Sergei M Antonov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2703492/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Permeant ion regulation of <i>N</i> -methyl- <scp>d</scp> -aspartate receptor channel block by Mg ²⁺ . Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 14571-14576.	7.1	87
2	A fluorescence vital assay for the recognition and quantification of excitotoxic cell death by necrosis and apoptosis using confocal microscopy on neurons in culture. Journal of Neuroscience Methods, 2007, 163, 1-8.	2.5	86
3	Calcium alterations signal either to senescence or to autophagy induction in stem cells upon oxidative stress. Aging, 2016, 8, 3400-3418.	3.1	75
4	The role of NMDA and mGluR5 receptors in calcium mobilization and neurotoxicity of homocysteine in trigeminal and cortical neurons and glial cells. Journal of Neurochemistry, 2014, 129, 264-274.	3.9	67
5	Na ⁺ ,K ⁺ -ATPase Functionally Interacts with the Plasma Membrane Na ⁺ ,Ca ²⁺ Exchanger to Prevent Ca ²⁺ Overload and Neuronal Apoptosis in Excitotoxic Stress. Journal of Pharmacology and Experimental Therapeutics, 2012, 343, 596-607.	2.5	65
6	Binding sites for permeant ions in the channel of NMDA receptors and their effects on channel block. Nature Neuroscience, 1998, 1, 451-461.	14.8	64
7	GluN2A Subunit-Containing NMDA Receptors Are the Preferential Neuronal Targets of Homocysteine. Frontiers in Cellular Neuroscience, 2016, 10, 246.	3.7	36
8	Calcium-Dependent Desensitization of NMDA Receptors. Biochemistry (Moscow), 2018, 83, 1173-1183.	1.5	36
9	Argiopin blocks the glutamate responses and sensorimotor transmission in motoneurones of isolated frog spinal cord. Neuroscience Letters, 1987, 83, 179-184.	2.1	35
10	Modulation by permeant ions of Mg 2+ inhibition of NMDAâ€activated wholeâ€cell currents in rat cortical neurons. Journal of Physiology, 2002, 538, 65-77.	2.9	33
11	Kainate-induced calcium overload of cortical neurons in vitro: Dependence on expression of AMPAR GluA2-subunit and down-regulation by subnanomolar ouabain. Cell Calcium, 2013, 54, 95-104.	2.4	31
12	Functional Properties of Human NMDA Receptors Associated with Epilepsy-Related Mutations of GluN2A Subunit. Frontiers in Cellular Neuroscience, 2017, 11, 155.	3.7	31
13	Inhibition of Plasma Membrane Na/Ca-Exchanger by KB-R7943 or Lithium Reveals Its Role in Ca-Dependent <i>N</i> -methyl-d-aspartate Receptor Inactivation. Journal of Pharmacology and Experimental Therapeutics, 2015, 355, 484-495.	2.5	28
14	Argiopine blocks glutamate-activated single-channel currents on crayfish muscle by two mechanisms Journal of Physiology, 1989, 419, 569-587.	2.9	27
15	Complex rectification of Müller cell Kir currents. Clia, 2008, 56, 775-790.	4.9	27
16	Pro-nociceptive migraine mediator CGRP provides neuroprotection of sensory, cortical and cerebellar neurons via multi-kinase signaling. Cephalalgia, 2017, 37, 1373-1383.	3.9	25
17	Intense non-quantal release of glutamate in an insect neuromuscular junction. Neuroscience Letters, 1988, 93, 204-208.	2.1	24
18	Downregulation of calcium-dependent NMDA receptor desensitization by sodium-calcium exchangers: a role of membrane cholesterol. BMC Neuroscience, 2018, 19, 73.	1.9	23

Sergei M Antonov

#	Article	IF	CITATIONS
19	Glia and glial polyamines. Role in brain function in health and disease. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 2016, 10, 73-98.	0.6	18
20	High sensitivity of cerebellar neurons to homocysteine is determined by expression of GluN2C and GluN2D subunits of NMDA receptors. Biochemical and Biophysical Research Communications, 2018, 506, 648-652.	2.1	16
21	Dual action of amitriptyline on NMDA receptors: enhancement of Ca-dependent desensitization and trapping channel block. Scientific Reports, 2019, 9, 19454.	3.3	16
22	Identification of two types of excitatory monosynaptic inputs in frog spinal motoneurones. Neuroscience Letters, 1990, 109, 82-87.	2.1	9
23	Developmental Changes of Synaptic and Extrasynaptic NMDA Receptor Expression in Rat Cerebellar Neurons In Vitro. Journal of Molecular Neuroscience, 2018, 64, 300-311.	2.3	9
24	Ethanol inhibition of NMDA receptors in calcium-dependent and –independent modes. Biochemical and Biophysical Research Communications, 2020, 522, 1046-1051.	2.1	9
25	Calcium Export from Neurons and Multi-Kinase Signaling Cascades Contribute to Ouabain Neuroprotection in Hyperhomocysteinemia. Biomolecules, 2020, 10, 1104.	4.0	7
26	Tricyclic Antidepressant Structure-Related Alterations in Calcium-Dependent Inhibition and Open-Channel Block of NMDA Receptors. Frontiers in Pharmacology, 2021, 12, 815368.	3.5	7
27	GluN2 Subunit-Dependent Redox Modulation of NMDA Receptor Activation by Homocysteine. Biomolecules, 2020, 10, 1441.	4.0	6
28	The effect of SK channel modulators on the simple spike firing frequency in discharge of cerebellar Purkinje cells in laboratory mice. Journal of Evolutionary Biochemistry and Physiology, 2014, 50, 114-120.	0.6	4
29	Homocysteine-induced membrane currents, calcium responses and changes in mitochondrial potential in rat cortical neurons. Journal of Evolutionary Biochemistry and Physiology, 2015, 51, 296-304.	0.6	4
30	Transporters of Neurotransmitters: Receptive, Transport, and Channel Functions. Journal of Evolutionary Biochemistry and Physiology, 2001, 37, 328-334.	0.6	2
31	Nutritional and Metabolic Factors, Ethanol and Cholesterol, Interact With Calcium-Dependent N-Methyl-D-Aspartate Receptor Inhibition by Tricyclic Antidepressants. Frontiers in Cellular Neuroscience, 0, 16, .	3.7	2
32	The glutamate receptor types determining concentrational dependence of its neurotoxic effect on rat cerebral cortex neurons. Journal of Evolutionary Biochemistry and Physiology, 2006, 42, 706-715.	0.6	0
33	The Role of Ryanodine and IP3-receptors in Calcium Responses to Tricyclic Antidepressants in Rat Neocortical Neurons. Journal of Evolutionary Biochemistry and Physiology, 2021, 57, 694-703.	0.6	0
34	Effects of Lithium and Selective Inhibitors of Sodium-Calcium Exchanger on Its Transport Currents in Neurons and HEK293 Cells. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 2022, 16, 29-37.	0.6	0