
Zhijin Fan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/270237/publications.pdf Version: 2024-02-01

ΖΗΠΙΝ ΕΛΝ

#	Article	IF	CITATIONS
1	Design, synthesis and fungicidal evaluation of novel psoralen derivatives containing sulfonohydrazide or acylthiourea moiety. Molecular Diversity, 2023, 27, 571-588.	3.9	4
2	Design, synthesis and fungicidal activity of 3,4-dichloroisothiazolocoumarin-containing strobilurins. Molecular Diversity, 2022, 26, 951-961.	3.9	5
3	Design, synthesis and fungicidal activity of pyrazole–thiazole carboxamide derivatives. Molecular Diversity, 2022, 26, 205-214.	3.9	2
4	Synthesis of potent antifungal 3,4-dichloroisothiazole-based strobilurins with both direct fungicidal activity and systemic acquired resistance. RSC Medicinal Chemistry, 2022, 13, 429-435.	3.9	1
5	Discovery of Novel Triazolothiadiazines as Fungicidal Leads Targeting Pyruvate Kinase. Journal of Agricultural and Food Chemistry, 2022, 70, 1047-1057.	5.2	7
6	Design, Synthesis, and Biological Evaluation of Novel Psoralen-Based 1,3,4-Oxadiazoles as Potent Fungicide Candidates Targeting Pyruvate Kinase. Journal of Agricultural and Food Chemistry, 2022, 70, 3435-3446.	5.2	12
7	Methoxyacrylate Fungicide Candidate CL-15C Also Functions as a Plant Elicitor in <i>Arabidopsis thaliana</i> and <i>Oryza sativa</i> L. Journal of Agricultural and Food Chemistry, 2022, 70, 3142-3150.	5.2	10
8	Bioactivity-Guided Synthesis Accelerates the Discovery of Evodiamine Derivatives as Potent Insecticide Candidates. Journal of Agricultural and Food Chemistry, 2022, 70, 5197-5206.	5.2	4
9	Plant Defense Responses to a Novel Plant Elicitor Candidate LY5-24-2. International Journal of Molecular Sciences, 2022, 23, 5348.	4.1	3
10	Design, synthesis and antifungal activity of (E)-3-acyl-5-(methoxyimino)-1,5-dihydrobenzo[e][1,2]oxazepin-4(3H)-one analogues. Molecular Diversity, 2021, 25, 159-169.	3.9	4
11	Discovery and validation of pesticide novel target: take pyruvate kinase as an example. , 2021, , 443-450.		0
12	Design, synthesis and biological evaluation of pyrazole-aromatic containing carboxamides as potent SDH inhibitors. European Journal of Medicinal Chemistry, 2021, 214, 113230.	5.5	26
13	Hydrolysis Kinetics of a Novel 3,4-Dichloroisothiazole Plant-Activator Candidate LY5-24-2 by UPLC-Q-TOF. Bulletin of Environmental Contamination and Toxicology, 2021, 106, 1009-1016.	2.7	1
14	Discovery of Novel 3,4-Dichloroisothiazole-Containing Coumarins as Fungicidal Leads. Journal of Agricultural and Food Chemistry, 2021, 69, 4253-4262.	5.2	12
15	Design, Synthesis, and Evaluation of Fungicidal Activity of Novel Pyrazoleâ€Containing Strobilurin Derivatives â€. Chinese Journal of Chemistry, 2021, 39, 1531-1537.	4.9	11
16	Arabidopsis G-Protein β Subunit AGB1 Negatively Regulates DNA Binding of MYB62, a Suppressor in the Gibberellin Pathway. International Journal of Molecular Sciences, 2021, 22, 8270.	4.1	11
17	Design, Synthesis, and Evaluation of Novel Isothiazole-Purines as a Pyruvate Kinase-Based Fungicidal Lead Compound. Journal of Agricultural and Food Chemistry, 2021, 69, 9461-9471.	5.2	10
18	Synthesis, Fungicidal Activity, and Molecular Docking of 2-Acylamino and 2-Thioacylamino Derivatives of 1 <i>H</i> -benzo[<i>d</i>]imidazoles as Anti-Tubulin Agents. Journal of Agricultural and Food Chemistry, 2021, 69, 12048-12062.	5.2	20

Zhijin Fan

#	Article	IF	CITATIONS
19	Synthesis of 1,2, 3â€Thiadiazole ―and Isothiazoleâ€Based Phenyl Substituted Pyridine Containing Carboxamides as Potent Plant Elicitors. Pest Management Science, 2021, , .	3.4	5
20	Systematic identification of genes associated with plant growth–defense tradeoffs under JA signaling in Arabidopsis. Planta, 2020, 251, 43.	3.2	17
21	Revealing Shared and Distinct Genes Responding to JA and SA Signaling in Arabidopsis by Meta-Analysis. Frontiers in Plant Science, 2020, 11, 908.	3.6	38
22	Direct label-free methods for identification of target proteins in agrochemicals. International Journal of Biological Macromolecules, 2020, 164, 1475-1483.	7.5	5
23	The tandem Dimroth rearrangement and sulfonylation/acylation as regioselective method for the synthesis of 5-arylamino-2-sulfonyland 2-acyl-5-arylamino-1,2,3-triazole-4-carbothioamides. Chemistry of Heterocyclic Compounds, 2020, 56, 1341-1347.	1.2	1
24	Design, Synthesis, and Evaluation of the Antifungal Activity of Novel Pyrazole–Thiazole Carboxamides as Succinate Dehydrogenase Inhibitors. Journal of Agricultural and Food Chemistry, 2020, 68, 7093-7102.	5.2	54
25	Discovery of Novel Isothiazole, 1,2,3-Thiadiazole, and Thiazole-Based Cinnamamides as Fungicidal Candidates. Journal of Agricultural and Food Chemistry, 2019, 67, 12357-12365.	5.2	35
26	Synthesis and Biological Activity of Novel Succinate Dehydrogenase Inhibitor Derivatives as Potent Fungicide Candidates. Journal of Agricultural and Food Chemistry, 2019, 67, 13185-13194.	5.2	56
27	Discovery of Novel Thiazole Carboxamides as Antifungal Succinate Dehydrogenase Inhibitors. Journal of Agricultural and Food Chemistry, 2019, 67, 1647-1655.	5.2	70
28	Discovery and structure-activity relationship of novel diphenylthiazole derivatives as BTK inhibitor with potent activity against B cell lymphoma cell lines. European Journal of Medicinal Chemistry, 2019, 178, 767-781.	5.5	14
29	Mode of action for a new potential fungicide candidate, 3-(4-Methyl-1,2,3-thiadiazolyl)-6-trichloromethyl-[1,2,4]-triazolo-[3,4- <i>b</i>][1,3,4]-thiadiazole by iTRAQ. Food and Agricultural Immunology, 2019, 30, 533-547.	1.4	8
30	Kinetic Resolution of Axially Chiral 2â€Nitrovinyl Biaryls Catalyzed by a Bifunctional Thiophosphinamide. Advanced Synthesis and Catalysis, 2019, 361, 3575-3581.	4.3	4
31	Discovery of Novel Piperidinylthiazole Derivatives As Broad-Spectrum Fungicidal Candidates. Journal of Agricultural and Food Chemistry, 2019, 67, 1360-1370.	5.2	23
32	Asymmetric Formal [4 + 2] Annulation of o-Quinone Methides with β-Keto Acylpyrazoles: A General Approach to Optically Active trans-3,4-Dihydrocoumarins. Journal of Organic Chemistry, 2018, 83, 4221-4228.	3.2	26
33	Organocatalytic Enantioselective αâ€Amination of Thiazolâ€4â€oneâ€5 arboxylates with Azodicarboxylates. Asian Journal of Organic Chemistry, 2018, 7, 2490-2496.	2.7	5
34	Discovery of Pyruvate Kinase as a Novel Target of New Fungicide Candidate 3-(4-Methyl-1,2,3-thiadiazolyl)-6-trichloromethyl-[1,2,4]-triazolo-[3,4- <i>b</i>][1,3,4]-thiadizole. Journal of Agricultural and Food Chemistry, 2018, 66, 12439-12452.	5.2	35
35	Structure-Based Discovery and Synthesis of Potential Transketolase Inhibitors. Molecules, 2018, 23, 2116.	3.8	18
36	Discovery of Methyl (5 <i>Z</i>)-[2-(2,4,5-Trioxopyrrolidin-3-ylidene)-4-oxo-1,3-thiazolidin-5-ylidene]acetates as Antifungal Agents against Potato Diseases. Journal of Agricultural and Food Chemistry, 2018, 66, 6239-6245.	5.2	29

Zhijin Fan

#	Article	IF	CITATIONS
37	Design, Synthesis and Biological Evaluation of Isothiazole Based 1,2,4â€Trizaole Derivatives. Chinese Journal of Chemistry, 2018, 36, 731-736.	4.9	11
38	A Synthetic Disaccharide Derivative of Diphyllin, TAARD, Activates Human Natural Killer Cells to Secrete Interferon-Gamma via Toll-Like Receptor-Mediated NF-κB and STAT3 Signaling Pathways. Frontiers in Immunology, 2018, 9, 1509.	4.8	9
39	Synthesis of Novel 3,4-Chloroisothiazole-Based Imidazoles as Fungicides and Evaluation of Their Mode of Action. Journal of Agricultural and Food Chemistry, 2018, 66, 7319-7327.	5.2	45
40	Synthesis of 1,2,3-Thiadiazole and Thiazole-Based Strobilurins as Potent Fungicide Candidates. Journal of Agricultural and Food Chemistry, 2017, 65, 745-751.	5.2	59
41	Synthesis of (1,2,3-thiadiazolyl)imidazolidine-2,4-diones by microwave irradiation and characterization of their biological activity. Chemistry of Heterocyclic Compounds, 2016, 52, 910-917.	1.2	3
42	Dearomatizing Naphthol Mannich Bases toward Spiro Thiazolidinethiones Catalyzed by Recyclable Reduced Graphene Oxide with Air as Oxidant. ACS Sustainable Chemistry and Engineering, 2016, 4, 3189-3195.	6.7	8
43	Synthesis and (3+2) cycloaddition reactions of N,N Ê ¹ - and C,N-cyclic azomethine imines. Chemistry of Heterocyclic Compounds, 2016, 52, 627-636.	1.2	19
44	Design, Synthesis, and Biological Screening of Novel Anthranilic Diamides. Journal of Heterocyclic Chemistry, 2016, 53, 865-875.	2.6	9
45	Determination of Tiadinil and Its Metabolite in Flue-Cured Tobacco. Journal of Chromatographic Science, 2014, 52, 624-628.	1.4	0
46	Synthesis and biological activities of novel 1,2,4-triazole derivatives containing 1,2,3-thiadiazole ring. Chemical Research in Chinese Universities, 2014, 30, 390-395.	2.6	3
47	The Natural Product Phyllanthusmin C Enhances IFN-γ Production by Human NK Cells through Upregulation of TLR-Mediated NF-κB Signaling. Journal of Immunology, 2014, 193, 2994-3002.	0.8	46
48	Synthesis, Bioactivities and Structure Activity Relationship of <i>N</i> â€4â€Methylâ€1,2,3â€thiadiazoleâ€5â€carbonylâ€ <i>N</i> ′â€phenyl Ureas. Chinese Journal of Chem 2522-2532.	isŧry, 201	2,130,
49	Synthesis and Insecticidal Activity of <i>N</i> - <i>tert</i> -Butyl- <i>N</i> , <i>N</i> ′-diacylhydrazines Containing 1,2,3-Thiadiazoles. Journal of Agricultural and Food Chemistry, 2011, 59, 628-634.	5.2	60
50	2-Hydroxypropyl derivatives of 1,2,3-thiadiazole and 1,2,3-triazole: Synthesis and antifungal activity. Pure and Applied Chemistry, 2011, 83, 715-722.	1.9	42
51	Synthesis of 3,5â€Dichloroâ€4â€(1,1,2,2â€tetrafluoroethoxy)phenyl Containing 1,2,3â€Thiadiazole Derivatives vi Ugi Reaction and Their Biological Activities. Chinese Journal of Chemistry, 2011, 29, 288-296.	a 4.9	8
52	Preparation of a Pyrazosulfuron-Ethyl Imprinted Polymer with Hydrophilic External Layers by Reversible Addition-Fragmentation Chain Transfer Precipitation and Grafting Polymerization. Analytical Letters, 2011, 44, 2617-2632.	1.8	16
53	Synthesis, Crystal Structure, and Biological Activity of 4-Methyl-1,2,3-thiadiazole-Containing 1,2,4-Triazolo[3,4- <i>b</i>][1,3,4]thiadiazoles. Journal of Agricultural and Food Chemistry, 2010, 58, 2630-2636.	5.2	98
54	Synthesis and Biological Activity Evaluation of 1,2,3-Thiadiazole Derivatives as Potential Elicitors with Highly Systemic Acquired Resistance. Journal of Agricultural and Food Chemistry, 2009, 57, 4279-4286.	5.2	102