Qing-Duan Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2701836/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Vertical Composition Distribution and Crystallinity Regulations Enable High-Performance Polymer Solar Cells with >17% Efficiency. ACS Energy Letters, 2020, 5, 3637-3646.	17.4	87
2	Highly Conductive PEDOT:PSS Transparent Hole Transporting Layer with Solvent Treatment for High Performance Silicon/Organic Hybrid Solar Cells. Nanoscale Research Letters, 2017, 12, 506.	5.7	51
3	Understanding of Imine Substitution in Wide-Bandgap Polymer Donor-Induced Efficiency Enhancement in All-Polymer Solar Cells. Chemistry of Materials, 2019, 31, 8533-8542.	6.7	49
4	Impact of Donor–Acceptor Interaction and Solvent Additive on the Vertical Composition Distribution of Bulk Heterojunction Polymer Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 45979-45990.	8.0	40
5	Design and synthesis of star-burst triphenyamine-based π-conjugated molecules. Dyes and Pigments, 2015, 113, 1-7.	3.7	35
6	Bithieno[3,4-c]pyrrole-4,6-dione-Mediated Crystallinity in Large-Bandgap Polymer Donors Directs Charge Transportation and Recombination in Efficient Nonfullerene Polymer Solar Cells. ACS Energy Letters, 2020, 5, 367-375.	17.4	33
7	Indacenodithiophene core-based small molecules with tunable side chains for solution-processed bulk heterojunction solar cells. Journal of Materials Chemistry A, 2014, 2, 4004.	10.3	32
8	Conducting polymer-coated MIL-101/S composite with scale-like shell structure for improving Li–S batteries. RSC Advances, 2018, 8, 4786-4793.	3.6	28
9	Quantitative Determination of the Vertical Segregation and Molecular Ordering of PBDB-T/ITIC Blend Films with Solvent Additives. ACS Applied Materials & Interfaces, 2020, 12, 24165-24173.	8.0	21
10	Synergistic Effects of Polymer Donor Backbone Fluorination and Nitrogenation Translate into Efficient Non-Fullerene Bulk-Heterojunction Polymer Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 9545-9554.	8.0	19
11	Superior layer-by-layer deposition realizing P–i–N all-polymer solar cells with efficiency over 16% and fill factor over 77%. Journal of Materials Chemistry A, 2022, 10, 10880-10891.	10.3	18
12	Solution processed black phosphorus quantum dots for high performance silicon/organic hybrid solar cells. Materials Letters, 2018, 217, 92-95.	2.6	14
13	Shorter alkyl chain in thieno[3,4-c]pyrrole-4,6-dione (TPD)-based large bandgap polymer donors – Yield efficient non-fullerene polymer solar cells. Journal of Energy Chemistry, 2021, 53, 69-76.	12.9	10
14	High Performance Silicon/Organic Hybrid Solar Cells with Dual Localized Surface Plasmonic Effects of Ag and Au Nanoparticles. Solar Rrl, 2018, 2, 1800028.	5.8	8
15	Acrylate-Substituted Thiadiazoloquinoxaline Yields Ultralow Band Gap (0.56 eV) Conjugated Polymers for Efficient Photoacoustic Imaging. ACS Applied Polymer Materials, 2021, 3, 3247-3253.	4.4	8
16	Vertical Distribution in Inverted Nonfullerene Polymer Solar Cells by Layerâ€by‣ayer Solution Fabrication Process. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2100386.	2.4	8
17	Pronounced Dependence of Allâ€Polymer Solar Cells Photovoltaic Performance on the Alkyl Substituent Patterns in Large Bandgap Polymer Donors. ChemPhysChem, 2020, 21, 908-915. 	2.1	7
18	A New Esterâ€Substituted Quinoxalineâ€Based Narrow Bandgap Polymer Donor for Organic Solar Cells. Macromolecular Rapid Communications, 2021, 42, e2000683.	3.9	7

Qing-Duan Li

#	Article	IF	CITATIONS
19	Efficient Small-Molecule-Based Inverted Organic Solar Cells With Conjugated Polyelectrolyte as a Cathode Interlayer. IEEE Journal of Photovoltaics, 2015, 5, 1118-1124.	2.5	5
20	The alkyl chain positioning of thieno[3,4-c]pyrrole-4,6-dione (TPD)-Based polymer donors mediates the energy loss, charge transport and recombination in polymer solar cells. Journal of Power Sources, 2020, 480, 229098.	7.8	4
21	Compatible Acceptors Mediate Morphology and Charge Generation, Transpration, Extraction, and Energy Loss in Efficient Ternary Polymer Solar Cells. ACS Applied Energy Materials, 2021, 4, 10187-10196.	5.1	4
22	Novel narrow bandgap polymer donors based on ester-substituted quinoxaline unit for organic photovoltaic application. Solar Energy, 2021, 220, 425-431.	6.1	2
23	Influence of fullerene-based acceptor materials on the performance of indacenodithiophene-cored small molecule bulk heterojunction organic solar cells. Journal of Materials Science: Materials in Electronics, 2017, 28, 5006-5013.	2.2	1