
Masahiro Fujita

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2702293/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	G-Quadruplex-Functionalized Gold Nanoparticles for a Real-Time Biomolecule Sensor with On-Demand Tunable Properties. Langmuir, 2022, 38, 4870-4878.	3.5	4
2	Electrochemical Impedimetric Study of Non-Watson–Crick Base Pairs of DNA. Analytical Sciences, 2021, 37, 765-771.	1.6	1
3	A nanobiosensor for the simple detection of small molecules using non-crosslinking aggregation of gold nanoparticles with G-quadruplexes. Analytical Methods, 2020, 12, 230-238.	2.7	5
4	Effects of Complementary DNA and Salt on the Thermoresponsiveness of Poly(<i>N</i> -isopropylacrylamide)- <i>b</i> -DNA. Langmuir, 2016, 32, 1148-1154.	3.5	17
5	Core–Shell Structure, Biodegradation, and Drug Release Behavior of Poly(lactic acid)/Poly(ethylene) Tj ETQq1 1 1527-1536.	0.784314 3.5	rgBT /Over 112
6	Detection of DNA induced gold nanoparticle aggregation with dark field imaging. Chemical Communications, 2013, 49, 7531.	4.1	35
7	Self-association of zwitterionic polymer–lipid conjugates in water as examined by scattering measurements. Journal of Colloid and Interface Science, 2013, 390, 47-53.	9.4	5
8	DNA Terminal Mismatchâ€Induced Stabilization of Polymer Micelles from RAFTâ€Generated Poly(<i>N</i> â€Isopropylacrylamide)â€DNA Block Copolymers. Chemistry - an Asian Journal, 2013, 8, 3079-3084.	3.3	21
9	DNA Terminal Breathing Regulated by Metal Ions for Colloidal Logic Gates. Chemistry - A European Journal, 2013, 19, 10794-10798.	3.3	31
10	Thermoresponsive Micellization and Micellar Stability of Poly(<i>N</i> -isopropylacrylamide)- <i>b</i> -DNA Diblock and Miktoarm Star Polymers. Langmuir, 2012, 28, 14347-14356.	3.5	36
11	Structural study on gold nanoparticle functionalized with DNA and its non-cross-linking aggregation. Journal of Colloid and Interface Science, 2012, 368, 629-635.	9.4	41
12	Structural characterization of nanoparticles from thermoresponsive poly(N-isopropylacrylamide)-DNA conjugate. Journal of Colloid and Interface Science, 2012, 374, 315-320.	9.4	15
13	Palladium(II)-exchanged hydroxyapatite-catalyzed Suzuki–Miyaura-type cross-coupling reactions with potassium aryltrifluoroborates. Journal of Molecular Catalysis A, 2012, 352, 81-85.	4.8	19
14	DNA-functionalized thermoresponsive bioconjugates synthesized via ATRP and click chemistry. Polymer, 2011, 52, 895-900.	3.8	42
15	DNA-grafted-polymer mediated self-assembly of micro components. , 2010, , .		1
16	Degradation and Adsorption Characteristics of PHB Depolymerase As Revealed by Kinetics of Mutant Enzymes with Amino Acid Substitution in Substrate-Binding Domain. Biomacromolecules, 2010, 11, 113-119.	5.4	30
17	Scaffolds from electrospun polyhydroxyalkanoate copolymers: Fabrication, characterization, bioabsorption and tissue response. Biomaterials, 2008, 29, 1307-1317.	11.4	144
18	Stereocomplex Formation through Reorganization of Poly(<scp>l</scp> -lactic acid) and Poly(<scp>d</scp> -lactic acid) Crystals. Macromolecules, 2008, 41, 2852-2858.	4.8	105

Masahiro Fujita

#	Article	IF	CITATIONS
19	Adsorption Characteristics of P(3HB) Depolymerase as Evaluated by Surface Plasmon Resonance and Atomic Force Microscopy. Biomacromolecules, 2008, 9, 3201-3207.	5.4	10
20	Dynamic Structural Analysis of Biodegradable Polyester Crystals by Synchrotron Radiation X-ray. Nippon Gomu Kyokaishi, 2008, 81, 23-28.	0.0	0
21	Adsorption and Hydrolysis Reactions of Poly(hydroxybutyric acid) Depolymerases Secreted fromRalstoniapickettiiT1 andPenicilliumfuniculosumonto Poly[(R)-3-hydroxybutyric acid]. Biomacromolecules, 2007, 8, 2276-2281.	5.4	21
22	Structural Transition of Poly[(R)-3-hydroxybutyrate-co-(R)-3- hydroxyvalerate] Single Crystals on Heating As Revealed by Synchrotron Radiation SAXS and WAXD. Macromolecules, 2007, 40, 2392-2399.	4.8	20
23	Realâ€Time Observations of Oriented Crystallization of Poly(<i>ε</i> â€caprolactone) Thin Film, Induced by an AFM Tip. Macromolecular Chemistry and Physics, 2007, 208, 1862-1870.	2.2	12
24	Adsorption effects of poly(hydroxybutyric acid) depolymerase on chain-folding surface of polyester single crystals revealed by mutant enzyme and frictional force microscopy. Polymer Degradation and Stability, 2007, 92, 176-183.	5.8	11
25	Formation of Highly Ordered Structure in Poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyvalerate] High-Strength Fibers. Macromolecules, 2006, 39, 2940-2946.	4.8	94
26	Real-Time Synchrotron SAXS and WAXD Studies on Annealing Behavior of Poly[(R)-3-hydroxybutyrate] Single Crystals. Macromolecules, 2006, 39, 2201-2208.	4.8	27
27	Microbeam X-ray Diffraction and Enzymatic Degradation of Poly[(R)-3-hydroxybutyrate] Fibers with Two Kinds of Molecular Conformations. Macromolecules, 2006, 39, 5789-5795.	4.8	78
28	Synchrotron SAXS and WAXS Studies on Changes in Structural and Thermal Properties of Poly[(R)-3-hydroxybutyrate] Single Crystals during Heating. Macromolecular Rapid Communications, 2005, 26, 678-683.	3.9	24
29	Structure investigation of narrow banded spherulites in polyhydroxyalkanoates by microbeam X-ray diffraction with synchrotron radiation. Polymer, 2005, 46, 5673-5679.	3.8	43
30	Interaction between Poly[(R)-3-hydroxybutyrate] Depolymerase and Biodegradable Polyesters Evaluated by Atomic Force Microscopy. Langmuir, 2005, 21, 11829-11835.	3.5	20
31	Atomic Force Microscopic Observation of in Vitro Polymerized Poly[(R)-3-hydroxybutyrate]: Insight into Possible Mechanism of Granule Formation. Biomacromolecules, 2005, 6, 2671-2677.	5.4	21
32	Time-Resolved X-ray Diffraction Study on Poly[(R)-3-hydroxybutyrate] Films during Two-Step-Drawing:Â Generation Mechanism of Planar Zigzag Structureâ€. Biomacromolecules, 2005, 6, 1803-1809.	5.4	62
33	Processing of a Strong Biodegradable Poly[(R)-3-hydroxybutyrate] Fiber and a New Fiber Structure Revealed by Micro-Beam X-Ray Diffraction with Synchrotron Radiation. Macromolecular Rapid Communications, 2004, 25, 1100-1104.	3.9	111
34	Direct Observation of Poly(3-hydroxybutyrate) Depolymerase Adsorbed on Polyester Thin Film by Atomic Force Microscopy. Biomacromolecules, 2004, 5, 1642-1646.	5.4	22
35	Morphology and Enzymatic Degradation of Oriented Thin Film of Ultrahigh Molecular Weight Poly[(R)-3-hydroxybutyrate]. Biomacromolecules, 2004, 5, 1787-1791.	5.4	10
36	Effect of Water on the Surface Molecular Mobility of Poly(lactide) Thin Films:Â An Atomic Force Microscopy Study. Biomacromolecules, 2004, 5, 1187-1193.	5.4	38

Masahiro Fujita

#	ARTICLE	IF	CITATIONS
37	Crystal Growth in Poly(L-lactide) Thin Film Revealed by in situ Atomic Force Microscopy. Macromolecular Chemistry and Physics, 2003, 204, 1822-1831.	2.2	62
38	In situ observation of heterogeneous melting of poly[(R)-3-hydroxybutyrate] single crystals by temperature-controlled atomic force microscopy. Polymer Degradation and Stability, 2003, 81, 131-139.	5.8	17
39	Annealing and Melting Behavior of Poly(l-lactic acid) Single Crystals as Revealed by In Situ Atomic Force Microscopy. Biomacromolecules, 2003, 4, 1301-1307.	5.4	57
40	Nanoparticles of Amorphous Ruthenium Sulfide Easily Obtainable from a TiO2-Supported Hexanuclear Cluster Complex [Ru6C(CO)16]2â^': A Highly Active Catalyst for the Reduction of SO2 with H2. Chemistry - A European Journal, 2002, 8, 3260.	3.3	19
41	Perfectly alternating ethylene–carbon monoxide copolymer crystallized epitaxially on alkali halides. 2. Energy calculation. Polymer, 2002, 43, 7307-7313.	3.8	Ο
42	Solution-Grown Single Crystals of Perfectly Alternating Ethyleneâ^'Carbon Monoxide Copolymer. Macromolecules, 2001, 34, 6147-6151.	4.8	4
43	Perfectly Alternating Ethyleneâ^'Carbon Monoxide Copolymer Crystallized Epitaxially on Alkali Halides. 3. Lamellar and Crystalline Core Thicknesses. Macromolecules, 2001, 34, 7724-7729.	4.8	7
44	Fine Structures of Curved Edge-On Lamellae in Crystalline Thin Films of Isotactic Polystyrene As Revealed by Transmission Electron Microscopy. Macromolecules, 2001, 34, 4827-4833.	4.8	9
45	Morphology of melt-crystallized poly(ethylene 2,6-naphthalate) thin films studied by transmission electron microscopy. Journal of Materials Research, 1999, 14, 251-258.	2.6	18
46	A TEM study on polyoxymethylene edge-on lamellae crystallized epitaxially on alkali halides. Polymer, 1999, 40, 2829-2836.	3.8	11
47	Perfectly Alternating Ethyleneâ^Carbon Monoxide Copolymer Crystallized Epitaxially on Alkali Halides. 1. Morphological Observation by TEM. Macromolecules, 1999, 32, 4383-4389.	4.8	4
48	Visualized Polymers. Patterns Formed by Polymeric Systems. II. Morphology of Polymer Crystals Grown from Solutions Epitaxially on Alkali Halides Kobunshi Ronbunshu, 1999, 56, 786-796.	0.2	5
49	A tem study on polyoxymethylene rodlike crystals grown epitaxially on NaCl. Journal of Macromolecular Science - Physics, 1997, 36, 681-687.	1.0	5
50	Correlation between the Crystallite Modulus along Chain Axis and the Durability of Crystallinity against Electron Irradiation for Polymers. Nihon Reoroji Gakkaishi, 1997, 25, 235-238.	1.0	5