
William Bourguet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2702894/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Crystal structure of the ligand-binding domain of the human nuclear receptor RXR-α. Nature, 1995, 375, 377-382.	27.8	1,155
2	A canonical structure for the ligand-binding domain of nuclear receptors. Nature Structural Biology, 1996, 3, 87-94.	9.7	859
3	Nuclear receptor ligand-binding domains: three-dimensional structures, molecular interactions and pharmacological implications. Trends in Pharmacological Sciences, 2000, 21, 381-388.	8.7	420
4	Crystal Structure of a Heterodimeric Complex of RAR and RXR Ligand-Binding Domains. Molecular Cell, 2000, 5, 289-298.	9.7	385
5	Osh4p exchanges sterols for phosphatidylinositol 4-phosphate between lipid bilayers. Journal of Cell Biology, 2011, 195, 965-978.	5.2	343
6	Structural and mechanistic insights into bisphenols action provide guidelines for risk assessment and discovery of bisphenol A substitutes. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 14930-14935.	7.1	313
7	Phosphatidylserine transport by ORP/Osh proteins is driven by phosphatidylinositol 4-phosphate. Science, 2015, 349, 432-436.	12.6	301
8	Structural and Functional Evidence for Ligand-Independent Transcriptional Activation by the Estrogen-Related Receptor 3. Molecular Cell, 2002, 9, 303-313.	9.7	267
9	Peroxisome Proliferator-Activated Receptor $\hat{1}^3$ Is a Target for Halogenated Analogs of Bisphenol A. Environmental Health Perspectives, 2011, 119, 1227-1232.	6.0	257
10	Design of selective nuclear receptor modulators: RAR and RXR as a case study. Nature Reviews Drug Discovery, 2007, 6, 811-820.	46.4	240
11	Activation of RXR–PPAR heterodimers by organotin environmental endocrine disruptors. EMBO Reports, 2009, 10, 367-373.	4.5	235
12	Exploring hydrophobic sites in proteins with xenon or krypton. Proteins: Structure, Function and Bioinformatics, 1998, 30, 61-73.	2.6	168
13	Modulators of the structural dynamics of the retinoid X receptor to reveal receptor function. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 17323-17328.	7.1	143
14	A unique secondary-structure switch controls constitutive gene repression by retinoic acid receptor. Nature Structural and Molecular Biology, 2010, 17, 801-807.	8.2	142
15	Modulation of RXR function through ligand design. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2012, 1821, 57-69.	2.4	134
16	Synergistic activation of human pregnane X receptor by binary cocktails of pharmaceutical and environmental compounds. Nature Communications, 2015, 6, 8089.	12.8	125
17	A mutation mimicking ligand-induced conformational change yields a constitutive RXR that senses allosteric effects in heterodimers. EMBO Journal, 1997, 16, 5697-5709.	7.8	122
18	Characterization of Novel Ligands of ERα, Erβ, and PPARγ: The Case of Halogenated Bisphenol A and Their Conjugated Metabolites. Toxicological Sciences, 2011, 122, 372-382.	3.1	119

WILLIAM BOURGUET

#	Article	IF	CITATIONS
19	Characterization of the Interaction between Retinoic Acid Receptor/Retinoid X Receptor (RAR/RXR) Heterodimers and Transcriptional Coactivators through Structural and Fluorescence Anisotropy Studies. Journal of Biological Chemistry, 2005, 280, 1625-1633.	3.4	118
20	The transrepressive activity of peroxisome proliferator-activated receptor alpha is necessary and sufficient to prevent liver fibrosis in mice. Hepatology, 2014, 60, 1593-1606.	7.3	116
21	Estrogenâ€related receptor γ is an <i>in vivo</i> receptor of bisphenol A. FASEB Journal, 2014, 28, 3124-3133.	0.5	115
22	Differential Action on Coregulator Interaction Defines Inverse Retinoid Agonists and Neutral Antagonists. Chemistry and Biology, 2009, 16, 479-489.	6.0	108
23	A structural view of nuclear hormone receptor: endocrine disruptor interactions. Cellular and Molecular Life Sciences, 2010, 67, 1219-1237.	5.4	105
24	A structural perspective on nuclear receptors as targets of environmental compounds. Acta Pharmacologica Sinica, 2015, 36, 88-101.	6.1	97
25	The structure of Staphylococcus aureus epidermolytic toxin A, an atypic serine protease, at 1.7 Ã resolution. Structure, 1997, 5, 813-824.	3.3	88
26	Retinoid Receptors and Therapeutic Applications of RAR/RXR Modulators. Current Topics in Medicinal Chemistry, 2012, 12, 505-527.	2.1	86
27	Structural basis for a molecular allosteric control mechanism of cofactor binding to nuclear receptors. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E588-94.	7.1	77
28	Structural and Functional Profiling of Environmental Ligands for Estrogen Receptors. Environmental Health Perspectives, 2014, 122, 1306-1313.	6.0	72
29	Ligand- and DNA-induced dissociation of RXR tetramers 1 1Edited by M. Yaniv. Journal of Molecular Biology, 1998, 275, 55-65.	4.2	67
30	Fragment-based discovery of a new family of non-peptidic small-molecule cyclophilin inhibitors with potent antiviral activities. Nature Communications, 2016, 7, 12777.	12.8	67
31	Reporter Cell Lines for the Characterization of the Interactions between Human Nuclear Receptors and Endocrine Disruptors. Frontiers in Endocrinology, 2015, 6, 62.	3.5	65
32	Nuclear Receptor Profiling of Bisphenol-A and Its Halogenated Analogues. Vitamins and Hormones, 2014, 94, 229-251.	1.7	59
33	A Novel Mutation in THRA Gene Associated With an Atypical Phenotype of Resistance to Thyroid Hormone. Journal of Clinical Endocrinology and Metabolism, 2015, 100, 2841-2848.	3.6	58
34	Separation of Retinoid X Receptor Homo- and Heterodimerization Functions. Molecular and Cellular Biology, 2003, 23, 7678-7688.	2.3	56
35	Regulation of RXR-RAR Heterodimers by RXR- and RAR-Specific Ligands and Their Combinations. Cells, 2019, 8, 1392.	4.1	55
36	Discovery of a Highly Active Ligand of Human Pregnane X Receptor: A Case Study from Pharmacophore Modeling and Virtual Screening to "In Vivo―Biological Activity. Molecular Pharmacology, 2007, 72, 572-581.	2.3	54

WILLIAM BOURGUET

#	Article	IF	CITATIONS
37	Structural and functional evidences for the interactions between nuclear hormone receptors and endocrine disruptors at low doses. Comptes Rendus - Biologies, 2017, 340, 414-420.	0.2	50
38	Interplay of Protein Disorder in Retinoic Acid Receptor Heterodimer and Its Corepressor Regulates Gene Expression. Structure, 2019, 27, 1270-1285.e6.	3.3	50
39	A Mollusk Retinoic Acid Receptor (RAR) Ortholog Sheds Light on the Evolution of Ligand Binding. Endocrinology, 2014, 155, 4275-4286.	2.8	43
40	Nuclear receptor superfamily: Principles of signaling. Pure and Applied Chemistry, 2003, 75, 1619-1664.	1.9	41
41	Modulating Retinoid X Receptor with a Series of (<i>E</i>)-3-[4-Hydroxy-3-(3-alkoxy-5,5,8,8-tetramethyl-5,6,7,8-tetrahydronaphthalen-2-yl)phenyl]acrylic Acids and Their 4-Alkoxy Isomers. Journal of Medicinal Chemistry, 2009, 52, 3150-3158.	6.4	40
42	Combining `dry' co-crystallization and <i>in situ</i> diffraction to facilitate ligand screening by X-ray crystallography. Acta Crystallographica Section D: Biological Crystallography, 2015, 71, 1777-1787.	2.5	40
43	Allosteric Effects Govern Nuclear Receptor Action: DNA Appears as a Player. Science Signaling, 2009, 2, pe34.	3.6	38
44	Selectivity of natural, synthetic and environmental estrogens for zebrafish estrogen receptors. Toxicology and Applied Pharmacology, 2014, 280, 60-69.	2.8	38
45	Heterodimeric Complex of RAR and RXR Nuclear Receptor Ligand-Binding Domains: Purification, Crystallization, and Preliminary X-Ray Diffraction Analysis. Protein Expression and Purification, 2000, 19, 284-288.	1.3	37
46	The ancestral retinoic acid receptor was a low-affinity sensor triggering neuronal differentiation. Science Advances, 2018, 4, eaao1261.	10.3	37
47	The GOLIATH Project: Towards an Internationally Harmonised Approach for Testing Metabolism Disrupting Compounds. International Journal of Molecular Sciences, 2020, 21, 3480.	4.1	35
48	Mechanistic insights into the synergistic activation of the RXR–PXR heterodimer by endocrine disruptor mixtures. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	35
49	In Silico Predictions of Endocrine Disruptors Properties. Endocrinology, 2019, 160, 2709-2716.	2.8	34
50	Purification, Functional Characterization, and Crystallization of the Ligand Binding Domain of the Retinoid X Receptor. Protein Expression and Purification, 1995, 6, 604-608.	1.3	33
51	The Human Mixed Lineage Leukemia 5 (MLL5), a Sequentially and Structurally Divergent SET Domain-Containing Protein with No Intrinsic Catalytic Activity. PLoS ONE, 2016, 11, e0165139.	2.5	31
52	Retinoic acid receptor modulators: a perspective on recent advances and promises. Expert Opinion on Therapeutic Patents, 2011, 21, 55-63.	5.0	30
53	Mechanisms of endocrine disruption through nuclear receptors and related pathways. Current Opinion in Endocrine and Metabolic Research, 2019, 7, 1-8.	1.4	30
54	Diosgenin relieves goiter via the inhibition of thyrocyte proliferation in a mouse model of Graves' disease. Acta Pharmacologica Sinica, 2014, 35, 65-73.	6.1	27

WILLIAM BOURGUET

#	Article	IF	CITATIONS
55	Retinoic Acid Receptors: Structural Basis for Coregulator Interaction and Exchange. Sub-Cellular Biochemistry, 2014, 70, 37-54.	2.4	27
56	Sequences in the ligand-binding domains of the human androgen and progesterone receptors which determine their distinct ligand identities. Journal of Molecular Endocrinology, 1997, 18, 147-160.	2.5	22
57	Monitoring ligand-mediated nuclear receptor-coregulator interactions by noncovalent mass spectrometry. FEBS Journal, 2004, 271, 4958-4967.	0.2	20
58	Towards accurate high-throughput ligand affinity prediction by exploiting structural ensembles, docking metrics and ligand similarity. Bioinformatics, 2020, 36, 160-168.	4.1	19
59	Interspecies Differences in Activation of Peroxisome Proliferator-Activated Receptor Î ³ by Pharmaceutical and Environmental Chemicals. Environmental Science & Technology, 2021, 55, 16489-16501.	10.0	19
60	Dimerization of Nuclear Receptors. Methods in Cell Biology, 2013, 117, 21-41.	1.1	18
61	Reporter cell lines to evaluate the selectivity of chemicals for human and zebrafish estrogen and peroxysome proliferator activated γ receptors. Frontiers in Neuroscience, 2015, 9, 212.	2.8	18
62	Structural and Functional Specialization of OSBP-Related Proteins. Contact (Thousand Oaks (Ventura) Tj ETQqO	0	Overlock 10 T
63	Mutation of the Androgen Receptor at Amino Acid 708 (Cly→Ala) Abolishes Partial Agonist Activity of Steroidal Antiandrogens. Molecular Pharmacology, 2003, 63, 791-798.	2.3	17
64	SMRTε, a corepressor variant, interacts with a restricted subset of nuclear receptors, including the retinoic acid receptors α and β. Molecular and Cellular Endocrinology, 2012, 351, 306-316.	3.2	17
65	Human and Zebrafish Nuclear Progesterone Receptors Are Differently Activated by Manifold Progestins. Environmental Science & Technology, 2020, 54, 9510-9518.	10.0	17
66	Structure of the Third Intracellular Loop of the Vasopressin V2 Receptor and Conformational Changes upon Binding to gC1qR. Journal of Molecular Biology, 2009, 388, 491-507.	4.2	16
67	Insights into the activation mechanism of human estrogen-related receptor $\hat{1}^3$ by environmental endocrine disruptors. Cellular and Molecular Life Sciences, 2019, 76, 4769-4781.	5.4	16
68	Two Novel Cases of Resistance to Thyroid Hormone Due to <i>THRA</i> Mutation. Thyroid, 2020, 30, 1217-1221.	4.5	16
69	Functional analyses of phosphatidylserine/PI(4)P exchangers with diverse lipid species and membrane contexts reveal unanticipated rules on lipid transfer. BMC Biology, 2021, 19, 248.	3.8	16
70	Inverse Agonists and Antagonists of Retinoid Receptors. Methods in Enzymology, 2010, 485, 161-195.	1.0	15
71	An integrated structure- and system-based framework to identify new targets of metabolites and known drugs. Bioinformatics, 2015, 31, btv477.	4.1	15

72	A revisited version of the apo structure of the ligand-binding domain of the human nuclear receptor retinoic X receptor α. Acta Crystallographica Section F, Structural Biology Communications, 2019, 75, 98-104.	0.8	14
----	---	-----	----

#	Article	IF	CITATIONS
73	Structural Insights into the Interaction of the Intrinsically Disordered Co-activator TIF2 with Retinoic Acid Receptor Heterodimer (RXR/RAR). Journal of Molecular Biology, 2021, 433, 166899.	4.2	14
74	Pathophysiology of Androgen Insensitivity Syndromes: Molecular and Structural Approaches of Natural and Engineered Androgen Receptor Mutations at Amino Acid 743. Journal of Clinical Endocrinology and Metabolism, 2002, 87, 5793-5800.	3.6	13
75	Pyrazine Arotinoids with Inverse Agonist Activities on the Retinoid and Rexinoid Receptors. ChemBioChem, 2009, 10, 1252-1259.	2.6	13
76	A new mutation of the androgen receptor, P817A, causing partial androgen insensitivity syndrome: in vitro and structural analysis. Journal of Molecular Endocrinology, 2004, 32, 679-687.	2.5	11
77	An Unexpected Mode Of Binding Defines BMS948 as A Full Retinoic Acid Receptor β (RARβ, NR1B2) Selective Agonist. PLoS ONE, 2015, 10, e0123195.	2.5	11
78	High Content Screening Using New U2OS Reporter Cell Models Identifies Harmol Hydrochloride as a Selective and Competitive Antagonist of the Androgen Receptor. Cells, 2020, 9, 1469.	4.1	11
79	Evolutionary diversification of retinoic acid receptor ligand-binding pocket structure by molecular tinkering. Royal Society Open Science, 2016, 3, 150484.	2.4	9
80	Pathological Interactions Between Mutant Thyroid Hormone Receptors and Corepressors and Their Modulation by a Thyroid Hormone Analogue with Therapeutic Potential. Thyroid, 2018, 28, 1708-1722.	4.5	9
81	Peroxisome proliferatorâ€activated receptor gammaâ€ligandâ€binding domain mutations associated with familial partial lipodystrophy type 3 disrupt human trophoblast fusion and fibroblast migration. Journal of Cellular and Molecular Medicine, 2020, 24, 7660-7669.	3.6	9
82	RAR–RXR Selectivity and Biological Activity of New Retinoic Acid Analogues with Heterocyclic or Polycyclic Aromatic Systems. Bioorganic and Medicinal Chemistry, 2002, 10, 2099-2102.	3.0	8
83	Glutamic Acid 709 Substitutions Highlight the Importance of the Interaction between Androgen Receptor Helices H3 and H12 for Androgen and Antiandrogen Actions. Molecular Endocrinology, 2006, 20, 724-734.	3.7	8
84	N-1H-Benzimidazol-5-ylbenzenesulfonamide derivatives as potent hPXR agonists. Bioorganic and Medicinal Chemistry, 2008, 16, 3537-3549.	3.0	7
85	Synthesis of a biospecific adsorbent for the purification of the three human retinoic acid receptors by affinity chromatography. Biochemical and Biophysical Research Communications, 1992, 187, 711-716.	2.1	6
86	IDPs and their complexes in GPCR and nuclear receptor signaling. Progress in Molecular Biology and Translational Science, 2020, 174, 105-155.	1.7	6
87	A Comparative Study of Human and Zebrafish Pregnane X Receptor Activities of Pesticides and Steroids Using In Vitro Reporter Gene Assays. Frontiers in Endocrinology, 2021, 12, 665521.	3.5	6
88	Androgen and estrogen receptors: Potential of crystallography in the fight against cancer. International Journal of Biochemistry and Cell Biology, 2007, 39, 1280-1287.	2.8	5
89	Protein-protein interactions in the regulation of RAR–RXR heterodimers transcriptional activity. Methods in Enzymology, 2020, 637, 175-207.	1.0	5
90	Structure-Based and Knowledge-Informed Design of B-Raf Inhibitors Devoid of Deleterious PXR Binding. Journal of Medicinal Chemistry, 2022, 65, 1552-1566.	6.4	5

#	ARTICLE	IF	CITATIONS
91	Purification and crystallization of the heterodimeric complex of RARβ and RXRα ligand-binding domains in the active conformation. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 1170-1172.	2.5	3
92	Functional and Structural Study of the Amino Acid Substitution in a Novel Familial Androgen Receptor Mutation (W752G) Responsible for Complete Androgen Insensitivity Syndrome. Sexual Development, 2018, 12, 218-224.	2.0	3
93	Toxicant Actions: Mode of Action of Endocrine Disruptors. , 2018, , 567-572.		2
94	Ligands and DNA in the allosteric control of retinoid receptors function. Essays in Biochemistry, 2021, 65, 887-899.	4.7	2
95	Nuclear receptor ligand-binding domains: reduction of helix H12 dynamics to favour crystallization. Acta Crystallographica Section F: Structural Biology Communications, 2008, 64, 614-616.	0.7	1
96	Signal Transduction and Structure of Nuclear Receptors. Growth Hormone, 2002, , 241-267.	0.2	1
97	Allosteric Control of Cofactor Binding to Nuclear Hormone Receptors. Biophysical Journal, 2012, 102, 64a.	0.5	0
98	Chapter 24. Retinoic Acid Receptors and their Modulators: Structural and Functional Insights. Food and Nutritional Components in Focus, 2012, , 417-437.	0.1	0
99	P263 STEATOSIS-INDEPENDENT PREVENTION OF LIVER FIBROSIS VIA THE TRANSREPRESSIVE ACTIVITY OF PPARa. Journal of Hepatology, 2014, 60, S152-S153.	3.7	0
100	Caractérisation des interactions entre récepteurs nucléaires et perturbateurs endocriniens contenus dans l'alimentation. Cahiers De Nutrition Et De Dietetique, 2017, 52, 239-243.	0.3	0
101	Conformational plasticity in the regulation of nuclear receptor gene transcription. Acta Crystallographica Section A: Foundations and Advances, 2017, 73, C645-C645.	0.1	0
102	Meeting Report: Nuclear Receptors: Transcription Factors and Drug Targets Connecting Basic Research with Translational Medicine. Endocrine Reviews, 2010, 31, 406-406.	20.1	0
103	Combining 'dry' co-crystallization with in situ diffraction to facilitate ligand screening by X-ray crystallography. Acta Crystallographica Section A: Foundations and Advances, 2016, 72, s25-s25.	0.1	0

104 Retinoids. , 2021, , 1358-1367.

0