
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2703476/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Voltageâ€gated calcium channel nanodomains: molecular composition and function. FEBS Journal, 2022, 289, 614-633.	4.7	23
2	Regulation of CaV3.2 channels by the receptor for activated C kinase 1 (Rack-1). Pflugers Archiv European Journal of Physiology, 2022, 474, 447-454.	2.8	7
3	Trigeminal neuropathic pain causes changes in affective processing of pain in rats. Molecular Pain, 2022, 18, 174480692110577.	2.1	6
4	A Synthetically Accessible Small-Molecule Inhibitor of USP5-Cav3.2 Calcium Channel Interactions with Analgesic Properties. ACS Chemical Neuroscience, 2022, 13, 524-536.	3.5	12
5	Gut-innervating TRPV1+ Neurons Drive Chronic Visceral Pain via Microglial P2Y12 Receptor. Cellular and Molecular Gastroenterology and Hepatology, 2022, 13, 977-999.	4.5	17
6	Subcellular localization of hippocampal ryanodine receptor 2 and its role in neuronal excitability and memory. Communications Biology, 2022, 5, 183.	4.4	12
7	Putative Synthetic Cannabinoids MEPIRAPIM, 5F-BEPIRAPIM (NNL-2), and Their Analogues Are T-Type Calcium Channel (Ca _V 3) Inhibitors. ACS Chemical Neuroscience, 2022, 13, 1395-1409.	3.5	4
8	A molecular complex of Ca _v 1.2/CaMKK2/CaMK1a in caveolae is responsible for vascular remodeling via excitation–transcription coupling. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2117435119.	7.1	15
9	CaV3.2 calcium channels contribute to trigeminal neuralgia. Pain, 2022, 163, 2315-2325.	4.2	22
10	Central and peripheral contributions of T-type calcium channels in pain. Molecular Brain, 2022, 15, 39.	2.6	27
11	CaVβ-subunit dependence of forward and reverse trafficking of CaV1.2 calcium channels. Molecular Brain, 2022, 15, 43.	2.6	1
12	The calcium channel terminator: hasta la vista pain. Trends in Pharmacological Sciences, 2022, 43, 801-803.	8.7	3
13	Opioid Receptor Regulation of Neuronal Voltage-Gated Calcium Channels. Cellular and Molecular Neurobiology, 2021, 41, 839-847.	3.3	13
14	Rare functional missense variants in CACNA1H: What can we learn from Writer's cramp?. Molecular Brain, 2021, 14, 18.	2.6	3
15	The life cycle of voltage-gated Ca2+ channels in neurons: an update on the trafficking of neuronal calcium channels. Neuronal Signaling, 2021, 5, NS20200095.	3.2	14
16	The de novo CACNA1A pathogenic variant Y1384C associated with hemiplegic migraine, early onset cerebellar atrophy and developmental delay leads to a loss of Cav2.1 channel function. Molecular Brain, 2021, 14, 27.	2.6	12
17	The IL33 receptor ST2 contributes to mechanical hypersensitivity in mice with neuropathic pain. Molecular Brain, 2021, 14, 35.	2.6	5
18	Ethosuximide inhibits acute histamine- and chloroquine-induced scratching behavior in mice. Molecular Brain, 2021, 14, 46.	2.6	3

#	Article	IF	CITATIONS
19	Synthesis and Biological Evaluation of Novel Benzhydrylpiperazine-Coupled Nitrobenzenesulfonamide Hybrids. ACS Omega, 2021, 6, 9731-9740.	3.5	12
20	An orbitofrontal cortex to midbrain projection modulates hypersensitivity after peripheral nerve injury. Cell Reports, 2021, 35, 109033.	6.4	11
21	SUMO wrestling in the cellular dohyÅŧ crosstalk between phosphorylation and SUMOylation of PKCÎ′ regulates oxidative cell damage. FEBS Journal, 2021, 288, 6406-6409.	4.7	Ο
22	Mutation of copper binding sites on cellular prion protein abolishes its inhibitory action on NMDA receptors in mouse hippocampal neurons. Molecular Brain, 2021, 14, 117.	2.6	7
23	Modeling temperature- and Cav3 subtype-dependent alterations in T-type calcium channel mediated burst firing. Molecular Brain, 2021, 14, 115.	2.6	6
24	De novo SCN8A and inherited rare CACNA1H variants associated with severe developmental and epileptic encephalopathy. Molecular Brain, 2021, 14, 126.	2.6	6
25	Splice-variant specific effects of a CACNA1H mutation associated with writer's cramp. Molecular Brain, 2021, 14, 145.	2.6	2
26	Protocol for detecting plastic changes in defined neuronal populations in neuropathic mice. STAR Protocols, 2021, 2, 100698.	1.2	1
27	Structural optimization, synthesis and in vitro synergistic anticancer activities of combinations of new N3-substituted dihydropyrimidine calcium channel blockers with cisplatin and etoposide. Bioorganic Chemistry, 2021, 115, 105262.	4.1	7
28	A CACNA1A variant associated with trigeminal neuralgia alters the gating of Cav2.1 channels. Molecular Brain, 2021, 14, 4.	2.6	11
29	The terpenes camphene and alpha-bisabolol inhibit inflammatory and neuropathic pain via Cav3.2ÂT-type calcium channels. Molecular Brain, 2021, 14, 166.	2.6	16
30	Genetic T-type calcium channelopathies. Journal of Medical Genetics, 2020, 57, 1-10.	3.2	50
31	Trigeminal neuralgia: An overview from pathophysiology to pharmacological treatments. Molecular Pain, 2020, 16, 174480692090189.	2.1	153
32	Hyperactivity of Innate Immunity Triggers Pain via TLR2-IL-33-Mediated Neuroimmune Crosstalk. Cell Reports, 2020, 33, 108233.	6.4	29
33	Acute orofacial pain leads to prolonged changes in behavioral and affective pain components. Pain, 2020, 161, 2830-2840.	4.2	19
34	Functional identification of potential non-canonical N-glycosylation sites within Cav3.2ÂT-type calcium channels. Molecular Brain, 2020, 13, 149.	2.6	8
35	Cav3.2 T-type calcium channels control acute itch in mice. Molecular Brain, 2020, 13, 119.	2.6	13
36	Pain: Integration of Sensory and Affective Aspects of Pain. Current Biology, 2020, 30, R393-R395.	3.9	8

#	Article	IF	CITATIONS
37	FMRP(1–297)-tat restores ion channel and synaptic function in a model of Fragile X syndrome. Nature Communications, 2020, 11, 2755.	12.8	19
38	A rare CACNA1H variant associated with amyotrophic lateral sclerosis causes complete loss of Cav3.2 T-type channel activity. Molecular Brain, 2020, 13, 33.	2.6	14
39	Regulation of pain signaling by the innate immune system. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2020, 93, 2-S24-1.	0.0	0
40	Dopamine Inputs from the Ventral Tegmental Area into the Medial Prefrontal Cortex Modulate Neuropathic Pain-Associated Behaviors in Mice. Cell Reports, 2020, 31, 107812.	6.4	47
41	Synthesis and cytotoxic effects of 2-thio-3,4-dihydroquinazoline derivatives as novel T-type calcium channel blockers. Bioorganic and Medicinal Chemistry, 2020, 28, 115491.	3.0	5
42	Discovery of Michael acceptor containing 1,4-dihydropyridines as first covalent inhibitors of L-/T-type calcium channels. Bioorganic Chemistry, 2019, 91, 103187.	4.1	16
43	Interactions of Rabconnectin-3 with Cav2 calcium channels. Molecular Brain, 2019, 12, 62.	2.6	8
44	Tuning the regulator: Phosphorylation of KCC2 at two specific sites is critical for neurodevelopment. Science Signaling, 2019, 12, .	3.6	4
45	Peripheral nerve injury-induced alterations in VTA neuron firing properties. Molecular Brain, 2019, 12, 89.	2.6	26
46	Pathogenic Cav3.2 channel mutation in a child with primary generalized epilepsy. Molecular Brain, 2019, 12, 86.	2.6	11
47	Junctophilin Proteins Tether a Cav1-RyR2-KCa3.1 Tripartite Complex to Regulate Neuronal Excitability. Cell Reports, 2019, 28, 2427-2442.e6.	6.4	45
48	SUMOylation regulates USP5-Cav3.2 calcium channel interactions. Molecular Brain, 2019, 12, 73.	2.6	17
49	Ankyrin B and Ankyrin B variants differentially modulate intracellular and surface Cav2.1 levels. Molecular Brain, 2019, 12, 75.	2.6	14
50	A neuronal circuit for activating descending modulation of neuropathic pain. Nature Neuroscience, 2019, 22, 1659-1668.	14.8	185
51	T-Type Channel Druggability at a Crossroads. ACS Chemical Neuroscience, 2019, 10, 1124-1126.	3.5	28
52	Neuroimmune Responses Mediate Depression-Related Behaviors following Acute Colitis. IScience, 2019, 16, 12-21.	4.1	19
53	Identification of a molecular gating determinant within the carboxy terminal region of Cav3.3 T-type channels. Molecular Brain, 2019, 12, 34.	2.6	7
54	Synthesis of some new C2 substituted dihydropyrimidines and their electrophysiological evaluation as L-/T-type calcium channel blockers. Bioorganic Chemistry, 2019, 88, 102915.	4.1	10

#	Article	IF	CITATIONS
55	Cav3.2 calcium channel interactions with the epithelial sodium channel ENaC. Molecular Brain, 2019, 12, 12.	2.6	11
56	Cav3.2 T-type calcium channels shape electrical firing in mouse Lamina II neurons. Scientific Reports, 2019, 9, 3112.	3.3	45
57	TNF-α mediated upregulation of NaV1.7 currents in rat dorsal root ganglion neurons is independent of CRMP2 SUMOylation. Molecular Brain, 2019, 12, 117.	2.6	23
58	Differential regulation of Cav2.2 channel exon 37 variants by alternatively spliced μ-opioid receptors. Molecular Brain, 2019, 12, 98.	2.6	12
59	Anxiolytic effects of the flavonoid luteolin in a mouse model of acute colitis. Molecular Brain, 2019, 12, 114.	2.6	24
60	Analgesic effects of optogenetic inhibition of basolateral amygdala inputs into the prefrontal cortex in nerve injured female mice. Molecular Brain, 2019, 12, 105.	2.6	9
61	A potential role for T-type calcium channels in homocysteinemia-induced peripheral neuropathy. Pain, 2019, 160, 2798-2810.	4.2	21
62	Betulinic acid, derived from the desert lavender Hyptis emoryi, attenuates paclitaxel-, HIV-, and nerve injury–associated peripheral sensory neuropathy via block of N- and T-type calcium channels. Pain, 2019, 160, 117-135.	4.2	44
63	T-type calcium channels: From molecule to therapeutic opportunities. International Journal of Biochemistry and Cell Biology, 2019, 108, 34-39.	2.8	73
64	Design, synthesis and pharmacological evaluation of some substituted dihydropyrimidines with L-/T-type calcium channel blocking activities. Bioorganic Chemistry, 2019, 83, 354-366.	4.1	19
65	Dopaminergic modulation of pain signals in the medial prefrontal cortex: Challenges and perspectives. Neuroscience Letters, 2019, 702, 71-76.	2.1	20
66	BK Potassium Channels Suppress Cavα2δ Subunit Function to Reduce Inflammatory and Neuropathic Pain. Cell Reports, 2018, 22, 1956-1964.	6.4	45
67	Recent advances in the development of Tâ€ŧype calcium channel blockers for pain intervention. British Journal of Pharmacology, 2018, 175, 2375-2383.	5.4	93
68	Disrupting USP5/Cav3.2 interactions protects female mice from mechanical hypersensitivity during peripheral inflammation. Molecular Brain, 2018, 11, 60.	2.6	14
69	Differential modulation of NMDA and AMPA receptors by cellular prion protein and copper ions. Molecular Brain, 2018, 11, 62.	2.6	20
70	De Novo Pathogenic Variants in CACNA1E Cause Developmental and Epileptic Encephalopathy with Contractures, Macrocephaly, and Dyskinesias. American Journal of Human Genetics, 2018, 103, 666-678.	6.2	87
71	Binding mechanism investigations guiding the synthesis of novel condensed 1,4-dihydropyridine derivatives with L-/T-type calcium channel blocking activity. European Journal of Medicinal Chemistry, 2018, 155, 1-12.	5.5	34
72	T-type calcium channels functionally interact with spectrin (α/β) and ankyrin B. Molecular Brain, 2018, 11, 24.	2.6	31

#	Article	IF	CITATIONS
73	A Membrane Potential- and Calpain-Dependent Reversal of Caspase-1 Inhibition Regulates Canonical NLRP3 Inflammasome. Cell Reports, 2018, 24, 2356-2369.e5.	6.4	44
74	Selective inhibition of Ca _V 3.2 channels reverses hyperexcitability of peripheral nociceptors and alleviates postsurgical pain. Science Signaling, 2018, 11, .	3.6	48
75	Microglial pannexin-1 channel activation is a spinal determinant of joint pain. Science Advances, 2018, 4, eaas9846.	10.3	73
76	Cav3.1 overexpression is associated with negative characteristics and prognosis in non-small cell lung cancer. Oncotarget, 2018, 9, 8573-8583.	1.8	10
77	Voltage-gated calcium channels as molecular targets for pain therapeutics. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, SY19-2.	0.0	0
78	Blocking microglial pannexin-1 channels alleviates morphine withdrawal in rodents. Nature Medicine, 2017, 23, 355-360.	30.7	130
79	Carisbamate blockade of Tâ€ŧype voltageâ€gated calcium channels. Epilepsia, 2017, 58, 617-626.	5.1	5
80	Synthesis and biological evaluation of novel N3- substituted dihydropyrimidine derivatives as T-type calcium channel blockers and their efficacy as analgesics in mouse models of inflammatory pain. Bioorganic and Medicinal Chemistry, 2017, 25, 1926-1938.	3.0	26
81	Down-regulation of T-type Cav3.2 channels by hyperpolarization-activated cyclic nucleotide-gated channel 1 (HCN1): Evidence of a signaling complex. Channels, 2017, 11, 434-443.	2.8	11
82	Synthesis of new N3- substituted dihydropyrimidine derivatives as L-/T- type calcium channel blockers. European Journal of Medicinal Chemistry, 2017, 134, 52-61.	5.5	16
83	N-type Ca2+ channels are affected by full-length mutant huntingtin expression in a mouse model of Huntington's disease. Neurobiology of Aging, 2017, 55, 1-10.	3.1	24
84	Activity-Dependent Facilitation of Ca _V 1.3 Calcium Channels Promotes KCa3.1 Activation in Hippocampal Neurons. Journal of Neuroscience, 2017, 37, 11255-11270.	3.6	30
85	The Cacna1h mutation in the GAERS model of absence epilepsy enhances T-type Ca2+ currents by altering calnexin-dependent trafficking of Cav3.2 channels. Scientific Reports, 2017, 7, 11513.	3.3	35
86	Identification of interleukin-1 beta as a key mediator in the upregulation of Cav3.2–USP5 interactions in the pain pathway. Molecular Pain, 2017, 13, 174480691772469.	2.1	39
87	A Crash Course in Calcium Channels. ACS Chemical Neuroscience, 2017, 8, 2583-2585.	3.5	11
88	Synthesis and biological evaluation of fluoro-substituted 3,4-dihydroquinazoline derivatives for cytotoxic and analgesic effects. Bioorganic and Medicinal Chemistry, 2017, 25, 4656-4664.	3.0	8
89	Surfen is a broad-spectrum calcium channel inhibitor with analgesic properties in mouse models of acute and chronic inflammatory pain. Pflugers Archiv European Journal of Physiology, 2017, 469, 1325-1334.	2.8	2
90	Regulation of voltage gated calcium channels by GPCRs and post-translational modification. Current Opinion in Pharmacology, 2017, 32, 1-8.	3.5	35

#	Article	IF	CITATIONS
91	Block of voltage-gated calcium channels by peptide toxins. Neuropharmacology, 2017, 127, 109-115.	4.1	55
92	Discovery and mode of action of a novel analgesic Î ² -toxin from the African spider Ceratogyrus darlingi. PLoS ONE, 2017, 12, e0182848.	2.5	22
93	A T-type channel-calmodulin complex triggers αCaMKII activation. Molecular Brain, 2017, 10, 37.	2.6	22
94	Trafficking of neuronal calcium channels. Neuronal Signaling, 2017, 1, NS20160003.	3.2	21
95	Reduced Hyperpolarization-Activated Current Contributes to Enhanced Intrinsic Excitability in Cultured Hippocampal Neurons from PrPâ^'/â^' Mice. Frontiers in Cellular Neuroscience, 2016, 10, 74.	3.7	14
96	Synthesis and characterization of a disubstituted piperazine derivative with T-type channel blocking action and analgesic properties. Molecular Pain, 2016, 12, 174480691664167.	2.1	14
97	A cell-permeant peptide corresponding to the cUBP domain of USP5 reverses inflammatory and neuropathic pain. Molecular Pain, 2016, 12, 174480691664244.	2.1	39
98	Long-Term Potentiation at the Mossy Fiber–Granule Cell Relay Invokes Postsynaptic Second-Messenger Regulation of Kv4 Channels. Journal of Neuroscience, 2016, 36, 11196-11207.	3.6	16
99	Cooperative roles of glucose and asparagine-linked glycosylation in T-type calcium channel expression. Pflugers Archiv European Journal of Physiology, 2016, 468, 1837-1851.	2.8	26
100	Effect of the T-type channel blocker KYS-05090S in mouse models of acute and neuropathic pain. Pflugers Archiv European Journal of Physiology, 2016, 468, 193-199.	2.8	23
101	Protein interactome mining defines melatonin <scp>MT</scp> ₁ receptors as integral component of presynaptic protein complexes of neurons. Journal of Pineal Research, 2016, 60, 95-108.	7.4	42
102	Assessing the role of IKCa channels in generating the sAHP of CA1 hippocampal pyramidal cells. Channels, 2016, 10, 313-319.	2.8	22
103	Two heterozygous Cav3.2 channel mutations in a pediatric chronic pain patient: recording condition-dependent biophysical effects. Pflugers Archiv European Journal of Physiology, 2016, 468, 635-642.	2.8	20
104	Targeting voltage-gated calcium channels in neurological and psychiatric diseases. Nature Reviews Drug Discovery, 2016, 15, 19-34.	46.4	306
105	Voltage-Gated Ion Channels as Molecular Targets for Pain. , 2016, , 415-436.		1
106	Calcium Channel Signaling Complexes with Receptors and Channels. Current Molecular Pharmacology, 2015, 8, 8-11.	1.5	16
107	Solution NMR and calorimetric analysis of Rem2 binding to the Ca ²⁺ channel β4 subunit: a low affinity interaction is required for inhibition of Cav2.1 Ca ²⁺ currents. FASEB Journal, 2015, 29, 1794-1804.	0.5	6
108	IKCa Channels Are a Critical Determinant of the Slow AHP in CA1 Pyramidal Neurons. Cell Reports, 2015, 11, 175-182.	6.4	64

#	Article	IF	CITATIONS
109	All roads lead to presynaptic calcium channel inhibition by the ghrelin receptor: Separate agonist-dependent and -independent signaling pathways. Journal of General Physiology, 2015, 146, 201-204.	1.9	2
110	Tâ€ŧypes make your clock tick. Journal of Physiology, 2015, 593, 757-758.	2.9	0
111	Role of Prelimbic GABAergic Circuits in Sensory and Emotional Aspects of Neuropathic Pain. Cell Reports, 2015, 12, 752-759.	6.4	186
112	Small Organic Molecule Disruptors of Cav3.2 - USP5 Interactions Reverse Inflammatory and Neuropathic Pain. Molecular Pain, 2015, 11, s12990-015-0011.	2.1	69
113	Glutamate receptors function as scaffolds for the regulation of β-amyloid and cellular prion protein signaling complexes. Molecular Brain, 2015, 8, 18.	2.6	59
114	Analgesic effect of a broad-spectrum dihydropyridine inhibitor of voltage-gated calcium channels. Pflugers Archiv European Journal of Physiology, 2015, 467, 2485-2493.	2.8	33
115	Anticonvulsant mechanisms of piperine, a piperidine alkaloid. Channels, 2015, 9, 317-323.	2.8	62
116	Inhibitory effect of positively charged triazine antagonists of prokineticin receptors on the transient receptor vanilloid type-1 (TRPV1) channel. Pharmacological Research, 2015, 99, 362-369.	7.1	6
117	David Yue (1957–2014). Journal of Physiology, 2015, 593, 1325-1325.	2.9	0
118	Possible role of trace elements in epilepsy and febrile seizures: a meta-analysis. Nutrition Reviews, 2015, 73, 760-779.	5.8	54
119	The Physiology, Pathology, and Pharmacology of Voltage-Gated Calcium Channels and Their Future Therapeutic Potential. Pharmacological Reviews, 2015, 67, 821-870.	16.0	793
120	The Triggle effect. Biochemical Pharmacology, 2015, 98, 322-326.	4.4	2
121	RIM1/2-Mediated Facilitation of Cav1.4 Channel Opening Is Required for Ca ²⁺ -Stimulated Release in Mouse Rod Photoreceptors. Journal of Neuroscience, 2015, 35, 13133-13147.	3.6	43
122	Neuronal expression of the intermediate conductance calcium-activated potassium channel KCa3.1 in the mammalian central nervous system. Pflugers Archiv European Journal of Physiology, 2015, 467, 311-328.	2.8	35
123	1,4-Dihydropyridine derivatives with T-type calcium channel blocking activity attenuate inflammatory and neuropathic pain. Pflugers Archiv European Journal of Physiology, 2015, 467, 1237-1247.	2.8	40
124	Characterization of Novel Cannabinoid Based T-Type Calcium Channel Blockers with Analgesic Effects. ACS Chemical Neuroscience, 2015, 6, 277-287.	3.5	42
125	The Cav1.2ÂN terminus contains a CaM kinase site that modulates channel trafficking and function. Pflugers Archiv European Journal of Physiology, 2015, 467, 677-686.	2.8	14
126	Cellular prion protein and NMDA receptor modulation: protecting against excitotoxicity. Frontiers in Cell and Developmental Biology, 2014, 2, 45.	3.7	54

#	Article	IF	CITATIONS
127	The truth in complexes: perspectives on ion channel signaling nexuses in the nervous system. Frontiers in Cellular Neuroscience, 2014, 8, 406.	3.7	2
128	NMP-7 Inhibits Chronic Inflammatory and Neuropathic Pain via Block of Cav3.2 T-type Calcium Channels and Activation of CB2 Receptors. Molecular Pain, 2014, 10, 1744-8069-10-77.	2.1	32
129	The MAP1B-LC1/UBE2L3 complex catalyzes degradation of cell surface Ca _V 2.2 channels. Channels, 2014, 8, 452-457.	2.8	13
130	The Tao of IGF-1: Insulin-Like Growth Factor Receptor Activation Increases Pain by Enhancing T-Type Calcium Channel Activity. Science Signaling, 2014, 7, pe23.	3.6	8
131	The amino terminus of high-voltage-activated calcium channels. Channels, 2014, 8, 370-375.	2.8	1
132	Kainate receptor activation induces glycine receptor endocytosis through PKC deSUMOylation. Nature Communications, 2014, 5, 4980.	12.8	46
133	T-type channels buddy up. Pflugers Archiv European Journal of Physiology, 2014, 466, 661-675.	2.8	35
134	CaV2.2 channel cell surface expression is regulated by the light chain 1 (LC1) of the microtubule-associated protein B (MAP1B) via UBE2L3-mediated ubiquitination and degradation. Pflugers Archiv European Journal of Physiology, 2014, 466, 2113-2126.	2.8	19
135	Synthesis and Evaluation of 1,4-Dihydropyridine Derivatives with Calcium Channel Blocking Activity. Pflugers Archiv European Journal of Physiology, 2014, 466, 1355-1363.	2.8	53
136	A novel calmodulin site in the Cav1.2 N-terminus regulates calcium-dependent inactivation. Pflugers Archiv European Journal of Physiology, 2014, 466, 1793-1803.	2.8	25
137	Regulating excitability of peripheral afferents: emerging ion channel targets. Nature Neuroscience, 2014, 17, 153-163.	14.8	361
138	The Deubiquitinating Enzyme USP5 Modulates Neuropathic and Inflammatory Pain by Enhancing Cav3.2 Channel Activity. Neuron, 2014, 83, 1144-1158.	8.1	197
139	The Expression Pattern of a Cav3-Kv4 Complex Differentially Regulates Spike Output in Cerebellar Granule Cells. Journal of Neuroscience, 2014, 34, 8800-8812.	3.6	28
140	Effect of the Brugada syndrome mutation A39V on calmodulin regulation of Cav1.2 channels. Molecular Brain, 2014, 7, 34.	2.6	11
141	Block of T-type calcium channels by protoxins I and II. Molecular Brain, 2014, 7, 36.	2.6	37
142	Calcium-Permeable Ion Channels in Pain Signaling. Physiological Reviews, 2014, 94, 81-140.	28.8	249
143	Neuronal Voltage-Gated Calcium Channels: Structure, Function, and Dysfunction. Neuron, 2014, 82, 24-45.	8.1	489
144	Analgesic Effect of a Mixed T-Type Channel Inhibitor/CB ₂ Receptor Agonist. Molecular Pain, 2013, 9, 1744-8069-9-32.	2.1	36

#	Article	IF	CITATIONS
145	Surface expression and function of Cav3.2ÂT-type calcium channels are controlled by asparagine-linked glycosylation. Pflugers Archiv European Journal of Physiology, 2013, 465, 1159-1170.	2.8	92
146	TMEM16C cuts pain no SLACK. Nature Neuroscience, 2013, 16, 1165-1166.	14.8	3
147	Regulation of CaV2 calcium channels by G protein coupled receptors. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 1629-1643.	2.6	165
148	Control of low-threshold exocytosis by T-type calcium channels. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 1579-1586.	2.6	53
149	Advances in voltage-gated calcium channel structure, function and physiology. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 1521.	2.6	5
150	The Ca _v 3–K _v 4 Complex Acts as a Calcium Sensor to Maintain Inhibitory Charge Transfer during Extracellular Calcium Fluctuations. Journal of Neuroscience, 2013, 33, 7811-7824.	3.6	44
151	Modeling interactions between voltage-gated Ca ²⁺ channels and KCa1.1 channels. Channels, 2013, 7, 524-529.	2.8	15
152	The Immediately Releasable Pool of Mouse Chromaffin Cell Vesicles Is Coupled to P/Q-Type Calcium Channels via the Synaptic Protein Interaction Site. PLoS ONE, 2013, 8, e54846.	2.5	18
153	Low Voltage Activation of KCa1.1 Current by Cav3-KCa1.1 Complexes. PLoS ONE, 2013, 8, e61844.	2.5	48
154	Signal processing by T-type calcium channel interactions in the cerebellum. Frontiers in Cellular Neuroscience, 2013, 7, 230.	3.7	20
155	Reciprocal Regulation of Neuronal Calcium Channels by Synaptic Proteins. , 2013, , 61-78.		1
156	Prion Protein's Protection Against Pain. , 2013, , .		0
157	Common Mechanisms of Drug Interactions with Sodium and T-Type Calcium Channels. Molecular Pharmacology, 2012, 82, 481-487.	2.3	28
158	Intermediate conductance calcium-activated potassium channels modulate summation of parallel fiber input in cerebellar Purkinje cells. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 2601-2606.	7.1	85
159	AKAP79 modulation of L-type channels involves disruption of intramolecular interactions in the Ca _V 1.2 subunit. Channels, 2012, 6, 157-165.	2.8	14
160	Disruption of NMDAR–CRMP-2 signaling protects against focal cerebral ischemic damage in the rat middle cerebral artery occlusion model. Channels, 2012, 6, 52-59.	2.8	30
161	How do T-type calcium channels control low-threshold exocytosis?. Communicative and Integrative Biology, 2012, 5, 377-380.	1.4	19
162	Aβ neurotoxicity depends on interactions between copper ions, prion protein, and <i>N</i> -methyl- <scp>d</scp> -aspartate receptors. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 1737-1742.	7.1	209

#	Article	IF	CITATIONS
163	A Cav3.2/Syntaxin-1A Signaling Complex Controls T-type Channel Activity and Low-threshold Exocytosis. Journal of Biological Chemistry, 2012, 287, 2810-2818.	3.4	110
164	Regulation of Voltage-Gated Calcium Channels by Synaptic Proteins. Advances in Experimental Medicine and Biology, 2012, 740, 759-775.	1.6	24
165	Depressive-like behaviour of mice lacking cellular prion protein. Behavioural Brain Research, 2012, 227, 319-323.	2.2	40
166	Copperâ€dependent regulation of NMDA receptors by cellular prion protein: implications for neurodegenerative disorders. Journal of Physiology, 2012, 590, 1357-1368.	2.9	91
167	Mercury-induced toxicity of rat cortical neurons is mediated through N-methyl-D-Aspartate receptors. Molecular Brain, 2012, 5, 30.	2.6	82
168	Calcium channels as therapeutic targets. Environmental Sciences Europe, 2012, 1, 433-451.	5.5	15
169	Will the real multiple sclerosis please stand up?. Nature Reviews Neuroscience, 2012, 13, 507-514.	10.2	406
170	Structure–activity relationships of trimethoxybenzyl piperazine N-type calcium channel inhibitors. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 4153-4158.	2.2	24
171	The Brugada syndrome mutation A39V does not affect surface expression of neuronal rat Cav1.2 channels. Molecular Brain, 2012, 5, 9.	2.6	13
172	Trafficking and stability of voltage-gated calcium channels. Cellular and Molecular Life Sciences, 2012, 69, 843-856.	5.4	69
173	Activity-Dependent Subcellular Cotrafficking of the Small GTPase Rem2 and Ca2+/CaM-Dependent Protein Kinase IIα. PLoS ONE, 2012, 7, e41185.	2.5	16
174	Analysis of GPCR/Ion Channel Interactions. Methods in Molecular Biology, 2011, 756, 215-225.	0.9	4
175	Bipartite syntaxin 1A interactions mediate CaV2.2 calcium channel regulation. Biochemical and Biophysical Research Communications, 2011, 411, 562-568.	2.1	18
176	The Cavl ² subunit prevents RFP2-mediated ubiquitination and proteasomal degradation of L-type channels. Nature Neuroscience, 2011, 14, 173-180.	14.8	213
177	Antiallodynic effects of a confused α-conotoxin: Vc1.1 relieves neuropathic pain via off target actions on GABAB receptors and N-type channels. Pain, 2011, 152, 241-242.	4.2	2
178	A novel slow-inactivation-specific ion channel modulator attenuates neuropathic pain. Pain, 2011, 152, 833-843.	4.2	59
179	Cellular Prion Protein Protects from Inflammatory and Neuropathic Pain. Molecular Pain, 2011, 7, 1744-8069-7-59.	2.1	26
180	Functional Characterization and Analgesic Effects of Mixed Cannabinoid Receptor/T-Type Channel Ligands. Molecular Pain, 2011, 7, 1744-8069-7-89.	2.1	31

#	Article	IF	CITATIONS
181	Signaling complexes of voltage-gated calcium channels. Channels, 2011, 5, 440-448.	2.8	38
182	L-type calcium channel β subunit modulates angiotensin II responses in cardiomyocytes. Channels, 2011, 5, 280-286.	2.8	15
183	Neuroprotection against Traumatic Brain Injury by a Peptide Derived from the Collapsin Response Mediator Protein 2 (CRMP2). Journal of Biological Chemistry, 2011, 286, 37778-37792.	3.4	78
184	Spatial association of the Cav1.2 calcium channel with α ₅ β ₁ -integrin. American Journal of Physiology - Cell Physiology, 2011, 300, C477-C489.	4.6	30
185	Role of voltage-gated calcium channels in epilepsy. Pflugers Archiv European Journal of Physiology, 2010, 460, 395-403.	2.8	149
186	Scanning mutagenesis of the I-II loop of the Cav2.2 calcium channel identifies residues Arginine 376 and Valine 416 as molecular determinants of voltage dependent G protein inhibition. Molecular Brain, 2010, 3, 6.	2.6	11
187	Structure–activity relationships of diphenylpiperazine N-type calcium channel inhibitors. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 1378-1383.	2.2	43
188	<i>In vivo</i> expression of Gâ€protein β ₁ γ ₂ dimer in adult mouse skeletal muscle alters Lâ€ŧype calcium current and excitation–contraction coupling. Journal of Physiology, 2010, 588, 2945-2960.	2.9	14
189	Regulation of neuronal activity by Cav3-Kv4 channel signaling complexes. Nature Neuroscience, 2010, 13, 333-337.	14.8	162
190	Potentiation of TRPV4 signalling by histamine and serotonin: an important mechanism for visceral hypersensitivity. Gut, 2010, 59, 481-488.	12.1	130
191	Excitatory Glycine Responses of CNS Myelin Mediated by NR1/NR3 "NMDA―Receptor Subunits. Journal of Neuroscience, 2010, 30, 11501-11505.	3.6	86
192	CCR2 Receptor Ligands Inhibit Cav3.2 T-Type Calcium Channels. Molecular Pharmacology, 2010, 77, 211-217.	2.3	19
193	Heterodimerization of ORL1 and Opioid Receptors and Its Consequences for N-type Calcium Channel Regulation. Journal of Biological Chemistry, 2010, 285, 1032-1040.	3.4	77
194	Regulation of the K _V 4.2 complex by Ca _V 3.1 calcium channels. Channels, 2010, 4, 163-167.	2.8	37
195	Welcome to "Ion Channels: Key Therapeutic Targets― Future Medicinal Chemistry, 2010, 2, 689-690.	2.3	2
196	Welcome to â€~Clinical Pharmacology of Ion Channels'. Expert Review of Clinical Pharmacology, 2010, 3, 261-261.	3.1	0
197	Regulation of calcium channels by RGK proteins. Channels, 2010, 4, 434-439.	2.8	31
198	Role of prions in neuroprotection and neurodegeneration. Prion, 2009, 3, 187-189.	1.8	15

#	Article	IF	CITATIONS
199	Prion protein attenuates excitotoxicity by inhibiting NMDA receptors. Journal of Cell Biology, 2009, 185, 1127-1127.	5.2	0
200	Role of voltage-gated calcium channels in ascending pain pathways. Brain Research Reviews, 2009, 60, 84-89.	9.0	215
201	Glutamate receptors on myelinated spinal cord axons: I. GluR6 kainate receptors. Annals of Neurology, 2009, 65, 151-159.	5.3	100
202	Glutamate receptors on myelinated spinal cord axons: II. AMPA and GluR5 receptors. Annals of Neurology, 2009, 65, 160-166.	5.3	97
203	Activityâ€driven mobilization of postâ€synaptic proteins. European Journal of Neuroscience, 2009, 30, 2042-2052.	2.6	20
204	Analgesic properties of S100A9 Câ€ŧerminal domain: a mechanism dependent on calcium channel inhibition. Fundamental and Clinical Pharmacology, 2009, 23, 427-438.	1.9	14
205	Scaffold-based design and synthesis of potent N-type calcium channel blockers. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 6467-6472.	2.2	64
206	Regulation of neuronal T-type calcium channels. Trends in Pharmacological Sciences, 2009, 30, 32-40.	8.7	145
207	Trans-Channel Interactions in Batrachotoxin-Modified Rat Skeletal Muscle Sodium Channels: Kinetic Analysis of Mutual Inhibition between μ-Conotoxin GIIIA Derivatives and Amine Blockers. Biophysical Journal, 2008, 95, 4266-4276.	0.5	3
208	Trans-Channel Interactions in Batrachotoxin-Modified Skeletal Muscle Sodium Channels: Voltage-Dependent Block by Cytoplasmic Amines, and the Influence of μ-Conotoxin GIIIA Derivatives and Permeant Ions. Biophysical Journal, 2008, 95, 4277-4288.	0.5	3
209	Transient Receptor Potential Vanilloid-4 Has a Major Role in Visceral Hypersensitivity Symptoms. Gastroenterology, 2008, 135, 937-946.e2.	1.3	146
210	Presynaptic Calcium Channels: Structure, Regulators, and Blockers. Handbook of Experimental Pharmacology, 2008, , 45-75.	1.8	28
211	D1 Receptors Physically Interact with N-Type Calcium Channels to Regulate Channel Distribution and Dendritic Calcium Entry. Neuron, 2008, 58, 557-570.	8.1	101
212	Old proteins, developing roles: The regulation of calcium channels by synaptic proteins. Channels, 2008, 2, 130-138.	2.8	17
213	Molecular determinants of Rem2 regulation of N-type calcium channels. Biochemical and Biophysical Research Communications, 2008, 368, 827-831.	2.1	19
214	Syntaxin 1A is required for normal in utero development. Biochemical and Biophysical Research Communications, 2008, 375, 372-377.	2.1	14
215	Signaling Complexes of Voltage-Gated Calcium Channels and G Protein-Coupled Receptors. Journal of Receptor and Signal Transduction Research, 2008, 28, 71-81.	2.5	31
216	D2 dopamine receptors interact directly with N-type calcium channels and regulate channel surface expression levels. Channels, 2008, 2, 269-277.	2.8	51

#	Article	IF	CITATIONS
217	Cellular prion protein null mice display normal AMPA receptor mediated long term depression. Prion, 2008, 2, 48-50.	1.8	9
218	Prion protein attenuates excitotoxicity by inhibiting NMDA receptors. Journal of Cell Biology, 2008, 181, 551-565.	5.2	222
219	The Third Intracellular Loop Stabilizes the Inactive State of the Neuropeptide Y1 Receptor. Journal of Biological Chemistry, 2008, 283, 33337-33346.	3.4	32
220	Making the T-Type Even Tinier: Corticotropin-Releasing Factor-Mediated Inhibition of Low-Voltage-Activated Calcium Channel Activity: Fig. 1 Molecular Pharmacology, 2008, 73, 1589-1591.	2.3	2
221	Novel Splice Variants of Rat CaV2.1 That Lack Much of the Synaptic Protein Interaction Site Are Expressed in Neuroendocrine Cells. Journal of Biological Chemistry, 2008, 283, 15997-16003.	3.4	22
222	Differential Interactions of Na+ Channel Toxins with T-type Ca2+ Channels. Journal of General Physiology, 2008, 132, 101-113.	1.9	19
223	Prion protein attenuates excitotoxicity by inhibiting NMDA receptors. Journal of General Physiology, 2008, 131, i5-i5.	1.9	29
224	Prion protein attenuates excitotoxicity by inhibiting NMDA receptors. Journal of Experimental Medicine, 2008, 205, i13-i13.	8.5	0
225	Linking calcium-channel isoforms to potential therapies. Current Opinion in Investigational Drugs, 2008, 9, 707-15.	2.3	16
226	Selective Inhibition of Cav3.3 T-type Calcium Channels by Gαq/11-coupled Muscarinic Acetylcholine Receptors. Journal of Biological Chemistry, 2007, 282, 21043-21055.	3.4	42
227	Differential Role of N-Type Calcium Channel Splice Isoforms in Pain. Journal of Neuroscience, 2007, 27, 6363-6373.	3.6	147
228	Launching Channels: A New Milestone in the Ion Channel Field. Channels, 2007, 1, 1-1.	2.8	8
229	Use â€~em and Lose â€~em—Activity-Induced Removal of Calcium Channels from the Plasma Membrane. Neuron, 2007, 55, 539-541.	8.1	2
230	Extended spectrum of idiopathic generalized epilepsies associated with <i>CACNA1H</i> functional variants. Annals of Neurology, 2007, 62, 560-568.	5.3	186
231	Protease-activated receptor 2 sensitizes the transient receptor potential vanilloid 4 ion channel to cause mechanical hyperalgesia in mice. Journal of Physiology, 2007, 578, 715-733.	2.9	338
232	Regulation of T-type calcium channels by Rho-associated kinase. Nature Neuroscience, 2007, 10, 854-860.	14.8	84
233	Trafficking and regulation of neuronal voltage-gated calcium channels. Current Opinion in Cell Biology, 2007, 19, 474-482.	5.4	69
234	Specific T-type calcium channel isoforms are associated with distinct burst phenotypes in deep cerebellar nuclear neurons. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 5555-5560.	7.1	181

#	Article	IF	CITATIONS
235	Binding of Protein Phosphatase 2A to the L-Type Calcium Channel Cav1.2 next to Ser1928, Its Main PKA Site, Is Critical for Ser1928 Dephosphorylation. Biochemistry, 2006, 45, 3448-3459.	2.5	106
236	Presynaptic Ca2+ channels $\hat{a} \in $ integration centers for neuronal signaling pathways. Trends in Neurosciences, 2006, 29, 617-624.	8.6	128
237	Scanning Mutagenesis Reveals a Role for Serine 189 of the Heterotrimeric G-Protein Beta 1 Subunit in the Inhibition of N-Type Calcium Channels. Journal of Neurophysiology, 2006, 96, 465-470.	1.8	14
238	In Vitro Characterization of L-Type Calcium Channels and Their Contribution to Firing Behavior in Invertebrate Respiratory Neurons. Journal of Neurophysiology, 2006, 95, 42-52.	1.8	36
239	Voltage-Gated Calcium Channels and Idiopathic Generalized Epilepsies. Physiological Reviews, 2006, 86, 941-966.	28.8	169
240	Role of the synprint site in presynaptic targeting of the calcium channel Ca V 2.2 in hippocampal neurons. European Journal of Neuroscience, 2006, 24, 709-718.	2.6	49
241	CaV3 T-type calcium channel isoforms differentially distribute to somatic and dendritic compartments in rat central neurons. European Journal of Neuroscience, 2006, 24, 2581-2594.	2.6	167
242	Glycerotoxin stimulates neurotransmitter release from N-type Ca2+ channel expressing neurons. Journal of Neurochemistry, 2006, 98, 894-904.	3.9	16
243	Functional Analysis of Cav3.2 T-type Calcium Channel Mutations Linked to Childhood Absence Epilepsy. Epilepsia, 2006, 47, 655-658.	5.1	64
244	Opioid, cheating on its receptors, exacerbates pain. Nature Neuroscience, 2006, 9, 1465-1467.	14.8	19
245	ORL1 receptor–mediated internalization of N-type calcium channels. Nature Neuroscience, 2006, 9, 31-40.	14.8	151
246	Integrin Receptor Activation Triggers Converging Regulation of Cav1.2 Calcium Channels by c-Src and Protein Kinase A Pathways. Journal of Biological Chemistry, 2006, 281, 14015-14025.	3.4	119
247	Role of Angiotensin II Type 1A Receptor Phosphorylation, Phospholipase D, and Extracellular Calcium in Isoform-specific Protein Kinase C Membrane Translocation Responses. Journal of Biological Chemistry, 2006, 281, 26340-26349.	3.4	15
248	Direct G Protein Modulation of Cav2 Calcium Channels. Pharmacological Reviews, 2006, 58, 837-862.	16.0	226
249	Topiramate Inhibits the Initiation of Plateau Potentials in CA1 Neurons by Depressing R-type Calcium Channels. Epilepsia, 2005, 46, 481-489.	5.1	81
250	Masters or slaves? Vesicle release machinery and the regulation of presynaptic calcium channels. Cell Calcium, 2005, 37, 483-488.	2.4	51
251	Effects of Cav3.2 channel mutations linked to idiopathic generalized epilepsy. Annals of Neurology, 2005, 57, 745-749.	5.3	110
252	Editorial. Current Topics in Medicinal Chemistry, 2005, 5, 527-527.	2.1	0

#	Article	IF	CITATIONS
253	Voltage Gated Calcium Channels as Targets for Analgesics. Current Topics in Medicinal Chemistry, 2005, 5, 539-546.	2.1	44
254	Molecular Pharmacology of Non-L-type Calcium Channels. Current Pharmaceutical Design, 2005, 11, 1887-1898.	1.9	19
255	Crosstalk between huntingtin and syntaxin 1A regulates N-type calcium channels. Molecular and Cellular Neurosciences, 2005, 30, 339-351.	2.2	48
256	The Arg473Cys-neuroligin-1 mutation modulates NMDA mediated synaptic transmission and receptor distribution in hippocampal neurons. FEBS Letters, 2005, 579, 6587-6594.	2.8	15
257	Cav1.4 Encodes a Calcium Channel with Low Open Probability and Unitary Conductance. Biophysical Journal, 2005, 89, 3042-3048.	0.5	33
258	Voltage-Gated Sodium and Calcium Channels in Nerve, Muscle, and Heart. IEEE Transactions on Nanobioscience, 2005, 4, 58-69.	3.3	19
259	Voltage-Dependent Inactivation of Voltage Gated Calcium Channels. , 2005, , 194-204.		2
260	Determinants of G Protein Inhibition of Presynaptic Calcium Channels. , 2005, , 154-167.		0
261	A Single Gβ Subunit Locus Controls Cross-talk between Protein Kinase C and G Protein Regulation of N-type Calcium Channels. Journal of Biological Chemistry, 2004, 279, 29709-29717.	3.4	30
262	Uncoupling of Calcium Channel $\hat{l}\pm 1$ and \hat{l}^2 Subunits in Developing Neurons. Journal of Biological Chemistry, 2004, 279, 41157-41167.	3.4	23
263	The CACNA1F Gene Encodes an L-Type Calcium Channel with Unique Biophysical Properties and Tissue Distribution. Journal of Neuroscience, 2004, 24, 1707-1718.	3.6	183
264	Gating Effects of Mutations in the Cav3.2 T-type Calcium Channel Associated with Childhood Absence Epilepsy. Journal of Biological Chemistry, 2004, 279, 9681-9684.	3.4	155
265	The α2δ Auxiliary Subunit Reduces Affinity of ω-Conotoxins for Recombinant N-type (Cav2.2) Calcium Channels. Journal of Biological Chemistry, 2004, 279, 34705-34714.	3.4	74
266	Several Structural Domains Contribute to the Regulation of N-type Calcium Channel Inactivation by the β3 Subunit. Journal of Biological Chemistry, 2004, 279, 3793-3800.	3.4	22
267	Auxiliary subunit regulation of high-voltage activated calcium channels expressed in mammalian cells. European Journal of Neuroscience, 2004, 20, 1-13.	2.6	117
268	Agonist-independent modulation of N-type calcium channels by ORL1 receptors. Nature Neuroscience, 2004, 7, 118-125.	14.8	128
269	Functional roles of cytoplasmic loops and pore lining transmembrane helices in the voltage-dependent inactivation of HVA calcium channels. Journal of Physiology, 2004, 554, 263-273.	2.9	101
270	Expression of T-type calcium channel splice variants in human glioma. Glia, 2004, 48, 112-119.	4.9	83

#	Article	IF	CITATIONS
271	Scanning Mutagenesis of ω-Atracotoxin-Hv1a Reveals a Spatially Restricted Epitope That Confers Selective Activity against Insect Calcium Channels. Journal of Biological Chemistry, 2004, 279, 44133-44140.	3.4	61
272	Targeting Ca channels to treat pain: T-type versus N-type. Trends in Pharmacological Sciences, 2004, 25, 465-470.	8.7	138
273	Splicing It Up. Neuron, 2004, 41, 3-4.	8.1	12
274	Modulation of High Voltage-Activated Calcium Channels by G Protein-Coupled Receptors. , 2004, , 331-367.		2
275	Molecular Pharmacology of High Voltage-Activated Calcium Channels. Journal of Bioenergetics and Biomembranes, 2003, 35, 491-505.	2.3	65
276	Functional interactions between presynaptic calcium channels and the neurotransmitter release machinery. Current Opinion in Neurobiology, 2003, 13, 308-314.	4.2	108
277	Expression of voltage-gated Ca2+ channel subtypes in cultured astrocytes. Glia, 2003, 41, 347-353.	4.9	119
278	Depolarization-Induced Ca2+ Release in Ischemic Spinal Cord White Matter Involves L-type Ca2+ Channel Activation of Ryanodine Receptors. Neuron, 2003, 40, 53-63.	8.1	188
279	Calmodulin Lobotomized. Neuron, 2003, 39, 879-881.	8.1	20
280	Unique Structureâ^'Activity Relationship for 4-Isoxazolyl-1,4-dihydropyridines. Journal of Medicinal Chemistry, 2003, 46, 87-96.	6.4	62
281	Calcium Channel Structural Determinants of Synaptic Transmission between Identified Invertebrate Neurons. Journal of Biological Chemistry, 2003, 278, 4258-4267.	3.4	88
282	Calcium-triggered Membrane Fusion Proceeds Independently of Specific Presynaptic Proteins. Journal of Biological Chemistry, 2003, 278, 24251-24254.	3.4	47
283	Molecular determinants of cysteine string protein modulation of N-type calcium channels. Journal of Cell Science, 2003, 116, 2967-2974.	2.0	39
284	Cysteine String Protein (CSP) Inhibition of N-type Calcium Channels Is Blocked by Mutant Huntingtin. Journal of Biological Chemistry, 2003, 278, 53072-53081.	3.4	45
285	Determinants of Inhibition of Transiently Expressed Voltage-gated Calcium Channels by ω-Conotoxins GVIA and MVIIA. Journal of Biological Chemistry, 2003, 278, 20171-20178.	3.4	86
286	Expression and Modulation of an Invertebrate Presynaptic Calcium Channel α1 Subunit Homolog. Journal of Biological Chemistry, 2003, 278, 21178-21187.	3.4	33
287	Regulation of Presynaptic Calcium Channels by Synaptic Proteins. Journal of Pharmacological Sciences, 2003, 92, 79-83.	2.5	97
288	A Minimal Model for G Protein–Mediated Synaptic Facilitation and Depression. Journal of Neurophysiology, 2003, 90, 1643-1653.	1.8	18

#	Article	IF	CITATIONS
289	The L-type calcium channel C-terminus: sparking interest beyond its role in calcium-dependent inactivation. Journal of Physiology, 2003, 552, 333-333.	2.9	5
290	Synthesis and Evaluation of a New Class of Nifedipine Analogs with T-Type Calcium Channel Blocking Activity. Molecular Pharmacology, 2002, 61, 649-658.	2.3	88
291	Trafficking of L-type Calcium Channels Mediated by the Postsynaptic Scaffolding Protein AKAP79. Journal of Biological Chemistry, 2002, 277, 33598-33603.	3.4	118
292	Molecular Determinants of Syntaxin 1 Modulation of N-type Calcium Channels. Journal of Biological Chemistry, 2002, 277, 44399-44407.	3.4	89
293	Identification and Characterization of Novel Human Cav2.2 (α1B) Calcium Channel Variants Lacking the Synaptic Protein Interaction Site. Journal of Neuroscience, 2002, 22, 82-92.	3.6	70
294	T-Type Calcium Channel α1G and α1H Subunits in Human Retinoblastoma Cells and Their Loss After Differentiation. Journal of Neurophysiology, 2002, 88, 196-205.	1.8	53
295	Role for G Protein GÎ ² Î ³ Isoform Specificity in Synaptic Signal Processing: A Computational Study. Journal of Neurophysiology, 2002, 87, 2612-2623.	1.8	8
296	Glycerotoxin from Glycera convoluta stimulates neurosecretion by up-regulating N-type Ca2+ channel activity. EMBO Journal, 2002, 21, 6733-6743.	7.8	51
297	Modulating Modulation: Crosstalk Between Regulatory Pathways of Presynaptic Calcium Channels. Molecular Interventions: Pharmacological Perspectives From Biology, Chemistry and Genomics, 2002, 2, 476-478.	3.4	16
298	Interaction of SNX482 with Domains III and IV Inhibits Activation Gating of $\hat{I}\pm 1E$ (CaV2.3) Calcium Channels. Biophysical Journal, 2001, 81, 79-88.	0.5	136
299	Interactions between presynaptic Ca2+ channels, cytoplasmic messengers and proteins of the synaptic vesicle release complex. Trends in Pharmacological Sciences, 2001, 22, 519-525.	8.7	132
300	Multiple structural elements contribute to voltage-dependent facilitation of neuronal α1C (CaV1.2) L-type calcium channels. Neuropharmacology, 2001, 40, 1050-1057.	4.1	12
301	Distinct Molecular Determinants Govern Syntaxin 1A-Mediated Inactivation and G-Protein Inhibition of N-Type Calcium Channels. Journal of Neuroscience, 2001, 21, 2939-2948.	3.6	97
302	Syntaxin 1A Supports Voltage-Dependent Inhibition of α1BCa2+Channels by Gβγ in Chick Sensory Neurons. Journal of Neuroscience, 2001, 21, 2949-2957.	3.6	51
303	Pain control: What a pain!. Drug Development Research, 2001, 54, 117-117.	2.9	2
304	Molecular determinants of opioid analgesia: Modulation of presynaptic calcium channels. Drug Development Research, 2001, 54, 118-128.	2.9	9
305	Determinants of G Protein Inhibition of Presynaptic Calcium Channels. Cell Biochemistry and Biophysics, 2001, 34, 79-84.	1.8	46
306	Identification of Inactivation Determinants in the Domain IIS6 Region of High Voltage-activated Calcium Channels. Journal of Biological Chemistry, 2001, 276, 33001-33010.	3.4	52

#	Article	IF	CITATIONS
307	Calcium Channel β Subunits Differentially Regulate the Inhibition of N-type Channels by Individual Gβ Isoforms. Journal of Biological Chemistry, 2001, 276, 45051-45058.	3.4	56
308	Amino Acid Residues Outside of the Pore Region Contribute to N-type Calcium Channel Permeation. Journal of Biological Chemistry, 2001, 276, 5726-5730.	3.4	45
309	Residue Gly1326 of the N-type Calcium Channel α1B Subunit Controls Reversibility of ω-Conotoxin GVIA and MVIIA Block. Journal of Biological Chemistry, 2001, 276, 15728-15735.	3.4	87
310	Differential modulation of Nâ€ŧype α 1B and P/Qâ€ŧype α 1A calcium channels by different G protein β subunit isoforms. Journal of Physiology, 2000, 527, 203-212.	2.9	61
311	G Protein Modulation of N-type Calcium Channels Is Facilitated by Physical Interactions between Syntaxin 1A and Gβγ. Journal of Biological Chemistry, 2000, 275, 6388-6394.	3.4	126
312	Cross-talk between G-protein and Protein Kinase C Modulation of N-type Calcium Channels Is Dependent on the G-protein β Subunit Isoform. Journal of Biological Chemistry, 2000, 275, 40777-40781.	3.4	59
313	Fast Inactivation of Voltage-dependent Calcium Channels. Journal of Biological Chemistry, 2000, 275, 24575-24582.	3.4	92
314	Block of Voltage-Dependent Calcium Channels by Aliphatic Monoamines. Biophysical Journal, 2000, 79, 260-270.	0.5	24
315	Cysteine String Protein Regulates G Protein Modulation of N-Type Calcium Channels. Neuron, 2000, 28, 195-204.	8.1	114
316	Modulation of Neuronal Voltage-gated Calcium Channels by Farnesol. Journal of Biological Chemistry, 1999, 274, 25439-25446.	3.4	47
317	Identification of an Integration Center for Cross-talk between Protein Kinase C and G Protein Modulation of N-type Calcium Channels. Journal of Biological Chemistry, 1999, 274, 6195-6202.	3.4	120
318	Multiple Structural Domains Contribute to Voltage-dependent Inactivation of Rat Brain α1E Calcium Channels. Journal of Biological Chemistry, 1999, 274, 22428-22436.	3.4	39
319	Splicing of $\hat{I}\pm 1A$ subunit gene generates phenotypic variants of P- and Q-type calcium channels. Nature Neuroscience, 1999, 2, 407-415.	14.8	393
320	Modulation of voltage-dependent calcium channels by G proteins. Current Opinion in Neurobiology, 1998, 8, 351-356.	4.2	195
321	Molecular and kinetic determinants of local anaesthetic action on sodium channels. Toxicology Letters, 1998, 100-101, 247-254.	0.8	8
322	Inhibition of Neuronal Calcium Channels by a Novel Peptide Spider Toxin, DW13.3. Molecular Pharmacology, 1998, 54, 407-418.	2.3	38
323	Crosstalk between G proteins and protein kinase C mediated by the calcium channel α1 subunit. Nature, 1997, 385, 442-446.	27.8	455
324	Antagonist binding sites of voltage-dependent calcium channels. Drug Development Research, 1997, 42, 131-143.	2.9	45

#	Article	IF	CITATIONS
325	Interactions between a Pore-Blocking Peptide and the Voltage Sensor of the Sodium Channel: An Electrostatic Approach to Channel Geometry. Neuron, 1996, 16, 407-413.	8.1	98
326	Evidence for a specific site for modulation of calcium channel activation by external calcium ions. Pflugers Archiv European Journal of Physiology, 1996, 431, 470-472.	2.8	22
327	The α _{1E} Calcium Channel Exhibits Permeation Properties Similar to Low-Voltage-Activated Calcium Channels. Journal of Neuroscience, 1996, 16, 4983-4993.	3.6	150
328	Biochemical and biophysical studies of the interaction of class I antiarrhythmic drugs with the cardiac sodium channel. Drug Development Research, 1994, 33, 277-294.	2.9	2