Haitao Cui

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2701849/publications.pdf

Version: 2024-02-01

		76326	182427
52	4,565	40	51
papers	citations	h-index	g-index
53	53	53	5705
J.J	<i>J J</i>	J.J.	3703
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Emerging 4D Printing Strategies for Nextâ€Generation Tissue Regeneration and Medical Devices. Advanced Materials, 2022, 34, e2109198.	21.0	57
2	An in vitro analysis of the effect of geometry-induced flows on endothelial cell behavior in 3D printed small-diameter blood vessels., 2022, 137, 212832.		9
3	4D Printed Cardiac Construct with Aligned Myofibers and Adjustable Curvature for Myocardial Regeneration. ACS Applied Materials & Samp; Interfaces, 2021, 13, 12746-12758.	8.0	82
4	4D printing in biomedical applications: emerging trends and technologies. Journal of Materials Chemistry B, 2021, 9, 7608-7632.	5.8	65
5	Dual 3D printing for vascularized bone tissue regeneration. Acta Biomaterialia, 2021, 123, 263-274.	8.3	53
6	Recent advances in bioprinting technologies for engineering cardiac tissue. Materials Science and Engineering C, 2021, 124, 112057.	7.3	35
7	<i>In vitro</i> and <i>in vivo</i> evaluation of 3D bioprinted small-diameter vasculature with smooth muscle and endothelium. Biofabrication, 2020, 12, 015004.	7.1	90
8	Touch-Spun Nanofibers for Nerve Regeneration. ACS Applied Materials & Samp; Interfaces, 2020, 12, 2067-2075.	8.0	27
9	Engineering a Novel 3D Printed Vascularized Tissue Model for Investigating Breast Cancer Metastasis to Bone. Advanced Healthcare Materials, 2020, 9, e1900924.	7.6	45
10	3D Bioprinting-Tunable Small-Diameter Blood Vessels with Biomimetic Biphasic Cell Layers. ACS Applied Materials & Samp; Interfaces, 2020, 12, 45904-45915.	8.0	70
11	4D printing soft robotics for biomedical applications. Additive Manufacturing, 2020, 36, 101567.	3.0	73
12	Programmable Culture Substrates: 4D Selfâ€Morphing Culture Substrate for Modulating Cell Differentiation (Adv. Sci. 5/2020). Advanced Science, 2020, 7, 2070034.	11.2	2
13	Three-Dimensional Printing Biologically Inspired DNA-Based Gradient Scaffolds for Cartilage Tissue Regeneration. ACS Applied Materials & Samp; Interfaces, 2020, 12, 33219-33228.	8.0	57
14	4D physiologically adaptable cardiac patch: A 4-month in vivo study for the treatment of myocardial infarction. Science Advances, 2020, 6, eabb5067.	10.3	118
15	4D Selfâ€Morphing Culture Substrate for Modulating Cell Differentiation. Advanced Science, 2020, 7, 1902403.	11.2	46
16	Integrating cold atmospheric plasma with 3D printed bioactive nanocomposite scaffold for cartilage regeneration. Materials Science and Engineering C, 2020, 111, 110844.	7.3	22
17	Advanced 4D-bioprinting technologies for brain tissue modeling and study. International Journal of Smart and Nano Materials, 2019, 10, 177-204.	4.2	40
18	Integration of biological systems with electronic-mechanical assemblies. Acta Biomaterialia, 2019, 95, 91-111.	8.3	23

#	Article	IF	Citations
19	3D Printed scaffolds with hierarchical biomimetic structure for osteochondral regeneration. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 19, 58-70.	3.3	49
20	4D anisotropic skeletal muscle tissue constructs fabricated by staircase effect strategy. Biofabrication, 2019, 11, 035030.	7.1	40
21	A novel near-infrared light responsive 4D printed nanoarchitecture with dynamically and remotely controllable transformation. Nano Research, 2019, 12, 1381-1388.	10.4	82
22	Recent advances in 3D printing: vascular network for tissue and organ regeneration. Translational Research, 2019, 211, 46-63.	5.0	92
23	Three-Dimensional-Bioprinted Dopamine-Based Matrix for Promoting Neural Regeneration. ACS Applied Materials & Samp; Interfaces, 2018, 10, 8993-9001.	8.0	97
24	Photolithographic-stereolithographic-tandem fabrication of 4D smart scaffolds for improved stem cell cardiomyogenic differentiation. Biofabrication, 2018, 10, 035007.	7.1	92
25	3D bioprinting mesenchymal stem cell-laden construct with core–shell nanospheres for cartilage tissue engineering. Nanotechnology, 2018, 29, 185101.	2.6	134
26	3D bioprinting for cardiovascular regeneration and pharmacology. Advanced Drug Delivery Reviews, 2018, 132, 252-269.	13.7	115
27	Stereolithographic 4D Bioprinting of Multiresponsive Architectures for Neural Engineering. Advanced Biology, 2018, 2, 1800101.	3.0	114
28	Enhanced neural stem cell functions in conductive annealed carbon nanofibrous scaffolds with electrical stimulation. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 2485-2494.	3.3	89
29	3D bioprinted graphene oxide-incorporated matrix for promoting chondrogenic differentiation of human bone marrow mesenchymal stem cells. Carbon, 2017, 116, 615-624.	10.3	145
30	3D Bioprinting for Organ Regeneration. Advanced Healthcare Materials, 2017, 6, 1601118.	7.6	385
31	The Strong Cell-based Hydrogen Peroxide Generation Triggered by Cold Atmospheric Plasma. Scientific Reports, 2017, 7, 10831.	3.3	56
32	4D printing of polymeric materials for tissue and organ regeneration. Materials Today, 2017, 20, 577-591.	14.2	292
33	The Specific Vulnerabilities of Cancer Cells to the Cold Atmospheric Plasma-Stimulated Solutions. Scientific Reports, 2017, 7, 4479.	3.3	83
34	Modulation of Osteogenesis in MC3T3-E1 Cells by Different Frequency Electrical Stimulation. PLoS ONE, 2016, 11, e0154924.	2.5	36
35	A 3D printed nano bone matrix for characterization of breast cancer cell and osteoblast interactions. Nanotechnology, 2016, 27, 315103.	2.6	62
36	Biologically Inspired Smart Release System Based on 3D Bioprinted Perfused Scaffold for Vascularized Tissue Regeneration. Advanced Science, 2016, 3, 1600058.	11.2	116

#	Article	IF	CITATIONS
37	3D Bioprinting: Biologically Inspired Smart Release System Based on 3D Bioprinted Perfused Scaffold for Vascularized Tissue Regeneration (Adv. Sci. 8/2016). Advanced Science, 2016, 3, .	11.2	O
38	Hierarchical Fabrication of Engineered Vascularized Bone Biphasic Constructs via Dual 3D Bioprinting: Integrating Regional Bioactive Factors into Architectural Design. Advanced Healthcare Materials, 2016, 5, 2174-2181.	7.6	153
39	4D printing smart biomedical scaffolds with novel soybean oil epoxidized acrylate. Scientific Reports, 2016, 6, 27226.	3.3	296
40	Injectable Polypeptide Hydrogels with Tunable Microenvironment for 3D Spreading and Chondrogenic Differentiation of Bone-Marrow-Derived Mesenchymal Stem Cells. Biomacromolecules, 2016, 17, 3862-3871.	5.4	58
41	Improved Human Bone Marrow Mesenchymal Stem Cell Osteogenesis in 3D Bioprinted Tissue Scaffolds with Low Intensity Pulsed Ultrasound Stimulation. Scientific Reports, 2016, 6, 32876.	3.3	99
42	3D Bioprinting a Cell-Laden Bone Matrix for Breast Cancer Metastasis Study. ACS Applied Materials & Samp; Interfaces, 2016, 8, 30017-30026.	8.0	234
43	High performance and reversible ionic polypeptide hydrogel based on charge-driven assembly for biomedical applications. Acta Biomaterialia, 2015, 11, 183-190.	8.3	58
44	Electrospinning of aniline pentamer-graft-gelatin/PLLA nanofibers for bone tissue engineering. Acta Biomaterialia, 2014, 10, 5074-5080.	8.3	89
45	In Situ Electroactive and Antioxidant Supramolecular Hydrogel Based on Cyclodextrin/ <scp>C</scp> opolymer Inclusion for Tissue Engineering Repair. Macromolecular Bioscience, 2014, 14, 440-450.	4.1	78
46	In Vitro Studies on Regulation of Osteogenic Activities by Electrical Stimulus on Biodegradable Electroactive Polyelectrolyte Multilayers. Biomacromolecules, 2014, 15, 3146-3157.	5.4	70
47	In Vitro Study of Electroactive Tetraaniline-Containing Thermosensitive Hydrogels for Cardiac Tissue Engineering. Biomacromolecules, 2014, 15, 1115-1123.	5.4	97
48	Nanoâ€hydroxyapatite Surfaces Grafted with Electroactive Aniline Tetramers for Boneâ€Tissue Engineering. Macromolecular Bioscience, 2013, 13, 356-365.	4.1	38
49	Versatile Biofunctionalization of Polypeptide-Based Thermosensitive Hydrogels via Click Chemistry. Biomacromolecules, 2013, 14, 468-475.	5.4	61
50	PLA-PEG-PLA and Its Electroactive Tetraaniline Copolymer as Multi-interactive Injectable Hydrogels for Tissue Engineering. Biomacromolecules, 2013, 14, 1904-1912.	5 . 4	100
51	Synthesis of Biodegradable and Electroactive Tetraaniline Grafted Poly(ester amide) Copolymers for Bone Tissue Engineering. Biomacromolecules, 2012, 13, 2881-2889.	5.4	106
52	An amperometric biosensor fabricated from electro-co-deposition of sodium alginate and horseradish peroxidase. Journal of Molecular Catalysis B: Enzymatic, 2009, 60, 151-156.	1.8	31