
Wei-Hua Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2702316/publications.pdf Version: 2024-02-01

\λ/ει-Ηιιλ \λ/ιι

#	Article	IF	CITATIONS
1	A Protein Kinase, Interacting with Two Calcineurin B-like Proteins, Regulates K+ Transporter AKT1 in Arabidopsis. Cell, 2006, 125, 1347-1360.	28.9	891
2	Potassium Transport and Signaling in Higher Plants. Annual Review of Plant Biology, 2013, 64, 451-476.	18.7	537
3	The WRKY6 Transcription Factor Modulates <i>PHOSPHATE1</i> Expression in Response to Low Pi Stress in <i>Arabidopsis</i> Â Â. Plant Cell, 2009, 21, 3554-3566.	6.6	366
4	Arabidopsis Calcium-Dependent Protein Kinase CPK10 Functions in Abscisic Acid- and Ca2+-Mediated Stomatal Regulation in Response to Drought Stress. Plant Physiology, 2010, 154, 1232-1243.	4.8	286
5	Arabidopsis CALCIUM-DEPENDENT PROTEIN KINASE8 and CATALASE3 Function in Abscisic Acid-Mediated Signaling and H ₂ O ₂ Homeostasis in Stomatal Guard Cells under Drought Stress. Plant Cell, 2015, 27, 1445-1460.	6.6	266
6	Arabidopsis WRKY45 Transcription Factor Activates <i>PHOSPHATE TRANSPORTER1;1</i> Expression in Response to Phosphate Starvation Â. Plant Physiology, 2014, 164, 2020-2029.	4.8	226
7	Arabidopsis <scp>RAV</scp> 1 transcription factor, phosphorylated by <scp>S</scp> n <scp>RK</scp> 2 kinases, regulates the expression of <i><scp>ABI</scp>3<scp>ABI</scp>4</i> , and <i><scp>ABI</scp>5</i> during seed germination and early seedling development. Plant Journal, 2014, 80, 654-668.	5.7	224
8	The Os-AKT1 Channel Is Critical for K ⁺ Uptake in Rice Roots and Is Modulated by the Rice CBL1-CIPK23 Complex. Plant Cell, 2014, 26, 3387-3402.	6.6	221
9	CalcineurinÂBâ€like protein <scp>CBL</scp> 10 directly interacts with <scp>AKT</scp> 1 and modulates K ⁺ homeostasis in Arabidopsis. Plant Journal, 2013, 74, 258-266.	5.7	199
10	AtCPK23 functions in Arabidopsis responses to drought and salt stresses. Plant Molecular Biology, 2007, 65, 511-518.	3.9	197
11	Transcriptome analysis of rice root responses to potassium deficiency. BMC Plant Biology, 2012, 12, 161.	3.6	176
12	Regulation of potassium transport and signaling in plants. Current Opinion in Plant Biology, 2017, 39, 123-128.	7.1	175
13	NRT1.5/NPF7.3 Functions as a Proton-Coupled H ⁺ /K ⁺ Antiporter for K ⁺ Loading into the Xylem in Arabidopsis. Plant Cell, 2017, 29, 2016-2026.	6.6	167
14	Potassium and phosphorus transport and signaling in plants. Journal of Integrative Plant Biology, 2021, 63, 34-52.	8.5	167
15	Potassium Transporter KUP7 Is Involved in K + Acquisition and Translocation in Arabidopsis Root under K + -Limited Conditions. Molecular Plant, 2016, 9, 437-446.	8.3	156
16	WRKY42 Modulates Phosphate Homeostasis through Regulating Phosphate Translocation and Acquisition in Arabidopsis Â. Plant Physiology, 2015, 167, 1579-1591.	4.8	153
17	A Protein Kinase, Calcineurin B-Like Protein-Interacting Protein Kinase9, Interacts with Calcium Sensor Calcineurin B-Like Protein3 and Regulates Potassium Homeostasis under Low-Potassium Stress in Arabidopsis Â. Plant Physiology, 2012, 161, 266-277.	4.8	139
18	Genetic approaches for improvement of the crop potassium acquisition and utilization efficiency. Current Opinion in Plant Biology, 2015, 25, 46-52.	7.1	130

WEI-HUA WU

#	Article	IF	CITATIONS
19	Ca2+-Dependent Protein Kinase11 and 24 Modulate the Activity of the Inward Rectifying K+ Channels in <i>Arabidopsis</i> Pollen Tubes. Plant Cell, 2013, 25, 649-661.	6.6	112
20	Arabidopsis WRKY6 Transcription Factor Acts as a Positive Regulator of Abscisic Acid Signaling during Seed Germination and Early Seedling Development. PLoS Genetics, 2016, 12, e1005833.	3.5	101
21	The Transcription Factor MYB59 Regulates K ⁺ /NO ₃ ^{â^'} Translocation in the Arabidopsis Response to Low K ⁺ Stress. Plant Cell, 2019, 31, 699-714.	6.6	100
22	Membrane Transporters for Nitrogen, Phosphate and Potassium Uptake in Plants. Journal of Integrative Plant Biology, 2008, 50, 835-848.	8.5	99
23	AtKC1 and CIPK23 Synergistically Modulate AKT1-Mediated Low-Potassium Stress Responses in Arabidopsis. Plant Physiology, 2016, 170, 2264-2277.	4.8	96
24	Two spatially and temporally distinct Ca ²⁺ signals convey <i>Arabidopsis thaliana</i> responses to K ⁺ deficiency. New Phytologist, 2017, 213, 739-750.	7.3	88
25	Potassium channel α-subunit AtKC1 negatively regulates AKT1-mediated K+ uptake in Arabidopsis roots under low-K+ stress. Cell Research, 2010, 20, 826-837.	12.0	75
26	Potassium channel AKT1 is involved in the auxinâ€mediated root growth inhibition in <i>Arabidopsis</i> response to low K ⁺ stress. Journal of Integrative Plant Biology, 2017, 59, 895-909.	8.5	75
27	The Ubiquitin E3 Ligase PRU1 Regulates WRKY6 Degradation to Modulate Phosphate Homeostasis in Response to Low-Pi Stress in Arabidopsis. Plant Cell, 2018, 30, 1062-1076.	6.6	64
28	Abscisic Acid Modulates Seed Germination via ABA INSENSITIVE5-Mediated PHOSPHATE1. Plant Physiology, 2017, 175, 1661-1668.	4.8	63
29	ZmHAK5 and ZmHAK1 function in K ⁺ uptake and distribution in maize under low K ⁺ conditions. Journal of Integrative Plant Biology, 2019, 61, 691-705.	8.5	61
30	Differential Responses of Abaxial and Adaxial Guard Cells of Broad Bean to Abscisic Acid and Calcium. Plant Physiology, 1998, 118, 1421-1429.	4.8	52
31	<scp>KUP</scp> 9 maintains root meristem activity by regulating K ⁺ and auxin homeostasis in response to low K. EMBO Reports, 2020, 21, e50164.	4.5	43
32	A Putative Calciumâ€Permeable Cyclic Nucleotideâ€Gated Channel, CNGC18, Regulates Polarized Pollen Tube Growth. Journal of Integrative Plant Biology, 2007, 49, 1261-1270.	8.5	38
33	Cytosolic Ca2+ Signals Enhance the Vacuolar Ion Conductivity of Bulging Arabidopsis Root Hair Cells. Molecular Plant, 2015, 8, 1665-1674.	8.3	33
34	A potassium-sensing niche in Arabidopsis roots orchestrates signaling and adaptation responses to maintain nutrient homeostasis. Developmental Cell, 2021, 56, 781-794.e6.	7.0	29
35	Two calciumâ€dependent protein kinases enhance maize drought tolerance by activating anion channel ZmSLAC1 in guard cells. Plant Biotechnology Journal, 2022, 20, 143-157.	8.3	23
36	Phosphorylation at Ser28 stabilizes the <i>Arabidopsis</i> nitrate transporter NRT2.1 in response to nitrate limitation. Journal of Integrative Plant Biology, 2020, 62, 865-876.	8.5	22

Wei-Hua Wu

#	Article	IF	CITATIONS
37	The K ⁺ channel <scp>KZM</scp> 2 is involved in stomatal movement by modulating inward K ⁺ currents in maize guard cells. Plant Journal, 2017, 92, 662-675.	5.7	21
38	CALCIUM-DEPENDENT PROTEIN KINASE 32-mediated phosphorylation is essential for the ammonium transport activity of AMT1;1 in Arabidopsis roots. Journal of Experimental Botany, 2020, 71, 5087-5097.	4.8	21
39	The Shenzhen Declaration on Plant Sciences—Uniting plant sciences and society to build a green, sustainable Earth. Journal of Systematics and Evolution, 2017, 55, 415-416.	3.1	20
40	The Shenzhen declaration on plant sciences—Uniting plant sciences and society to build a green, sustainable Earth. Plants People Planet, 2019, 1, 59-61.	3.3	12
41	STOP1 Regulates LKS1 Transcription and Coordinates K+/NH4+ Balance in Arabidopsis Response to Low-K+ Stress. International Journal of Molecular Sciences, 2022, 23, 383.	4.1	8
42	Electrophysiological Identification and Activity Analyses of Plasma Membrane K+ Channels in Maize Guard Cells. Plant and Cell Physiology, 2019, 60, 765-777.	3.1	6
43	The Shenzhen Declaration on Plant Sciences. Taxon, 2017, 66, 1261-1262.	0.7	1