Andreas Rummel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2703607/publications.pdf

Version: 2024-02-01

61 papers 3,876 citations

147726 31 h-index 60 g-index

64 all docs

64 docs citations

times ranked

64

1512 citing authors

#	Article	IF	CITATIONS
1	Construction and validation of safe Clostridium botulinum Group II surrogate strain producing inactive botulinum neurotoxin type E toxoid. Scientific Reports, 2022, 12, 1790.	1.6	8
2	Innovative and Highly Sensitive Detection of Clostridium perfringens Enterotoxin Based on Receptor Interaction and Monoclonal Antibodies. Toxins, 2021, 13, 266.	1.5	4
3	Human-Relevant Sensitivity of iPSC-Derived Human Motor Neurons to BoNT/A1 and B1. Toxins, 2021, 13, 585.	1.5	5
4	The 25 kDa HCN Domain of Clostridial Neurotoxins Is Indispensable for Their Neurotoxicity. Toxins, 2020, 12, 743.	1.5	5
5	Optimization of SNAP-25 and VAMP-2 Cleavage by Botulinum Neurotoxin Serotypes A–F Employing Taguchi Design-of-Experiments. Toxins, 2019, 11, 588.	1.5	1
6	Functional detection of botulinum neurotoxin serotypes A to F by monoclonal neoepitope-specific antibodies and suspension array technology. Scientific Reports, 2019, 9, 5531.	1.6	26
7	Botulinum neurotoxin serotype D – A potential treatment alternative for BoNT/A and B non-responding patients. Clinical Neurophysiology, 2019, 130, 1066-1073.	0.7	13
8	Structural and biochemical characterization of the protease domain of the mosaic botulinum neurotoxin type HA. Pathogens and Disease, 2018, 76, .	0.8	12
9	The hypothetical protein P47 of Clostridium botulinum E1 strain Beluga has a structural topology similar to bactericidal/permeability-increasing protein. Toxicon, 2018, 147, 19-26.	0.8	16
10	A viral-fusion-peptide-like molecular switch drives membrane insertion of botulinum neurotoxin A1. Nature Communications, 2018, 9, 5367.	5.8	30
11	Botulinum Neurotoxin F Subtypes Cleaving the VAMP-2 Q58–K59 Peptide Bond Exhibit Unique Catalytic Properties and Substrate Specificities. Toxins, 2018, 10, 311.	1.5	6
12	A lipid-binding loop of botulinum neurotoxin serotypes B, DC and G is an essential feature to confer their exquisite potency. PLoS Pathogens, 2018, 14, e1007048.	2.1	27
13	BoNT/AB hybrid maintains similar duration of paresis as BoNT/A wild-type in murine running wheel assay. NeuroToxicology, 2017, 59, 1-8.	1.4	10
14	A camelid single-domain antibody neutralizes botulinum neurotoxin A by blocking host receptor binding. Scientific Reports, 2017, 7, 7438.	1.6	16
15	Historical Perspectives and Guidelines for Botulinum Neurotoxin Subtype Nomenclature. Toxins, 2017, 9, 38.	1.5	232
16	Botulinum neurotoxin C mutants reveal different effects of syntaxin or SNAP-25 proteolysis on neuromuscular transmission. PLoS Pathogens, 2017, 13, e1006567.	2.1	27
17	Crystal Structure of the Receptor-Binding Domain of Botulinum Neurotoxin Type HA, Also Known as Type FA or H. Toxins, 2017, 9, 93.	1.5	24
18	Botulinum Neurotoxin Serotype A Recognizes Its Protein Receptor SV2 by a Different Mechanism than Botulinum Neurotoxin B Synaptotagmin. Toxins, 2016, 8, 154.	1.5	29

#	Article	IF	Citations
19	Two Feet on the Membrane: Uptake of Clostridial Neurotoxins. Current Topics in Microbiology and Immunology, 2016, 406, 1-37.	0.7	40
20	Only the complex N559-glycan in the synaptic vesicle glycoprotein 2C mediates high affinity binding to botulinum neurotoxin serotype A1. Biochemical Journal, 2016, 473, 2645-2654.	1.7	28
21	N-linked glycosylation of SV2 is required for binding and uptake of botulinum neurotoxin A. Nature Structural and Molecular Biology, 2016, 23, 656-662.	3.6	95
22	Biological toxins of potential bioterrorism risk: Current status of detection and identification technology. TrAC - Trends in Analytical Chemistry, 2016, 85, 89-102.	5.8	27
23	Detection, differentiation, and identification of botulinum neurotoxin serotypes C, CD, D, and DC by highly specific immunoassays and mass spectrometry. Analyst, The, 2016, 141, 5281-5297.	1.7	20
24	Qualitative and Quantitative Detection of Botulinum Neurotoxins from Complex Matrices: Results of the First International Proficiency Test. Toxins, 2015, 7, 4935-4966.	1.5	22
25	Botulinum Neurotoxins: Qualitative and Quantitative Analysis Using the Mouse Phrenic Nerve Hemidiaphragm Assay (MPN). Toxins, 2015, 7, 4895-4905.	1.5	37
26	Generation and Characterization of Six Recombinant Botulinum Neurotoxins as Reference Material to Serve in an International Proficiency Test. Toxins, 2015, 7, 5035-5054.	1.5	38
27	Preface Biological Toxinsâ€"Ancient Molecules Posing a Current Threat. Toxins, 2015, 7, 5320-5321.	1.5	9
28	Isolation and Functional Characterization of the Novel Clostridium botulinum Neurotoxin A8 Subtype. PLoS ONE, 2015, 10, e0116381.	1.1	59
29	Inhibiting oral intoxication of botulinum neurotoxin A complex by carbohydrate receptor mimics. Toxicon, 2015, 107, 43-49.	0.8	10
30	The long journey of botulinum neurotoxins into the synapse. Toxicon, 2015, 107, 9-24.	0.8	82
31	Clostridium difficile toxin B inhibits the secretory response of human mast cell line-1 (HMC-1) cells stimulated with high free-Ca2+ and GTPγS. Toxicology, 2015, 328, 48-56.	2.0	3
32	Draft Genome Sequence of Bivalent Clostridium botulinum Strain IBCA10-7060, Encoding Botulinum Neurotoxin B and a New FA Mosaic Type. Genome Announcements, 2014, 2, .	0.8	39
33	Structural Basis of the pH-Dependent Assembly of a Botulinum Neurotoxin Complex. Journal of Molecular Biology, 2014, 426, 3773-3782.	2.0	28
34	The Dual-Receptor Recognition of Botulinum Neurotoxins. , 2014, , 129-150.		0
35	Identification of the synaptic vesicle glycoprotein 2 receptor binding site in botulinum neurotoxin A. FEBS Letters, 2014, 588, 1087-1093.	1.3	40
36	High-resolution crystal structure of HA33 of botulinum neurotoxin type B progenitor toxin complex. Biochemical and Biophysical Research Communications, 2014, 446, 568-573.	1.0	20

#	Article	IF	Citations
37	Molecular basis for disruption of E-cadherin adhesion by botulinum neurotoxin A complex. Science, 2014, 344, 1405-1410.	6.0	95
38	Neutralisation of specific surface carboxylates speeds up translocation of botulinum neurotoxin type B enzymatic domain. FEBS Letters, 2013, 587, 3831-3836.	1.3	33
39	Exchanging the minimal cell binding fragments of tetanus neurotoxin in botulinum neurotoxin A and B impacts their toxicity at the neuromuscular junction and central neurons. Toxicon, 2013, 75, 108-121.	0.8	8
40	Human mast cell line-1 (HMC-1) cells exhibit a membrane capacitance increase when dialysed with high free-Ca2+ and GTPÎ ³ S containing intracellular solution. European Journal of Pharmacology, 2013, 720, 227-236.	1.7	12
41	Botulinum Neurotoxin G Binds Synaptotagmin-II in a Mode Similar to That of Serotype B: Tyrosine 1186 and Lysine 1191 Cause Its Lower Affinity. Biochemistry, 2013, 52, 3930-3938.	1.2	21
42	Identification of the SV2 protein receptor-binding site of botulinum neurotoxin typeÂE. Biochemical Journal, 2013, 453, 37-47.	1.7	43
43	Structure of a Bimodular Botulinum Neurotoxin Complex Provides Insights into Its Oral Toxicity. PLoS Pathogens, 2013, 9, e1003690.	2.1	102
44	Botulinum Neurotoxin Is Shielded by NTNHA in an Interlocked Complex. Science, 2012, 335, 977-981.	6.0	197
45	Human synaptotagminâ€II is not a high affinity receptor for botulinum neurotoxin B and G: Increased therapeutic dosage and immunogenicity. FEBS Letters, 2012, 586, 310-313.	1.3	72
46	Double Receptor Anchorage of Botulinum Neurotoxins Accounts for their Exquisite Neurospecificity. Current Topics in Microbiology and Immunology, 2012, 364, 61-90.	0.7	99
47	The biological activity of botulinum neurotoxin type C is dependent upon novel types of ganglioside binding sites. Molecular Microbiology, 2011, 81, 143-156.	1.2	64
48	Exchange of the H _{CC} domain mediating double receptor recognition improves the pharmacodynamic properties of botulinum neurotoxin. FEBS Journal, 2011, 278, 4506-4515.	2.2	32
49	Botulinum neurotoxin serotype D attacks neurons via two carbohydrate-binding sites in a ganglioside-dependent manner. Biochemical Journal, 2010, 431, 207-216.	1.7	71
50	Cell entry strategy of clostridial neurotoxins. Journal of Neurochemistry, 2009, 109, 1584-1595.	2.1	175
51	Botulinum neurotoxins C, E and F bind gangliosides via a conserved binding site prior to stimulationâ€dependent uptake with botulinum neurotoxin F utilising the three isoforms of SV2 as second receptor. Journal of Neurochemistry, 2009, 110, 1942-1954.	2.1	146
52	Receptor and substrate interactions of clostridial neurotoxins. Toxicon, 2009, 54, 550-560.	0.8	92
53	Identification of the protein receptor binding site of botulinum neurotoxins B and G proves the double-receptor concept. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 359-364.	3.3	169
54	The synaptic vesicle protein 2C mediates the uptake of botulinum neurotoxin A into phrenic nerves. FEBS Letters, 2006, 580, 2011-2014.	1.3	285

#	Article	IF	CITATIONS
55	Botulinum neurotoxin B recognizes its protein receptor with high affinity and specificity. Nature, 2006, 444, 1092-1095.	13.7	219
56	Medical aspects of toxin weapons. Toxicology, 2005, 214, 210-220.	2.0	102
57	Synaptotagmins I and II Act as Nerve Cell Receptors for Botulinum Neurotoxin G. Journal of Biological Chemistry, 2004, 279, 30865-30870.	1.6	220
58	Botulinum neurotoxin type D enables cytosolic delivery of enzymatically active cargo proteins to neurones via unfolded translocation intermediates. Journal of Neurochemistry, 2004, 91, 1461-1472.	2.1	95
59	The HCC-domain of botulinum neurotoxins A and B exhibits a singular ganglioside binding site displaying serotype specific carbohydrate interaction. Molecular Microbiology, 2003, 51, 631-643.	1.2	205
60	Two Carbohydrate Binding Sites in the HCC-domain of Tetanus Neurotoxin are Required for Toxicity. Journal of Molecular Biology, 2003, 326, 835-847.	2.0	127
61	Arg362and Tyr365of the Botulinum Neurotoxin Type A Light Chain Are Involved in Transition State Stabilizationâ€. Biochemistry, 2002, 41, 1717-1723.	1.2	104