part I: Processing and interference analysis. Combustion and Flame, 2019, 200, 405-416.	2.8	12
42	Effect of electric charge and temperature on the near-field atomization of diesel and biodiesel. Fuel, 2019, 241, 941-953.	3.4	16
43	Five kHz thermometry in turbulent spray flames using chirped-probe-pulse femtosecond CARS, part II: Structure of reaction zones. Combustion and Flame, 2019, 200, 417-432.	2.8	8
44	Pressure effects and transition in the stabilization mechanism of turbulent lifted flames. Proceedings of the Combustion Institute, 2019, 37, 2167-2174.	2.4	9
45	Local characteristics of fragments in atomizing sprays. Experimental Thermal and Fluid Science, 2018, 95, 44-51.	1.5	14
46	High Repetition-Rate Thermometry in a Piloted Spray Burner using Femtosecond Chirped-Probe-Pulse Coherent Anti-Stokes Raman Scattering. , 2018, , .		0
47	A stochastic multiple mapping conditioning computational model in OpenFOAM for turbulent combustion. Computers and Fluids, 2018, 172, 410-425.	1.3	36
48	Combustion characterization of waste cooking oil and canola oil based biodiesels under simulated engine conditions. Fuel, 2018, 224, 167-177.	3.4	44
49	A concentric flow slot burner for stabilizing turbulent partially premixed inhomogeneous flames of gaseous fuels. Experimental Thermal and Fluid Science, 2018, 91, 214-229.	1.5	21
50	Droplet evaporation modeling of electrified fatty acid methyl esters. Fuel, 2018, 231, 244-252.	3.4	14
51	Statistics of scalar dissipation and reaction progress in turbulent flames with compositional inhomogeneities. Combustion and Flame, 2018, 194, 439-451.	2.8	16
52	Spray and Combustion Investigation of Post Injections under Low-Temperature Combustion Conditions with Biodiesel. Energy & amp; Fuels, 2018, 32, 8727-8742.	2.5	31
53	The evolution of autoignition kernels in turbulent flames of dimethyl ether. Combustion and Flame, 2018, 197, 182-196.	2.8	10
54	Turbulent flames with compositionally inhomogeneous inlets: Resolved measurements of scalar dissipation rates. Proceedings of the Combustion Institute, 2017, 36, 1737-1745.	2.4	22

#	Article	IF	CITATIONS
55	Stabilisation of turbulent auto-igniting dimethyl ether jet flames issuing into a hot vitiated coflow. Proceedings of the Combustion Institute, 2017, 36, 1661-1668.	2.4	21
56	Femtosecond Chirped-Probe-Pulse Coherent Anti-Stokes Raman Scattering Thermometry of Nitrogen in a Piloted Spray Burner. , 2017, , .		2
57	Studies of the flow and turbulence fields in a turbulent pulsed jet flame using LES/PDF. Combustion Theory and Modelling, 2017, 21, 897-924.	1.0	12
58	Towards Improving Simulations of Combustion Processes. Combustion Theory and Modelling, 2017, 21, 1-1.	1.0	4
59	A two-angle far-field microscope imaging technique for spray flows. Measurement Science and Technology, 2017, 28, 035302.	1.4	26
60	Conditioned Analysis of Effervescent Atomization. Journal of Energy Engineering - ASCE, 2017, 143, .	1.0	8
61	On defining progress variable for Raman/Rayleigh experiments in partially-premixed methane flames. Combustion and Flame, 2017, 179, 117-129.	2.8	25
62	Fuel effects on the stability of turbulent flames with compositionally inhomogeneous inlets. Proceedings of the Combustion Institute, 2017, 36, 1777-1784.	2.4	16
63	Turbulent spray flames of intermediate density: Stability and near-field structure. Combustion and Flame, 2017, 176, 511-520.	2.8	37
64	Population balance equation for turbulent polydispersed inertial droplets and particles. Journal of Fluid Mechanics, 2017, 831, 719-742.	1.4	19
65	Professor Robert William Bilger (1935–2015). Combustion and Flame, 2017, 179, A1-A2.	2.8	0
66	Tracking the evolution of soot particles and precursors in turbulent flames using laser-induced emission. Proceedings of the Combustion Institute, 2017, 36, 1869-1876.	2.4	25
67	Effect of the mixing fields on the stability and structure of turbulent partially premixed flames in a concentric flow conical nozzle burner. Combustion and Flame, 2017, 175, 180-200.	2.8	26
68	A two mixture fraction flamelet model for large eddy simulation of turbulent flames with inhomogeneous inlets. Proceedings of the Combustion Institute, 2017, 36, 1767-1775.	2.4	50
69	MMC-LES simulations of turbulent piloted flames with varying levels of inlet inhomogeneity. Proceedings of the Combustion Institute, 2017, 36, 1759-1766.	2.4	41
70	Sparse-Lagrangian MMC simulations of an n-dodecane jet at engine-relevant conditions. Proceedings of the Combustion Institute, 2017, 36, 3577-3585.	2.4	40
71	Influence of Pilot Flame Parameters on the Stability of Turbulent Jet Flames. Energy & Fuels, 2017, 31, 2128-2137.	2.5	15
72	Detection of nanostructures and soot in laminar premixed flames. Combustion and Flame, 2017, 176, 299-308.	2.8	49

#	Article	IF	CITATIONS
73	Simultaneous volume-velocity measurements in the near field of atomizing sprays. Measurement Science and Technology, 2017, 28, 115203.	1.4	26
74	Large eddy simulations of partially premixed ethanol dilute spray flames using the flamelet generated manifold model. Combustion Theory and Modelling, 2016, 20, 567-591.	1.0	15
75	Turbulent Combustion of Sprays: From Dilute to Dense. Combustion Science and Technology, 2016, 188, 1619-1639.	1.2	26
76	Combined effervescent and airblast atomization of a liquid jet. Experimental Thermal and Fluid Science, 2016, 75, 66-76.	1.5	31
77	Robert William Bilger 1935–2015. Historical Records of Australian Science, 2016, 27, 133.	0.3	1
78	Air-assisted atomization of liquid jets in varying levels of turbulence. Journal of Fluid Mechanics, 2015, 764, 95-132.	1.4	53
79	Effect of atmospheric aging on volatility and reactive oxygen species of biodiesel exhaust nano-particles. Atmospheric Chemistry and Physics, 2015, 15, 9099-9108.	1.9	16
80	Stabilization of piloted turbulent flames with inhomogeneous inlets. Proceedings of the Combustion Institute, 2015, 35, 1477-1484.	2.4	69
81	Partial premixing and stratification in turbulent flames. Proceedings of the Combustion Institute, 2015, 35, 1115-1136.	2.4	131
82	Influence of spray/combustion interactions on auto-ignition of methanol spray flames. Proceedings of the Combustion Institute, 2015, 35, 1639-1648.	2.4	32
83	Large eddy simulation of hydrogen–air premixed flames in a small scale combustion chamber. International Journal of Hydrogen Energy, 2015, 40, 3098-3109.	3.8	33
84	A statistical model for combustion resonance from a DI diesel engine with applications. Mechanical Systems and Signal Processing, 2015, 60-61, 406-419.	4.4	1
85	Simultaneous planar and volume cross-LIF imaging to identify out-of-plane motion. Proceedings of the Combustion Institute, 2015, 35, 3813-3820.	2.4	4
86	Characterization of atomization and combustion in moderately dense turbulent spray flames. Combustion and Flame, 2015, 162, 978-996.	2.8	47
87	Local extinction and near-field structure in piloted turbulent CH4/air jet flames with inhomogeneous inlets. Combustion and Flame, 2015, 162, 3516-3540.	2.8	94
88	Review of laboratory swirl burners and experiments for model validation. Experimental Thermal and Fluid Science, 2015, 69, 178-196.	1.5	73
89	The influence of gas phase velocity fluctuations on primary atomization and droplet deformation. Experiments in Fluids, 2014, 55, 1.	1.1	20
90	Temperature imaging of turbulent dilute spray flames using two-line atomic fluorescence. Experiments in Fluids, 2014, 55, 1.	1.1	18

#	Article	IF	CITATIONS
91	Influence of Fuel Molecular Structure on the Volatility and Oxidative Potential of Biodiesel Particulate Matter. Environmental Science & Technology, 2014, 48, 12577-12585.	4.6	27
92	Investigation of Lifted Flame Propagation Under Pulsing Conditions Using High-Speed OH-LIF and LES. Flow, Turbulence and Combustion, 2014, 93, 425-437.	1.4	7
93	Turbulent premixed flames of CNG, LPG, and H2 propagating past repeated obstacles. Experimental Thermal and Fluid Science, 2014, 56, 2-8.	1.5	27
94	A modified piloted burner for stabilizing turbulent flames of inhomogeneous mixtures. Combustion and Flame, 2014, 161, 484-495.	2.8	105
95	The influence of fatty acid methyl ester profiles on inter-cycle variability in a heavy duty compression ignition engine. Fuel, 2014, 116, 140-150.	3.4	35
96	Particle emissions from biodiesels with different physical properties and chemical composition. Fuel, 2014, 134, 201-208.	3.4	85
97	From Dilute to Dense Turbulent Sprays: Combustion, Auto-Ignition and Atomization. ERCOFTAC Series, 2014, , 1-29.	0.1	1
98	A Comparative Study of the Simulation of Turbulent Ethanol Spray Flames. ERCOFTAC Series, 2014, , 31-54.	0.1	3
99	Evaporation Modeling for Polydisperse Spray in Turbulent Flow. ERCOFTAC Series, 2014, , 55-77.	0.1	3
100	Large Eddy Simulation of Diluted Turbulent Spray Combustion Based on FGM Methodology: Effect of fuel and Mass Loading. ERCOFTAC Series, 2014, , 107-128.	0.1	2
101	A Study of Combustion Instability Mode in Dual Swirl Gas Turbine Combustor by PLIF and Chemiluminescence Measurement. Journal of the Korean Society of Combustion, 2014, 19, 29-38.	0.1	6
102	Air assisted atomization and spray density characterization of ethanol and a range of biodiesels. Fuel, 2013, 108, 758-770.	3.4	57
103	Investigation of auto-ignition in turbulent methanol spray flames using Large Eddy Simulation. Combustion and Flame, 2013, 160, 2941-2954.	2.8	34
104	Enhanced Transient Heat Transfer From Arrays of Jets Impinging on a Moving Plate. Heat Transfer Engineering, 2013, 34, 361-371.	1.2	22
105	Acetone Droplet Behavior in Reacting and Non Reacting Turbulent Flow. Flow, Turbulence and Combustion, 2013, 90, 419-447.	1.4	9
106	Effects of Turbulence, Evaporation and Heat Release on the Dispersion of Droplets in Dilute Spray Jets and Flames. Flow, Turbulence and Combustion, 2013, 91, 405-427.	1.4	10
107	LES/probability density function approach for the simulation of an ethanol spray flame. Proceedings of the Combustion Institute, 2013, 34, 1633-1641.	2.4	44
108	A sensitivity study of the oxidation of compressed natural gas on platinum. Fuel, 2013, 113, 467-480.	3.4	4

#	Article	IF	CITATIONS
109	A novel transient turbulent jet flame for studying turbulent combustion. Proceedings of the Combustion Institute, 2013, 34, 1251-1259.	2.4	21
110	Large Eddy Simulation of a Polydisperse Ethanol Spray Flame. Flow, Turbulence and Combustion, 2013, 90, 813-832.	1.4	41
111	A comparative experimental study of the interactions between platinum and a range of hydrocarbon fuels. Fuel, 2013, 105, 523-534.	3.4	10
112	An experimental and numerical study of surface chemical interactions in the combustion of propylene over platinum. Combustion and Flame, 2013, 160, 473-485.	2.8	15
113	Investigation of extinction and re-ignition in piloted turbulent non-premixed methane–air flames using LES and high-speed OH-LIF. Combustion Theory and Modelling, 2013, 17, 483-503.	1.0	20
114	Experience With the Large Eddy Simulation (LES) Technique for the Modeling of Premixed and Non-Premixed Combustion. Heat Transfer Engineering, 2013, 34, 1156-1170.	1.2	10
115	Structure of igniting ethanol and n-heptane spray flames with and without swirl. Experimental Thermal and Fluid Science, 2012, 43, 47-54.	1.5	33
116	A Comparative Study of Turbulent Premixed Flames Propagating Past Repeated Obstacles. Industrial & Engineering Chemistry Research, 2012, 51, 7690-7703.	1.8	33
117	Partially premixed reacting acetone spray using LES and FGM tabulated chemistry. Combustion and Flame, 2012, 159, 2718-2741.	2.8	89
118	Design of a Numerical Microcombustor for Diffusion Flames. Combustion Science and Technology, 2012, 184, 1121-1134.	1.2	0
119	Turbulent piloted dilute spray flames: Flow fields and droplet dynamics. Combustion and Flame, 2012, 159, 3372-3397.	2.8	107
120	The Structure of the Auto-Ignition Region of Turbulent Dilute Methanol Sprays Issuing in a Vitiated Co-flow. Flow, Turbulence and Combustion, 2012, 89, 13-35.	1.4	36
121	Catalytic combustion of selected hydrocarbon fuels on platinum: Reactivity and hetero–homogeneous interactions. Combustion and Flame, 2012, 159, 817-831.	2.8	273
122	Details and Complexities of Boundary Conditions in Turbulent Piloted Dilute Spray Jets and Flames. ERCOFTAC Series, 2011, , 41-68.	0.1	9
123	Turbulent piloted partially-premixed flames with varying levels of O ₂ /N ₂ : stability limits and PDF calculations. Combustion Theory and Modelling, 2011, 15, 773-793.	1.0	12
124	An algorithm for LES of premixed compressible flows using the Conditional Moment Closure model. Journal of Computational Physics, 2011, 230, 7687-7705.	1.9	43
125	Measurements and LES calculations of turbulent premixed flame propagation past repeated obstacles. Combustion and Flame, 2011, 158, 2465-2481.	2.8	49
126	A new burner for studying auto-ignition in turbulent dilute sprays. Combustion and Flame, 2011, 158, 1577-1590.	2.8	41

#	Article	IF	CITATIONS
127	High-speed OH-PLIF imaging of extinction and re-ignition in non-premixed flames with various levels of oxygenation. Combustion and Flame, 2011, 158, 902-914.	2.8	70
128	Visualization of blow-off events in bluff-body stabilized turbulent premixed flames. Proceedings of the Combustion Institute, 2011, 33, 1559-1566.	2.4	81
129	A comprehensive model for the quantification of linear and nonlinear regime laser-induced fluorescence of OH under A2Σ+â†X2Î(1,0) excitation. Applied Physics B: Lasers and Optics, 2010, 101, 445-463.	1.1	18
130	Finite Rate Chemistry Effects in Highly Sheared Turbulent Premixed Flames. Flow, Turbulence and Combustion, 2010, 85, 621-648.	1.4	81
131	Turbulent Spray Flames of Acetone and Ethanol Approaching Extinction. Combustion Science and Technology, 2010, 182, 702-715.	1.2	63
132	An assessment of large eddy simulations of premixed flames propagating past repeated obstacles. Combustion Theory and Modelling, 2009, 13, 513-540.	1.0	29
133	Calculations of explosion deflagrating flames using a dynamic flame surface density model. Journal of Loss Prevention in the Process Industries, 2009, 22, 258-264.	1.7	32
134	The compositional structure of highly turbulent piloted premixed flames issuing into a hot coflow. Proceedings of the Combustion Institute, 2009, 32, 1779-1786.	2.4	85
135	Effects of position and frequency of obstacles on turbulent premixed propagating flames. Combustion and Flame, 2009, 156, 439-446.	2.8	65
136	Heat release rate as represented by [OH] × [CH ₂ O] and its role in autoignition. Combustion Theory and Modelling, 2009, 13, 645-670.	1.0	67
137	Simultaneous Rayleigh temperature, OH- and CH2O-LIF imaging of methane jets in a vitiated coflow. Combustion and Flame, 2008, 155, 181-195.	2.8	137
138	LES of Recirculation and Vortex Breakdown in Swirling Flames. Combustion Science and Technology, 2008, 180, 809-832.	1.2	27
139	LES Modeling of Premixed Deflagrating Flames in a Small-Scale Vented Explosion Chamber with a Series of Solid Obstructions. Combustion Science and Technology, 2008, 180, 1936-1955.	1.2	35
140	TURBULENT SWIRLING NATURAL GAS FLAMES: STABILITY CHARACTERISTICS, UNSTEADY BEHAVIOR AND VORTEX BREAKDOWN. Combustion Science and Technology, 2007, 179, 207-225.	1.2	27
141	Turbulence–chemistry interactions in non-premixed swirling flames. Combustion Theory and Modelling, 2007, 11, 653-673.	1.0	44
142	A numerical study of auto-ignition in turbulent lifted flames issuing into a vitiated co-flow. Combustion Theory and Modelling, 2007, 11, 351-376.	1.0	110
143	A new piloted premixed jet burner to study strong finite-rate chemistry effects. Combustion and Flame, 2007, 151, 46-60.	2.8	142
144	Transport budgets in turbulent lifted flames of methane autoigniting in a vitiated co-flow. Combustion and Flame, 2007, 151, 495-511.	2.8	113

#	Article	IF	CITATIONS
145	GASOLINE SPRAYS INJECTED AT DIFFERENT BACK PRESSURES: CALCULATIONS USING TWO ATOMIZATION MODELS. , 2007, 17, 233-265.		5
146	Measurements and large eddy simulation of propagating premixed flames. Experimental Thermal and Fluid Science, 2006, 30, 687-702.	1.5	43
147	A detailed experimental investigation of well-defined, turbulent evaporating spray jets of acetone. International Journal of Multiphase Flow, 2006, 32, 389-412.	1.6	55
148	An Experimental Investigation of the Turbulence Structure of a Lifted H2/N2 Jet Flame in a Vitiated Co-Flow. Flow, Turbulence and Combustion, 2006, 76, 61-81.	1.4	42
149	Turbulent lifted flames in a vitiated coflow investigated using joint PDF calculations. Combustion and Flame, 2005, 142, 438-453.	2.8	154
150	Effects of turbulence and carrier fluid on simple, turbulent spray jet flames. Combustion and Flame, 2005, 143, 420-432.	2.8	36
151	Title is missing!. Combustion and Flame, 2005, 143, 339-341.	2.8	1
152	Pdf calculations of turbulent lifted flames of H2/N2fuel issuing into a vitiated co-flow. Combustion Theory and Modelling, 2004, 8, 1-22.	1.0	116
153	The compositional structure of swirl-stabilised turbulent nonpremixed flames. Combustion and Flame, 2004, 137, 1-37.	2.8	141
154	PRECESSION AND RECIRCULATION IN TURBULENT SWIRLING ISOTHERMAL JETS. Combustion Science and Technology, 2004, 176, 645-665.	1.2	55
155	Large Eddy Simulation of a Propagating Turbulent Premixed Flame. Flow, Turbulence and Combustion, 2003, 70, 1-19.	1.4	42
156	Two-photon laser-induced fluorescence measurement of CO in turbulent non-premixed bluff body flames. Combustion and Flame, 2003, 132, 272-274.	2.8	25
157	Recirculation and flowfield regimes of unconfined non-reacting swirling flows. Experimental Thermal and Fluid Science, 2003, 27, 655-665.	1.5	85
158	Stability characteristics and flowfields of turbulent non-premixed swirling flames. Combustion Theory and Modelling, 2003, 7, 731-766.	1.0	77
159	Characteristics of turbulent spray combustion in a piloted jet flame burner. Proceedings of the Combustion Institute, 2002, 29, 625-632.	2.4	14
160	Swirling turbulent non-premixed flames of methane: Flow field and compositional structure. Proceedings of the Combustion Institute, 2002, 29, 1913-1919.	2.4	91
161	The effects of obstructions on overpressure resulting from premixed flame deflagration. Journal of Loss Prevention in the Process Industries, 2001, 14, 213-221.	1.7	171
162	Probability density function computations of a strongly swirling nonpremixed flame stabilized on a new burner. Proceedings of the Combustion Institute, 2000, 28, 123-131.	2.4	42

#	Article	lF	CITATIONS
163	A shock tube kinetic study on the reaction of C3F6 and H atoms at high temperatures. Proceedings of the Combustion Institute, 2000, 28, 1557-1562.	2.4	8
164	Experimental study of premixed flame propagation over various solid obstructions. Experimental Thermal and Fluid Science, 2000, 21, 109-116.	1.5	93
165	<title>Pulsed laser imaging in practical combustion systems from 2D to 4D</title> . , 2000, , .		3
166	Shock-Tube Study of the Pyrolysis of the Halon Replacement Molecule CF3CHFCF3. Journal of Physical Chemistry A, 1999, 103, 54-61.	1.1	52
167	Shock Tube Study of the Oxidation of C3F6by N2O. Journal of Physical Chemistry A, 1999, 103, 5967-5977.	1.1	13
168	Sample Probe Measurements on a Hydrogenâ^'Ethaneâ^'Airâ^'2-H-Heptafluoropropane Flame. Energy & Fuels, 1999, 13, 485-492.	2.5	23
169	Inhibition of Premixed Hydrogen-Air Flames by 2-H Heptafluoropropane. Combustion and Flame, 1998, 113, 554-565.	2.8	67
170	Instantaneous and Mean Compositional Structure of Bluff-Body Stabilized Nonpremixed Flames. Combustion and Flame, 1998, 114, 119-148.	2.8	214
171	The instantaneous spatial structure of the recirculation zone in bluff-body stabilized flames. Proceedings of the Combustion Institute, 1998, 27, 1031-1038.	0.3	19
172	Laser Imaging in the Stabilisation Region of Turbulent Lifted Flames. Combustion Science and Technology, 1998, 135, 117-134.	1.2	42
173	Flow and mixing fields of turbulent bluff-body jets and flames. Combustion Theory and Modelling, 1998, 2, 193-219.	1.0	184
174	Reaction Zone Structure and Scalar Dissipation Rates in Turbulent Diffusion Flames. Combustion Science and Technology, 1997, 129, 17-55.	1.2	16
175	Simultaneous Imaging of Temperature and OH Number Density in Turbulent Diffusion Flames. Combustion Science and Technology, 1997, 122, 1-32.	1.2	17
176	Quantitative technique for imaging mixture fraction, temperature, and the hydroxyl radical in turbulent diffusion flames. Applied Optics, 1997, 36, 3506.	2.1	31
177	The Structure of Laminar Diffusion Flames Inhibited with CF3Br. Combustion Science and Technology, 1996, 113, 17-34.	1.2	9
178	Artificial neural network implementation of chemistry with pdf simulation of H2/CO2 flames. Combustion and Flame, 1996, 106, 406-427.	2.8	107
179	The structure of turbulent nonpremixed flames revealed by Raman-Rayleigh-LIF measurements. Progress in Energy and Combustion Science, 1996, 22, 307-362.	15.8	236
180	Measurements of no in turbulent non-premixed flames stabilized on a bluff body. Proceedings of the Combustion Institute, 1996, 26, 2191-2197.	0.3	27

#	Article	IF	CITATIONS
181	An integrated PDF/neural network approach for simulating turbulent reacting systems. Proceedings of the Combustion Institute, 1996, 26, 43-48.	0.3	83
182	A mixing model to improve the PDF simulation of turbulent diffusion flames. Proceedings of the Combustion Institute, 1996, 26, 49-57.	0.3	23
183	Lifted Flames and the Effects of Inhibitors. Combustion Science and Technology, 1995, 105, 345-355.	1.2	1
184	Chemical Inhibition of Nonpremixed Flames of Hydrocarbon Fuels with CF3Br. Combustion Science and Technology, 1994, 96, 189-212.	1.2	28
185	The structure of the recirculation zone of a bluff-body combustor. Proceedings of the Combustion Institute, 1994, 25, 1301-1308.	0.3	33
186	Multispecies measurements and mixture fraction imaging in turbulent diffusion flames. Experimental Thermal and Fluid Science, 1994, 9, 119-124.	1.5	8
187	Quantitative imaging of temperature and OH in turbulent diffusion flames by using a single laser source. Applied Optics, 1994, 33, 3992.	2.1	15
188	PDF calculations of turbulent nonpremixed flames of using reduced chemical mechanisms. Combustion and Flame, 1993, 95, 133-150.	2.8	25
189	Raman-Rayleigh scattering measurements in reacting and non-reacting dilute two-phase flows. Journal of Raman Spectroscopy, 1993, 24, 83-89.	1.2	14
190	Simultaneous multi-species imaging in turbulent flames. , 1993, , 837-846.		0
191	Raman-rayleigh measurements in bluff-body stabilised flames of hydrocarbon fuels. Proceedings of the Combustion Institute, 1992, 24, 317-324.	0.3	16
192	The structure of turbulent nonpremixed flames of methanol over a range of mixing rates. Combustion and Flame, 1992, 89, 167-185.	2.8	52
193	Chemical kinetic effects in nonpremixed flames of H2/CO2 fuel. Combustion and Flame, 1992, 91, 285-309.	2.8	74
194	An improved method of data aquisition and reduction for laser raman-rayleigh and fluorescence scattering from Multispecies. Applied Physics B, Photophysics and Laser Chemistry, 1990, 51, 39-43.	1.5	39
195	The local structure of turbulent nonpremixed flames near extinction. Combustion and Flame, 1990, 81, 260-276.	2.8	41
196	PDF calculations of piloted turbulent nonpremixed flames of methane. Combustion and Flame, 1990, 81, 13-29.	2.8	59
197	An Atlas of QEDR Flame Structures. Combustion Science and Technology, 1990, 72, 137-155.	1.2	14
198	Spontaneous raman measurements in turbulent Co/H2/N2 flames near extinction. Proceedings of the Combustion Institute, 1989, 22, 607-618.	0.3	17

#	Article	IF	CITATIONS
199	Turbulent nonpremixed flames of methane near extinction: Probability density functions. Combustion and Flame, 1988, 73, 261-285.	2.8	90
200	Turbulent nonpremixed flames of methane near extinction: Mean structure from Raman measurements. Combustion and Flame, 1988, 71, 245-266.	2.8	95
201	Conditional probability density functions measured in turbulent nonpremixed flames of methane near extinction. Combustion and Flame, 1988, 74, 267-284.	2.8	39
202	Turbulent non-premixed flames of hydrocarbon fuels near extinction: mean structure from probe measurements. Proceedings of the Combustion Institute, 1988, 21, 1511-1520.	0.3	27
203	"Fluorescence―interference with Raman measurements in nonpremixed flames of methane. Combustion and Flame, 1987, 68, 109-119.	2.8	55
204	The spontaneous raman scattering technique applied to nonpremixed flames of methane. Combustion and Flame, 1987, 67, 189-206.	2.8	156
205	Turbulent diffusion flames of hydrocarbon fuels stabilized on a bluff body. Proceedings of the Combustion Institute, 1985, 20, 319-326.	0.3	31
206	Utilising artificial neural network and repro-modelling in turbulent combustion. , 0, , .		13
207	Engine Performance Characteristics for Biodiesels of Different Degrees of Saturation and Carbon Chain Lengths. SAE International Journal of Fuels and Lubricants, 0, 6, 188-198.	0.2	36