
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2703152/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bottom-up innovations in natural hazard risk management in Austria. International Journal of Disaster Risk Reduction, 2022, 67, 102689.	1.8	7
2	Physical vulnerability to dynamic flooding: Vulnerability curves and vulnerability indices. Journal of Hydrology, 2022, 607, 127501.	2.3	18
3	Comment on "Hydrometeorological Triggers of Periglacial Debris Flows in the Zermatt Valley (Switzerland) Since 1864―by Michelle Schneuwlyâ€Bollschweiler and Markus Stoffel. Journal of Geophysical Research F: Earth Surface, 2022, 127, .	1.0	3
4	A wildfire vulnerability index for buildings. Scientific Reports, 2022, 12, 6378.	1.6	15
5	Adjustment or transformation? Disaster risk intervention examples from Austria, Indonesia, Kiribati and South Africa. Land Use Policy, 2022, 120, 106230.	2.5	7
6	The impact of humanitarian assistance on postâ€disaster social vulnerabilities: some early reflections on the Nepal earthquake in 2015. Disasters, 2021, 45, 577-603.	1.1	9
7	Trends in torrential flooding in the Austrian Alps: A combination of climate change, exposure dynamics, and mitigation measures. Climate Risk Management, 2021, 32, 100294.	1.6	21
8	An institutional approach to vulnerability: evidence from natural hazard management in Europe. Environmental Research Letters, 2021, 16, 044056.	2.2	23
9	Evaluating targeted heuristics for vulnerability assessment in flood impact model chains. Journal of Flood Risk Management, 2021, 14, e12736.	1.6	5
10	Financial recovery schemes in Austria: how planned relocation is used as an answer to future flood events. Environmental Hazards, 2020, 19, 268-284.	1.4	26
11	Flood risk management in Austria: Analysing the shift in responsibility-sharing between public and private actors from a public stakeholder's perspective. Land Use Policy, 2020, 99, 105017.	2.5	17
12	Risk communication and adaptive behaviour in flood-prone areas of Austria: A Q-methodology study on opinions of affected homeowners. PLoS ONE, 2020, 15, e0233551.	1.1	10
13	Implementation of propertyâ€level flood risk adaptation (PLFRA) measures: Choices and decisions. Wiley Interdisciplinary Reviews: Water, 2020, 7, e1404.	2.8	61
14	The influence of tailored risk communication on individual adaptive behaviour. International Journal of Disaster Risk Reduction, 2020, 49, 101618.	1.8	28
15	A generic physical vulnerability model for floods: review and concept for data-scarce regions. Natural Hazards and Earth System Sciences, 2020, 20, 2067-2090.	1.5	24
16	Multi-hazard risk assessment for roads: probabilistic versus deterministic approaches. Natural Hazards and Earth System Sciences, 2020, 20, 3135-3160.	1.5	5
17	Snow avalanches. , 2019, , 369-389.		2
18	Deconstructing the legal framework for flood protection in Austria: individual and state responsibilities from a planning perspective. Water International, 2019, 44, 571-587.	0.4	18

SVEN FUCHS

#	Article	IF	CITATIONS
19	Vulnerability indicators for natural hazards: an innovative selection and weighting approach. Scientific Reports, 2019, 9, 15026.	1.6	55
20	Obligation or Innovation: Can the EU Floods Directive Be Seen as a Tipping Point Towards More Resilient Flood Risk Management? A Case Study from Vorarlberg, Austria. Sustainability, 2019, 11, 5505.	1.6	8
21	Risk of Death and Major Injury from Natural Winter Hazards in Helicopter and Snowcat Skiing in Canada. Wilderness and Environmental Medicine, 2019, 30, 251-259.	0.4	7
22	Recent advances in vulnerability assessment for the built environment exposed to torrential hazards: Challenges and the way forward. Journal of Hydrology, 2019, 575, 587-595.	2.3	63
23	The importance of indicator weights for vulnerability indices and implications for decision making in disaster management. International Journal of Disaster Risk Reduction, 2019, 36, 101103.	1.8	57
24	On the nexus between landslide susceptibility and transport infrastructure – an agent-based approach. Natural Hazards and Earth System Sciences, 2019, 19, 201-219.	1.5	34
25	Short communication: A model to predict flood loss in mountain areas. Environmental Modelling and Software, 2019, 117, 176-180.	1.9	31
26	Drivers and barriers of adaptation initiatives – How societal transformation affects natural hazard management and risk mitigation in Europe. Science of the Total Environment, 2019, 650, 1073-1082.	3.9	52
27	Analysis of Land Use Land Cover Change Detection of Bostanlik District, Uzbekistan. Polish Journal of Environmental Studies, 2019, 28, 3235-3242.	0.6	29
28	Rockfall in the Port Hills of Christchurch: Seismic and nonâ€seismic fatality risk on roads. New Zealand Geographer, 2018, 74, 3-14.	0.4	7
29	Experimental measurements of flood-induced impact forces on exposed elements. E3S Web of Conferences, 2018, 40, 05005.	0.2	2
30	Vulnerability to Flash Floods: A Simplified Structural Model for Masonry Buildings. Water Resources Research, 2018, 54, 7177-7197.	1.7	47
31	Experimental analyses of impact forces on buildings exposed to fluvial hazards. Journal of Hydrology, 2018, 565, 1-13.	2.3	39
32	Allocation of risk and benefits—distributional justices in mountain hazard management. Regional Environmental Change, 2018, 18, 353-365.	1.4	35
33	Social justice in the context of adaptation to climate change—reflecting on different policy approaches to distribute and allocate flood risk management. Regional Environmental Change, 2018, 18, 305-309.	1.4	22
34	Understanding impact dynamics on buildings caused by fluviatile sediment transport. Geomorphology, 2018, 321, 45-59.	1.1	29
35	Matrices, curves and indicators: A review of approaches to assess physical vulnerability to debris flows. Earth-Science Reviews, 2017, 171, 272-288.	4.0	145
36	Natural Hazard Management from a Coevolutionary Perspective: Exposure and Policy Response in the European Alps. Annals of the American Association of Geographers, 2017, 107, 382-392.	1.5	82

#	Article	IF	CITATIONS
37	Editorial to the special issue on natural hazards and risk research in Russia. Natural Hazards, 2017, 88, 1-16.	1.6	2
38	Tipping Points in Natural Hazard Risk Management: How Societal Transformation can Provoke Policy Strategies in Mitigation. Journal of Extreme Events, 2017, 04, 1750006.	1.2	10
39	Flood risk perception and adaptation capacity: a contribution to the socio-hydrology debate. Hydrology and Earth System Sciences, 2017, 21, 3183-3198.	1.9	108
40	Editorial to the special issue on resilience and vulnerability assessments in natural hazard and risk analysis. Natural Hazards and Earth System Sciences, 2017, 17, 1203-1206.	1.5	5
41	Multi-vulnerability analysis for flash flood risk management. Natural Hazards, 2016, 82, 63-87.	1.6	55
42	Foreword: Vulnerability assessment in natural hazard risk—a dynamic perspective. Natural Hazards, 2016, 82, 1-5.	1.6	13
43	Debris-flow risk analysis in a managed torrent based on a stochastic life-cycle performance. Science of the Total Environment, 2016, 557-558, 142-153.	3.9	35
44	Micro-sized enterprises: vulnerability to flash floods. Natural Hazards, 2016, 84, 1091-1107.	1.6	16
45	Partnership approaches in flood risk management: lessons from the Eastern Alps. E3S Web of Conferences, 2016, 7, 20002.	0.2	0
46	Assessing flash flood vulnerability using a multi-vulnerability approach. E3S Web of Conferences, 2016, 7, 08004.	0.2	4
47	Evolving inter-regional co-operation in flood risk management: distances and types of partnership approaches in Austria. Regional Environmental Change, 2016, 16, 841-853.	1.4	51
48	Vulnerability and Exposure to Geomorphic Hazards: Some Insights from the European Alps. Advances in Geographical and Environmental Sciences, 2016, , 165-180.	0.4	7
49	Integrated flash flood vulnerability assessment: Insights from East Attica, Greece. Journal of Hydrology, 2016, 541, 553-562.	2.3	70
50	Regional vulnerability assessment for debris flows in China—a CWS approach. Landslides, 2016, 13, 537-550.	2.7	36
51	A spatiotemporal multi-hazard exposure assessment based on property data. Natural Hazards and Earth System Sciences, 2015, 15, 2127-2142.	1.5	124
52	Loss estimation for landslides in mountain areas – An integrated toolbox for vulnerability assessment and damage documentation. Environmental Modelling and Software, 2015, 63, 156-169.	1.9	97
53	Regional Hazard Analysis For Use In Vulnerability And Risk Assessment. Quaestiones Geographicae, 2015, 34, 77-84.	0.5	0
54	A physical approach on flood risk vulnerability of buildings. Hydrology and Earth System Sciences, 2014, 18, 3817-3836.	1.9	85

#	Article	IF	CITATIONS
55	The susceptibility of consolidation check dams as a key factor for maintenance planning. Osterreichische Wasser- Und Abfallwirtschaft, 2014, 66, 214-216.	0.3	15
56	Spatiotemporal dynamics: the need for an innovative approach in mountain hazard risk management. Natural Hazards, 2013, 68, 1217-1241.	1.6	91
57	A structured approach to enhance flood hazard assessment in mountain streams. Natural Hazards, 2013, 67, 991-1009.	1.6	34
58	Mountain torrents: Quantifying vulnerability and assessing uncertainties. Engineering Geology, 2013, 155, 31-44.	2.9	110
59	Spatio-temporal aspects and dimensions in integrated disaster risk management. Natural Hazards, 2013, 68, 1205-1216.	1.6	39
60	Cost-Benefit Analysis of Natural Hazard Mitigation. Encyclopedia of Earth Sciences Series, 2013, , 121-125.	0.1	6
61	Spatial scan statistics in vulnerability assessment: an application to mountain hazards. Natural Hazards, 2012, 64, 2129-2151.	1.6	36
62	Vulnerability assessment in natural hazard and risk analysis: current approaches and future challenges. Natural Hazards, 2012, 64, 1969-1975.	1.6	148
63	Towards dynamics in flood risk assessment. Natural Hazards and Earth System Sciences, 2012, 12, 3571-3587.	1.5	37
64	Recommendations for the user-specific enhancement of flood maps. Natural Hazards and Earth System Sciences, 2012, 12, 1701-1716.	1.5	105
65	Mountain hazards: reducing vulnerability by adapted building design. Environmental Earth Sciences, 2012, 66, 1853-1870.	1.3	74
66	Developing consistent scenarios to assess flood hazards in mountain streams. Journal of Environmental Management, 2012, 94, 112-124.	3.8	49
67	THEORY AND PRACTICE OF INDIVIDUAL SNOW AVALANCHE RISK ASSESSMENT IN THE RUSSIAN ARCTIC. Geography, Environment, Sustainability, 2012, 5, 64-81.	0.6	13
68	Magnitude and frequency: challenges for the assessment of vulnerability to geomorphic hazards. , 2012, , .		0
69	Editorial for the special issue: vulnerability to natural hazards—the challenge of integration. Natural Hazards, 2011, 58, 609-619.	1.6	142
70	A quantitative vulnerability function for fluvial sediment transport. Natural Hazards, 2011, 58, 681-703.	1.6	131
71	Fuzzy Formative Scenario Analysis for woody material transport related risks in mountain torrents. Environmental Modelling and Software, 2010, 25, 1208-1224.	1.9	38
72	A coupled vulnerability approach for European mountain regions. WIT Transactions on Information and Communication Technologies, 2010, , .	0.0	3

#	Article	IF	CITATIONS
73	Mitigating mountain hazards in Austria – legislation, risk transfer, and awareness building. Natural Hazards and Earth System Sciences, 2009, 9, 523-537.	1.5	130
74	Improving risk assessment by defining consistent and reliable system scenarios. Natural Hazards and Earth System Sciences, 2009, 9, 145-159.	1.5	53
75	Susceptibility versus resilience to mountain hazards in Austria - paradigms of vulnerability revisited. Natural Hazards and Earth System Sciences, 2009, 9, 337-352.	1.5	192
76	Evaluating cartographic design in flood risk mapping. Environmental Hazards, 2009, 8, 52-70.	1.4	63
77	The Application of the Risk Concept to Debris Flow Hazards. Geomechanik Und Tunnelbau, 2008, 1, 120-129.	0.2	31
78	Flood Risk and Flood hazard maps – Visualisation of hydrological risks. IOP Conference Series: Earth and Environmental Science, 2008, 4, 012043.	0.2	17
79	Variability of Natural Hazard Risk in the European Alps. Public Administration and Public Policy, 2008, ,	0.0	12
80	Vulnerability to torrent processes. WIT Transactions on Information and Communication Technologies, 2008, , .	0.0	5
81	Benefits of local structural protection to mitigate torrent-related hazards. WIT Transactions on Information and Communication Technologies, 2008, , .	0.0	20
82	Towards an empirical vulnerability function for use in debris flow risk assessment. Natural Hazards and Earth System Sciences, 2007, 7, 495-506.	1.5	270
83	Avalanche Hazard Mitigation Strategies Assessed by Cost Effectiveness Analyses and Cost Benefit Analyses—evidence from Davos, Switzerland. Natural Hazards, 2007, 41, 113-129.	1.6	65
84	Avalanche risk assessment – a multi-temporal approach, results from Galtür, Austria. Natural Hazards and Earth System Sciences, 2006, 6, 637-651.	1.5	74
85	Temporal variability of damage potential in settlements – A contribution towards the long-term development of avalanche risk. , 2006, , 237-247.		2
86	Natural hazard risk depending on the variability of damage potential. WIT Transactions on Ecology and the Environment, 2006, , .	0.0	2
87	Application of the marginal cost approach and cost-benefit analysis to measures for avalanche risk reduction $\hat{a} \in$ " A case study from Davos, Switzerland. , 2006, , 155-168.		0
88	Damage Potential and Losses Resulting from Snow Avalanches in Settlements of the Canton of Grisons, Switzerland. Natural Hazards, 2005, 34, 53-69.	1.6	60
89	The net benefit of public expenditures on avalanche defence structures in the municipality of Davos, Switzerland. Natural Hazards and Earth System Sciences, 2005, 5, 319-330.	1.5	55
90	The long-term development of avalanche risk in settlements considering the temporal variability of damage potential. Natural Hazards and Earth System Sciences, 2005, 5, 893-901.	1.5	55

#	Article	IF	CITATIONS
91	Temporal variability of damage potential on roads as a conceptual contribution towards a short-term avalanche risk simulation. Natural Hazards and Earth System Sciences, 2005, 5, 235-242.	1.5	40
92	Avalanche related damage potential - changes of persons and mobile values since the mid-twentieth century, case study GaltA1/4r. Natural Hazards and Earth System Sciences, 2005, 5, 49-58.	1.5	58
93	Modelling the system behaviour of wet snow avalanches using an expert system approach for risk management on high alpine traffic roads. Natural Hazards and Earth System Sciences, 2005, 5, 821-832.	1.5	47
94	Development of avalanche risk between 1950 and 2000 in the Municipality of Davos, Switzerland. Natural Hazards and Earth System Sciences, 2004, 4, 263-275.	1.5	55
95	Snow and avalanches. , 0, , 50-70.		3