List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2702883/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fibrous Scaffolds for Muscle Tissue Engineering Based on Touchâ€6pun Poly(Esterâ€Urethane) Elastomer. Macromolecular Bioscience, 2022, 22, e2100427.	4.1	4
2	Shape-Morphing Fibrous Hydrogel/Elastomer Bilayers Fabricated by a Combination of 3D Printing and Melt Electrowriting for Muscle Tissue Regeneration. ACS Applied Bio Materials, 2021, 4, 1720-1730.	4.6	24
3	4D Biofabrication Using a Combination of 3D Printing and Melt-Electrowriting of Shape-Morphing Polymers. ACS Applied Materials & Interfaces, 2021, 13, 12767-12776.	8.0	62
4	Enhancing the interfacial bonding between PE fibers and cementitious matrices through polydopamine surface modification. Composites Part B: Engineering, 2021, 217, 108817.	12.0	33
5	Tailoring the crack-bridging behavior of strain-hardening cement-based composites (SHCC) by chemical surface modification of poly(vinyl alcohol) (PVA) fibers. Cement and Concrete Composites, 2020, 114, 103722.	10.7	42
6	4D Biofabrication of fibrous artificial nerve graft for neuron regeneration. Biofabrication, 2020, 12, 035027.	7.1	38
7	Janus particles: from concepts to environmentally friendly materials and sustainable applications. Colloid and Polymer Science, 2020, 298, 841-865.	2.1	56
8	Influence of roughness and capillary size on the zeta potential values obtained by streaming potential measurements. Surface and Interface Analysis, 2020, 52, 991-995.	1.8	12
9	Surface modification of poly(vinyl alcohol) fibers to control the fiber-matrix interaction in composites. Colloid and Polymer Science, 2019, 297, 1079-1093.	2.1	24
10	Reconfigurable assembly of charged polymer-modified Janus and non-Janus particles: from half-raspberries to colloidal clusters and chains. Nanoscale Advances, 2019, 1, 3715-3726.	4.6	8
11	Hybrid Janus Particles: Challenges and Opportunities for the Design of Active Functional Interfaces and Surfaces. ACS Applied Materials & amp; Interfaces, 2019, 11, 9643-9671.	8.0	107
12	From Molecular Electrostatic Interactions and Hydrogel Architecture to Macroscopic Underwater Adherence. Macromolecules, 2019, 52, 3852-3862.	4.8	13
13	Effect of Architecture of Thermoresponsive Copolymer Brushes on Switching of Their Adsorption Properties. Macromolecular Chemistry and Physics, 2019, 220, 1900030.	2.2	2
14	Thermo-Responsive Polymer Brushes with Side Graft Chains: Relationship Between Molecular Architecture and Underwater Adherence. International Journal of Molecular Sciences, 2019, 20, 6295.	4.1	4
15	Supercooled Water Drops Do Not Freeze During Impact on Hybrid Janus Particle-Based Surfaces. Chemistry of Materials, 2019, 31, 112-123.	6.7	14
16	Hairy Particles with Immobilized Enzymes: Impact of Particle Topology on the Catalytic Activity. ACS Applied Materials & Interfaces, 2019, 11, 1645-1654.	8.0	19
17	Detachment of Rough Colloids from Liquid–Liquid Interfaces. Langmuir, 2018, 34, 4861-4873	3.5	25
18	Enabling the synthesis of homogeneous or Janus hairy nanoparticles through surface photoactivation. Nanoscale, 2018, 10, 14492-14498.	5.6	13

#	Article	IF	CITATIONS
19	Controlled and tunable design of polymer interface for immobilization of enzymes: does curvature matter?. Soft Matter, 2017, 13, 1074-1084.	2.7	20
20	Universal emulsion stabilization from the arrested adsorption of rough particles at liquid-liquid interfaces. Nature Communications, 2017, 8, 15701.	12.8	120
21	Janus Particles as Novel Building Blocks for Active Functional Surfaces and Interfaces. , 2017, , 451-520.		2
22	Postsynthetic Inner-Surface Functionalization of the Highly Stable Zirconium-Based Metal–Organic Framework DUT-67. Inorganic Chemistry, 2016, 55, 7206-7213.	4.0	68
23	Hybrid Hairy Janus Particles for Anti-Icing and De-Icing Surfaces: Synergism of Properties and Effects. Chemistry of Materials, 2016, 28, 6995-7005.	6.7	44
24	Janus and patchy nanoparticles: general discussion. Faraday Discussions, 2016, 191, 117-139.	3.2	3
25	Hybrid Hairy Janus Particles as Building Blocks for Antibiofouling Surfaces. ACS Applied Materials & Interfaces, 2016, 8, 32591-32603.	8.0	31
26	Programmed assembly of oppositely charged homogeneously decorated and Janus particles. Faraday Discussions, 2016, 191, 89-104.	3.2	10
27	Methods for a permanent binding of functionalized micro-particle on polyester fabric for the improvement of the barrier effect. Journal of Industrial Textiles, 2016, 46, 643-663.	2.4	2
28	Antiâ€lcing Superhydrophobic Surfaces Based on Coreâ€Shell Fossil Particles. Advanced Materials Interfaces, 2015, 2, 1500124.	3.7	42
29	Experimental studies of contact angle hysteresis phenomena on polymer surfaces — Toward the understanding and control of wettability for different applications. Advances in Colloid and Interface Science, 2015, 222, 350-376.	14.7	107
30	Hybrid Hairy Janus Particles Decorated with Metallic Nanoparticles for Catalytic Applications. ACS Applied Materials & Interfaces, 2015, 7, 21218-21225.	8.0	102
31	New insight into icing and de-icing properties of hydrophobic and hydrophilic structured surfaces based on core–shell particles. Soft Matter, 2015, 11, 9126-9134.	2.7	27
32	Polymer–Inorganic Coatings Containing Nanosized Sorbents Selective to Radionuclides. 2. Latex/Tin Oxide Composites for Cobalt Fixation. ACS Applied Materials & Interfaces, 2014, 6, 22387-22392.	8.0	6
33	Synthesis and Contact Angle Measurements of Janus Particles. ChemPlusChem, 2014, 79, 656-661.	2.8	15
34	Adaptive PEG–PDMS Brushes: Effect of Architecture on Adhesiveness in Air and under Water. Macromolecules, 2014, 47, 8377-8385.	4.8	11
35	Platelet Janus Particles with Hairy Polymer Shells for Multifunctional Materials. ACS Applied Materials & Interfaces, 2014, 6, 13106-13114.	8.0	59
36	Preparation of scratch resistant superhydrophobic hybrid coatings by sol–gel process. Progress in Organic Coatings, 2014, 77, 1635-1641.	3.9	55

#	Article	IF	CITATIONS
37	Multipurpose Ultra and Superhydrophobic Surfaces Based on Oligodimethylsiloxane-Modified Nanosilica. ACS Applied Materials & Interfaces, 2014, 6, 18998-19010.	8.0	36
38	Self-Assembly Behavior of Hairy Colloidal Particles with Different Architectures: Mixed versus Janus. Langmuir, 2014, 30, 12765-12774.	3.5	18
39	Polymer-Inorganic Coatings Containing Nanosized Sorbents Selective to Radionuclides. 1. Latex/Cobalt Hexacyanoferrate(II) Composites for Cesium Fixation. ACS Applied Materials & Interfaces, 2014, 6, 16769-16776.	8.0	14
40	Stimuliâ€Responsive Janus Particles. Particle and Particle Systems Characterization, 2013, 30, 922-930.	2.3	23
41	Intelligent Materials with Adaptive Adhesion Properties Based on Comb-like Polymer Brushes. Langmuir, 2012, 28, 16444-16454.	3.5	33
42	Tuning the Adhesion of Silica Microparticles to a Poly(2-vinyl pyridine) Brush: An AFM Force Measurement Study. Langmuir, 2012, 28, 15555-15565.	3.5	27
43	Surfaces with Self-repairable Ultrahydrophobicity Based on Self-organizing Freely Floating Colloidal Particles. Langmuir, 2012, 28, 3679-3682.	3.5	49
44	Switchable adhesion by chemical functionality and topography. Journal of Materials Chemistry, 2012, 22, 19390.	6.7	59
45	Self-healing superhydrophobic materials. Physical Chemistry Chemical Physics, 2012, 14, 10497.	2.8	111
46	Water-Repellent Textile via Decorating Fibers with Amphiphilic Janus Particles. ACS Applied Materials & Interfaces, 2011, 3, 1216-1220.	8.0	112
47	A comparative study on switchable adhesion between thermoresponsive polymer brushes on flat and rough surfaces. Soft Matter, 2011, 7, 5691.	2.7	52
48	Engineering of Ultraâ€Hydrophobic Functional Coatings Using Controlled Aggregation of Bicomponent Core/Shell Janus Particles. Advanced Functional Materials, 2011, 21, 2338-2344.	14.9	56
49	Ultrahydrophobe OberflÄ e hen durch gezieltes GrenzflÄ e hendesign. Chemie-Ingenieur-Technik, 2010, 82, 297-308.	0.8	3
50	Microparticleâ€Supported Conjugated Polyelectrolyte Brushes Prepared by Surfaceâ€Initiated Kumada Catalyst Transfer Polycondensation for Sensor Applications. Macromolecular Rapid Communications, 2010, 31, 2146-2150.	3.9	20
51	Anionic surfactants for defect suppression in 193-nm lithography—Study of the adsorption process by ellipsometry and streaming potential measurements. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 371, 8-13.	4.7	3
52	Ordered surface structures from PNIPAM-based loosely packed microgel particles. Soft Matter, 2010, 6, 5980.	2.7	49
53	Interaction Forces between Microsized Silica Particles and Weak Polyelectrolyte Brushes at Varying pH and Salt Concentration. Langmuir, 2010, 26, 6400-6410.	3.5	56

Protein-Resistant Polymer Coatings Based on Surface-Adsorbed Poly(aminoethyl) Tj ETQq0 0 0 rgBT /Overlock 10 Tf $50_{.4}^{50}$ 62 Td (methacryl) $30_{.4}^{50}$

#	Article	IF	CITATIONS
55	Chemically guided topography in alkylsilane- and oligosiloxane-modified silica nanoparticle coatings: from very hydrophobic surfaces to "pearl―bouncing droplets. Soft Matter, 2010, 6, 4768.	2.7	28
56	Biocompatible polymeric materials with switchable adhesion properties. Soft Matter, 2010, 6, 5907.	2.7	64
57	Covalent immobilization of chitosan on surfaces with anchoring layers of poly(glycidyl) Tj ETQq1 1 0.784314 rgB1	- /Oyerlock 0.8	₹ 10 Tf 50 6
58	Forces between Blank Surfaces As Measured by the Colloidal Probe Technique and by Optical Tweezers â^' A Comparison. Langmuir, 2009, 25, 12894-12898.	3.5	18
59	Forces of Interaction between Poly(2-vinylpyridine) Brushes As Measured by Optical Tweezers. Macromolecules, 2009, 42, 9096-9102.	4.8	46
60	Wetting on Fractal Superhydrophobic Surfaces from "Coreâ^'Shell―Particles: A Comparison of Theory and Experiment. Langmuir, 2009, 25, 3132-3136.	3.5	41
61	Temperatureâ€Induced Sizeâ€Control of Bioactive Surface Patterns. Advanced Functional Materials, 2008, 18, 1501-1508.	14.9	44
62	Facile preparation of superhydrophobic coatings by sol–gel processes. Journal of Colloid and Interface Science, 2008, 325, 149-156.	9.4	126
63	Optical tweezers to measure the interaction between poly(acrylic acid) brushes. Polymer, 2008, 49, 4802-4807.	3.8	44
64	Stimuli-Responsive Bicomponent Polymer Janus Particles by "Grafting fromâ€ / "Grafting to―Approaches. Macromolecules, 2008, 41, 9669-9676.	4.8	192
65	Studies of Surface Segregation and Surface Properties of <i>N</i> -Pentylperfluorooctaneamide End-Capped Semicrystalline Poly(butylene isophthalate) Films. Macromolecules, 2008, 41, 8557-8565.	4.8	23
66	Wetting on Regularly Structured Surfaces from "Coreâ^'Shell―Particles: Theoretical Predictions and Experimental Findings. Langmuir, 2008, 24, 11895-11901.	3.5	36
67	Perfluoroalkyl End-Functionalized Oligoesters:Â Correlation between Wettability and End-Group Segregation. Macromolecules, 2007, 40, 297-305.	4.8	60
68	Adhesion and Viability of Two Enterococcal Strains on Covalently Grafted Chitosan and Chitosan Multilayers. Biomacromolecules, 2007, 8, 2960-2968.	5.4	80
69	Simple and Fast Method for the Fabrication of Switchable Bicomponent Micropatterned Polymer Surfaces. Langmuir, 2007, 23, 5205-5209.	3.5	41
70	Mechanochemical modification of silica with poly(1-vinyl-2-pyrrolidone) by grinding in a stirred media mill. Journal of Applied Polymer Science, 2007, 104, 3708-3714.	2.6	24
71	The adsorption of cationic surfactants on photoresist surfaces and its effect on the pattern collapse in high aspect ratio patterning. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 311, 83-92.	4.7	10
72	Electrokinetic investigation of surfactant adsorption. Journal of Colloid and Interface Science, 2007, 309, 225-230.	9.4	33

#	Article	IF	CITATIONS
73	Design of surface properties of PET films: Effect of fluorinated block copolymers. Journal of Colloid and Interface Science, 2007, 315, 210-222.	9.4	29
74	Fast and Spatially Resolved Environmental Probing Using Stimuli-Responsive Polymer Layers and Fluorescent Nanocrystals. Advanced Materials, 2006, 18, 1453-1457.	21.0	99
75	MONITORING THE SURFACE TENSION OF REACTIVE EPOXY-AMINE SYSTEMS UNDER DIFFERENT ENVIRONMENTAL CONDITIONS. Journal of Adhesion, 2004, 80, 667-683.	3.0	16
76	Regular Patterned Surfaces from Core-Shell Particles. Preparation and Characterization. , 0, , 72-81.		19
77	Surface Modification of Polymeric Fibers to Control the Interactions with Cement-Based Matrices in Fiber-Reinforced Composites. Key Engineering Materials, 0, 809, 225-230.	0.4	5