Manuel GÃ³mez Del Moral

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2702443/publications.pdf Version: 2024-02-01

		623734	552781
31	714	14	26
papers	citations	h-index	g-index
31	31	31	1369
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Genetic and pharmacological inhibition of XBP1 protects against APAP hepatotoxicity through the activation of autophagy. Cell Death and Disease, 2022, 13, 143.	6.3	16
2	A Shortcut from Metabolic-Associated Fatty Liver Disease (MAFLD) to Hepatocellular Carcinoma (HCC): c-MYC a Promising Target for Preventative Strategies and Individualized Therapy. Cancers, 2022, 14, 192.	3.7	15
3	An Experimental DUAL Model of Advanced Liver Damage. Hepatology Communications, 2021, 5, 1051-1068.	4.3	11
4	Deletion of XBP1 in liver parenchymal cells ameliorates acetaminophen (APAP)-induced hepatotoxicity via activation of IRE1alpha-JNK1-ATG5-dependent autophagy. Journal of Hepatology, 2020, 73, S228-S229.	3.7	0
5	Intestinal Epithelial Cell-Derived Extracellular Vesicles Modulate Hepatic Injury via the Gut-Liver Axis During Acute Alcohol Injury. Frontiers in Pharmacology, 2020, 11, 603771.	3.5	17
6	FRI-103-A sublethal dose of acetaminophen suffices to induce the unfolded protein response in hepatocytes through an IRE1alpha-JNK1-XBP1s-dependent mechanism. Journal of Hepatology, 2019, 70, e432-e433.	3.7	0
7	THU-285-Loss of X-Box Protein-1 in intestinal epithelial cells promotes the development of alcoholic liver disease in the liver. Journal of Hepatology, 2019, 70, e287-e288.	3.7	0
8	THU-072-N-ras protects against experimental liver fibrosis by maintaining hepatocyte homeostasis. Journal of Hepatology, 2019, 70, e191.	3.7	0
9	Alcoholic liver disease: Utility of animal models. World Journal of Gastroenterology, 2018, 24, 5063-5075.	3.3	101
10	Dissecting the molecular pathophysiology of drug-induced liver injury. World Journal of Gastroenterology, 2018, 24, 1373-1385.	3.3	83
11	Monocyte-Derived Dendritic Cells Differentiated in the Presence of Lenalidomide Display a Semi-Mature Phenotype, Enhanced Phagocytic Capacity, and Th1 Polarization Capability. Frontiers in Immunology, 2018, 9, 1328.	4.8	12
12	Human Invariant Natural Killer T Cells Respond to Antigen-Presenting Cells Exposed to Lipids from Olea europaea Pollen. International Archives of Allergy and Immunology, 2017, 173, 12-22.	2.1	13
13	Intestinal epithelial cell endoplasmic reticulum stress promotes MULT1 up-regulation and NKG2D-mediated inflammation. Journal of Experimental Medicine, 2017, 214, 2985-2997.	8.5	52
14	The Role of Lipids in Development of Allergic Responses. Immune Network, 2017, 17, 133.	3.6	36
15	Molecular and functional characterization of porcine Siglec-3/CD33 and analysis of its expression in blood and tissues. Developmental and Comparative Immunology, 2015, 51, 238-250.	2.3	12
16	Molecular characterization of porcine Siglec-10 and analysis of its expression in blood and tissues. Developmental and Comparative Immunology, 2015, 48, 116-123.	2.3	15
17	Molecular characterization and expression of porcine Siglec-5. Developmental and Comparative Immunology, 2014, 44, 206-216.	2.3	7
18	Olea europaea pollen lipids activate invariant natural killer TÂcells by upregulating CD1d expression on dendritic cells. Journal of Allergy and Clinical Immunology, 2013, 131, 1393-1399.e5.	2.9	26

#	Article	IF	CITATIONS
19	Mesoporous Silicon Microparticles Enhance MHC Class I Cross-Antigen Presentation by Human Dendritic Cells. Clinical and Developmental Immunology, 2013, 2013, 1-9.	3.3	23
20	Human MR1 expression on the cell surface is acid sensitive, proteasome independent and increases after culturing at 26 ŰC. Biochemical and Biophysical Research Communications, 2011, 411, 632-636.	2.1	19
21	The MHC-related protein 1 (MR1) is expressed by a subpopulation of CD38+, IgA+ cells in the human intestinal mucosa. Histology and Histopathology, 2009, 24, 1439-49.	0.7	7
22	Expression of adhesion molecules and RANTES in kidney transplant from nonheart-beating donors. Transplant International, 2005, 18, 333-340.	1.6	4
23	Expression of Human CD1d Molecules Protects Target Cells from NK Cell-Mediated Cytolysis. Journal of Immunology, 2004, 172, 7297-7305.	0.8	15
24	Characterization of a novel activation antigen on porcine lymphocytes recognized by monoclonal antibody 5A6/8. Veterinary Research, 2004, 35, 339-348.	3.0	0
25	Expression of porcine CD163 on monocytes/macrophages correlates with permissiveness to African swine fever infection. Archives of Virology, 2003, 148, 2307-2323.	2.1	134
26	Structural characterization of two CD1A allelic variants. Human Immunology, 2001, 62, 1137-1141.	2.4	12
27	Molecular and functional characterization of porcine LFA-1 using monoclonal antibodies to CD11a and CD18. Xenotransplantation, 2000, 7, 258-266.	2.8	15
28	Monoclonal antibodies 2F6/8 and 2A10/8 recognize a porcine antigen (SWC7) expressed on B cells and activated T cells. Journal of Immunological Methods, 1999, 222, 1-11.	1.4	5
29	Monoclonal antibodies to a high molecular weight isoform of porcine CD45: biochemical and tissue distribution analyses. Veterinary Immunology and Immunopathology, 1997, 56, 151-162.	1.2	21
30	Monoclonal antibody recognizes the Î \pm chain of a porcine Î ² 2 integrin involved in adhesion and complement mediated phagocytosis. Journal of Immunological Methods, 1996, 195, 125-134.	1.4	28
31	Ultrastructural changes in the adult rat thymus after estradiol benzoate treatment. Tissue and Cell, 1994, 26, 169-179.	2.2	15