Henk Hoekstra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2701713/publications.pdf

Version: 2024-02-01

281 papers

25,488 citations

4388 86 h-index 7518 151 g-index

283 all docs

283 docs citations

times ranked

283

7699 citing authors

#	Article	IF	CITATIONS
1	Limited need for screening of metal-on-metal hip resurfacing patients beyond 10 years of follow-up. HIP International, 2022, 32, 106-112.	1.7	2
2	<i>Euclid</i> preparation. Astronomy and Astrophysics, 2022, 657, A91.	5.1	21
3	<i>Euclid</i> : Constraining ensemble photometric redshift distributions with stacked spectroscopy. Astronomy and Astrophysics, 2022, 660, A9.	5.1	2
4	The dark matter halo masses of elliptical galaxies as a function of observationally robust quantities. Astronomy and Astrophysics, 2022, 662, A55.	5.1	2
5	<i>Euclid</i> : Covariance of weak lensing pseudo- <i>C</i> _{<i>â,,"</i>} estimates. Astronomy and Astrophysics, 2022, 660, A114.	5.1	2
6	<i>Euclid</i> preparation. Astronomy and Astrophysics, 2022, 662, A112.	5.1	106
7	Why are we still using 3D masses for cluster cosmology?. Monthly Notices of the Royal Astronomical Society, 2022, 515, 3383-3405.	4.4	6
8	The PAU survey: measurements of the 4000 \tilde{A} spectral break with narrow-band photometry. Monthly Notices of the Royal Astronomical Society, 2022, 515, 146-166.	4.4	5
9	The PAU Survey: an improved photo- <i>z</i> sample in the COSMOS field. Monthly Notices of the Royal Astronomical Society, 2021, 501, 6103-6122.	4.4	35
10	KiDS-1000 cosmology: Cosmic shear constraints and comparison between two point statistics. Astronomy and Astrophysics, 2021, 645, A104.	5.1	339
11	KiDS+VIKING-450: An internal-consistency test for cosmic shear tomography with a colour-based split of source galaxies. Astronomy and Astrophysics, 2021, 646, A175.	5.1	2
12	Tightening weak lensing constraints on the ellipticity of galaxy-scale dark matter haloes. Astronomy and Astrophysics, 2021, 646, A73.	5.1	9
13	KiDS-1000 Cosmology: Multi-probe weak gravitational lensing and spectroscopic galaxy clustering constraints. Astronomy and Astrophysics, 2021, 646, A140.	5.1	393
14	The PAU Survey: Intrinsic alignments and clustering of narrow-band photometric galaxies. Astronomy and Astrophysics, 2021, 646, A147.	5.1	11
15	Accounting for object detection bias in weak gravitational lensing studies. Astronomy and Astrophysics, 2021, 646, A124.	5.1	7
16	KiDS-1000 methodology: Modelling and inference for joint weak gravitational lensing and spectroscopic galaxy clustering analysis. Astronomy and Astrophysics, 2021, 646, A129.	5.1	82
17	The PAU Survey: narrow-band photometric redshifts using Gaussian processes. Monthly Notices of the Royal Astronomical Society, 2021, 503, 4118-4135.	4.4	12
18	Halo shapes constrained from a pure sample of central galaxies in KiDS-1000. Astronomy and Astrophysics, 2021, 647, A185.	5.1	3

#	Article	IF	CITATIONS
19	Organised randoms: Learning and correcting for systematic galaxy clustering patterns in KiDS using self-organising maps. Astronomy and Astrophysics, 2021, 648, A98.	5.1	9
20	The stellar mass function and evolution of the density profile of galaxy clusters from the Hydrangea simulations at 0 & amp;lt; <i>z</i> & amp;lt; 1.5. Monthly Notices of the Royal Astronomical Society, 2021, 504, 1999-2013.	4.4	10
21	The HST See Change Program. I. Survey Design, Pipeline, and Supernova Discoveries*. Astrophysical Journal, 2021, 912, 87.	4.5	8
22	How baryons can significantly bias cluster count cosmology. Monthly Notices of the Royal Astronomical Society, 2021, 505, 593-609.	4.4	23
23	<i>Euclid</i> : Impact of non-linear and baryonic feedback prescriptions on cosmological parameter estimation from weak lensing cosmic shear. Astronomy and Astrophysics, 2021, 649, A100.	5.1	29
24	KiDS-1000 Cosmology: Constraints beyond flat Î>CDM. Astronomy and Astrophysics, 2021, 649, A88.	5.1	80
25	Strong detection of the CMB lensing and galaxy weak lensing cross-correlation from ACT-DR4, <i>Planck</i> Legacy, and KiDS-1000. Astronomy and Astrophysics, 2021, 649, A146.	5.1	26
26	The mass–size relation of galaxy clusters. Monthly Notices of the Royal Astronomical Society, 2021, 505, 2932-2940.	4.4	6
27	Mass calibration of distant SPT galaxy clusters through expanded weak-lensing follow-up observations with <i>HST</i> , VLT, & Gemini-South. Monthly Notices of the Royal Astronomical Society, 2021, 505, 3923-3943.	4.4	14
28	The weak lensing radial acceleration relation: Constraining modified gravity and cold dark matter theories with KiDS-1000. Astronomy and Astrophysics, 2021, 650, A113.	5.1	38
29	Euclid Preparation. XIV. The Complete Calibration of the Color–Redshift Relation (C3R2) Survey: Data Release 3. Astrophysical Journal, Supplement Series, 2021, 256, 9.	7.7	11
30	KiDS-1000: Constraints on the intrinsic alignment of luminous red galaxies. Astronomy and Astrophysics, 2021, 654, A76.	5.1	14
31	Bright galaxy sample in the Kilo-Degree Survey Data Release 4. Astronomy and Astrophysics, 2021, 653, A82.	5.1	22
32	Mitigating the effects of undersampling in weak lensing shear estimation with metacalibration. Monthly Notices of the Royal Astronomical Society, 2021, 502, 4048-4063.	4.4	11
33	KiDS-1000 catalogue: Weak gravitational lensing shear measurements. Astronomy and Astrophysics, 2021, 645, A105.	5.1	85
34	The halo model as a versatile tool to predict intrinsic alignments. Monthly Notices of the Royal Astronomical Society, 2021, 501, 2983-3002.	4.4	54
35	A fully data-driven algorithm for accurate shear estimation. Astronomy and Astrophysics, 2021, 656, A135.	5.1	3
36	CCCP and MENeaCS: (updated) weak-lensing masses for 100 galaxy clusters. Monthly Notices of the Royal Astronomical Society, 2020, 497, 4684-4703.	4.4	36

3

#	Article	IF	CITATIONS
37	Dynamical masses of brightest cluster galaxies I: stellar velocity anisotropy and mass-to-light ratios. Monthly Notices of the Royal Astronomical Society, 2020, 496, 1857-1880.	4.4	11
38	GAMAÂ+ÂKiDS: empirical correlations between halo mass and other galaxy properties near the knee of the stellar-to-halo mass relation. Monthly Notices of the Royal Astronomical Society, 2020, 499, 2896-2911.	4.4	17
39	The PAU Survey: Photometric redshifts using transfer learning from simulations. Monthly Notices of the Royal Astronomical Society, 2020, 497, 4565-4579.	4.4	20
40	KiDS+VIKING-450 and DES-Y1 combined: Cosmology with cosmic shear. Astronomy and Astrophysics, 2020, 638, L1.	5.1	127
41	Dynamical masses of brightest cluster galaxies – II. Constraints on the stellar IMF. Monthly Notices of the Royal Astronomical Society, 2020, 500, 4153-4165.	4.4	6
42	<i>Euclid</i> preparation. Astronomy and Astrophysics, 2020, 635, A139.	5.1	15
43	KiDS+VIKING-450: Cosmic shear tomography with optical and infrared data. Astronomy and Astrophysics, 2020, 633, A69.	5.1	246
44	The impact of the observed baryon distribution in haloes on the total matter power spectrum. Monthly Notices of the Royal Astronomical Society, 2020, 492, 2285-2307.	4.4	44
45	The PAU Survey: background light estimation with deep learning techniques. Monthly Notices of the Royal Astronomical Society, 2020, 491, 5392-5405.	4.4	8
46	<i>Euclid</i> : The reduced shear approximation and magnification bias for Stage IV cosmic shear experiments. Astronomy and Astrophysics, 2020, 636, A95.	5.1	20
47	Constraining the masses of high-redshift clusters with weak lensing: Revised shape calibration testing for the impact of stronger shears and increased blending. Astronomy and Astrophysics, 2020, 640, A117.	5.1	7
48	<i>Euclid</i> preparation. Astronomy and Astrophysics, 2020, 642, A191.	5.1	194
49	<i>Euclid</i> : The importance of galaxy clustering and weak lensing cross-correlations within the photometric <i>Euclid</i> survey. Astronomy and Astrophysics, 2020, 643, A70.	5.1	24
50	<i>Euclid</i> preparation. Astronomy and Astrophysics, 2020, 642, A192.	5.1	15
51	KiDS+GAMA: The weak lensing calibrated stellar-to-halo mass relation of central and satellite galaxies. Astronomy and Astrophysics, 2020, 642, A83.	5.1	10
52	Euclid preparation. Astronomy and Astrophysics, 2020, 638, C2.	5.1	1
53	Optical follow-up study of 32 high-redshift galaxy cluster candidates from Planck with the William Herschel Telescope. Monthly Notices of the Royal Astronomical Society, 2019, 488, 2523-2542.	4.4	7
54	Luminous red galaxies in the Kilo-Degree Survey: selection with broad-band photometry and weak lensing measurements. Monthly Notices of the Royal Astronomical Society, 2019, 487, 3715-3733.	4.4	12

#	Article	IF	Citations
55	<i>Euclid</i> preparation. Astronomy and Astrophysics, 2019, 627, A59.	5.1	31
56	<i>Euclid</i> preparation. Astronomy and Astrophysics, 2019, 631, A85.	5.1	40
57	The fourth data release of the Kilo-Degree Survey: <i>ugri</i> imaging and nine-band optical-IR photometry over 1000 square degrees. Astronomy and Astrophysics, 2019, 625, A2.	5.1	186
58	Spectroscopic Confirmation of Five Galaxy Clusters at zÂ>Â1.25 in the 2500 deg ² SPT-SZ Survey. Astrophysical Journal, 2019, 870, 7.	4.5	18
59	Cluster Cosmology Constraints from the 2500 deg ² SPT-SZ Survey: Inclusion of Weak Gravitational Lensing Data from Magellan and the Hubble Space Telescope. Astrophysical Journal, 2019, 878, 55.	4.5	211
60	Ultra-steep spectrum emission in the merging galaxy cluster Abell 1914. Astronomy and Astrophysics, 2019, 622, A22.	5.1	21
61	The dependence of intrinsic alignment of galaxies on wavelength using KiDS and GAMA. Astronomy and Astrophysics, 2019, 622, A90.	5.1	18
62	KiDS+GAMA: Intrinsic alignment model constraints for current and future weak lensing cosmology. Astronomy and Astrophysics, 2019, 624, A30.	5.1	60
63	Disruption of satellite galaxies in simulated groups and clusters: the roles of accretion time, baryons, and pre-processing. Monthly Notices of the Royal Astronomical Society, 2019, 485, 2287-2311.	4.4	47
64	Weak lensing constraints on splashback around massive clusters. Monthly Notices of the Royal Astronomical Society, 2019, 485, 408-415.	4.4	30
65	Sunyaev–Zel'dovich effect and X-ray scaling relations from weak lensing mass calibration of 32 South Pole Telescope selected galaxy clusters. Monthly Notices of the Royal Astronomical Society, 2019, 483, 2871-2906.	4.4	60
66	Rainbow cosmic shear: Optimization of tomographic bins. Physical Review D, 2019, 99, .	4.7	7
67	The PAU Survey: early demonstration of photometric redshift performance in the COSMOS field. Monthly Notices of the Royal Astronomical Society, 2019, 484, 4200-4215.	4.4	46
68	<i>Euclid</i> preparation. Astronomy and Astrophysics, 2019, 627, A23.	5.1	51
69	Towards emulating cosmic shear data: revisiting the calibration of the shear measurements for the Kilo-Degree Survey. Astronomy and Astrophysics, 2019, 624, A92.	5.1	72
70	The case for two-dimensional galaxy–galaxy lensing. Astronomy and Astrophysics, 2019, 627, A74.	5.1	4
71	GAMA+KiDS: Alignment of galaxies in galaxy groups and its dependence on galaxy scale. Astronomy and Astrophysics, 2019, 628, A31.	5.1	23
72	The PAU survey: star–galaxy classification with multi narrow-band data. Monthly Notices of the Royal Astronomical Society, 2019, 483, 529-539.	4.4	19

#	Article	IF	Citations
73	Propagating Residual Biases in Cosmic Shear Power Spectra. , 2019, 2, .		10
74	A first constraint on the average mass of ultra-diffuse galaxies from weak gravitational lensing. Monthly Notices of the Royal Astronomical Society, 2018, 473, 3747-3754.	4.4	36
75	KiDS-450: cosmological constraints from weak lensing peak statistics – I. Inference from analytical prediction of high signal-to-noise ratio convergence peaks. Monthly Notices of the Royal Astronomical Society, 2018, 474, 1116-1134.	4.4	79
76	KiDS-450 + 2dFLenS: Cosmological parameter constraints from weak gravitational lensing tomography and overlapping redshift-space galaxy clustering. Monthly Notices of the Royal Astronomical Society, 2018, 474, 4894-4924.	4.4	212
77	Cosmology and fundamental physics with the Euclid satellite. Living Reviews in Relativity, 2018, 21, 2.	26.7	602
78	Diversity in the stellar velocity dispersion profiles of a large sample of brightest cluster galaxies z ≤ 0.3. Monthly Notices of the Royal Astronomical Society, 2018, 477, 335-358.	4.4	26
79	Multiwavelength scaling relations in galaxy groups: a detailed comparison of GAMA and KiDS observations to BAHAMAS simulations. Monthly Notices of the Royal Astronomical Society, 2018, 480, 3338-3355.	4.4	11
80	Cosmological simulations for combined-probe analyses: covariance and neighbour-exclusion bias. Monthly Notices of the Royal Astronomical Society, 2018, 481, 1337-1367.	4.4	46
81	XMM-Newton X-ray and HST weak gravitational lensing study of the extremely X-ray luminous galaxy cluster Cl J120958.9+495352 (z = 0.902). Astronomy and Astrophysics, 2018, 610, A71.	5.1	3
82	280 one-opposition near-Earth asteroids recovered by the EURONEAR with the <i>Isaac Newton </i> Telescope. Astronomy and Astrophysics, 2018, 609, A105.	5.1	10
83	Precise weak lensing constraints from deep high-resolution <i>K</i> _s images: VLT/HAWK-I analysis of the super-massive galaxy cluster RCS2 J 232727.7â^'020437 at <i>z</i> = 0.70. Astronomy and Astrophysics, 2018, 610, A85.	5.1	19
84	Photometric redshifts for the Kilo-Degree Survey. Astronomy and Astrophysics, 2018, 616, A69.	5.1	54
85	The PAU Survey: spectral features and galaxy clustering using simulated narrow-band photometry. Monthly Notices of the Royal Astronomical Society, 2018, 481, 4221-4235.	4.4	15
86	Unveiling galaxy bias via the halo model, KiDS, and GAMA. Monthly Notices of the Royal Astronomical Society, 2018, 479, 1240-1259.	4.4	38
87	The galaxy–subhalo connection in low-redshift galaxy clusters from weak gravitational lensing. Monthly Notices of the Royal Astronomical Society, 2018, 478, 1244-1264.	4.4	23
88	KiDS-i-800: comparing weak gravitational lensing measurements from same-sky surveys. Monthly Notices of the Royal Astronomical Society, 2018, 477, 4285-4307.	4.4	24
89	Calibration of colour gradient bias in shear measurement using HST/CANDELS data. Monthly Notices of the Royal Astronomical Society, 2018, 476, 5645-5657.	4.4	14
90	Studying galaxy troughs and ridges using weak gravitational lensing with the Kilo-Degree Survey. Monthly Notices of the Royal Astronomical Society, 2018, 481, 5189-5209.	4.4	45

#	Article	IF	CITATIONS
91	Implications of a wavelength-dependent PSF for weak lensing measurements. Monthly Notices of the Royal Astronomical Society, 2018, 477, 3433-3448.	4.4	12
92	KiDS+GAMA: cosmology constraints from a joint analysis of cosmic shear, galaxy–galaxy lensing, and angular clustering. Monthly Notices of the Royal Astronomical Society, 2018, 476, 4662-4689.	4.4	163
93	KiDS+2dFLenS+GAMA: testing the cosmological model with the EG statistic. Monthly Notices of the Royal Astronomical Society, 2018, 479, 3422-3437.	4.4	42
94	KiDS-450: cosmological constraints from weak-lensing peak statistics – II: Inference from shear peaks using N-body simulations. Monthly Notices of the Royal Astronomical Society, 2018, 474, 712-730.	4.4	86
95	Cluster mass calibration at high redshift: HST weak lensing analysis of 13 distant galaxy clusters from the South Pole Telescope Sunyaev–Zel'dovich Survey. Monthly Notices of the Royal Astronomical Society, 2018, 474, 2635-2678.	4.4	77
96	VIS: the visible imager for Euclid. , 2018, , .		4
97	KiDS-450: cosmological parameter constraints from tomographic weak gravitational lensing. Monthly Notices of the Royal Astronomical Society, 2017, 465, 1454-1498.	4.4	756
98	First test of Verlinde's theory of emergent gravity using weak gravitational lensing measurements. Monthly Notices of the Royal Astronomical Society, 2017, 466, 2547-2559.	4.4	50
99	Halo ellipticity of GAMA galaxy groups from KiDS weak lensing. Monthly Notices of the Royal Astronomical Society, 2017, 467, 4131-4149.	4.4	36
100	Cross-correlation of weak lensing and gamma rays: implications for the nature of dark matter. Monthly Notices of the Royal Astronomical Society, 2017, 467, 2706-2722.	4.4	19
101	KiDS-450: tomographic cross-correlation of galaxy shear with Planck lensing. Monthly Notices of the Royal Astronomical Society, 2017, 471, 1619-1633.	4.4	27
102	Galaxy–galaxy lensing in EAGLE: comparison with data from 180 deg2 of the KiDS and GAMA surveys. Monthly Notices of the Royal Astronomical Society, 2017, 471, 2856-2870.	4.4	8
103	KiDS-450: testing extensions to the standard cosmological model. Monthly Notices of the Royal Astronomical Society, 2017, 471, 1259-1279.	4.4	144
104	A study of the sensitivity of shape measurements to the input parameters of weak-lensing image simulations. Monthly Notices of the Royal Astronomical Society, 2017, 468, 3295-3311.	4.4	51
105	KiDS-450: the tomographic weak lensing power spectrum and constraints on cosmological parameters. Monthly Notices of the Royal Astronomical Society, 2017, 471, 4412-4435.	4.4	165
106	The third data release of the Kilo-Degree Survey and associated data products. Astronomy and Astrophysics, 2017, 604, A134.	5.1	155
107	A KiDS weak lensing analysis of assembly bias in GAMA galaxy groups. Monthly Notices of the Royal Astronomical Society, 2017, 468, 3251-3265.	4.4	36
108	The abundance of ultra-diffuse galaxies from groups to clusters. Astronomy and Astrophysics, 2017, 607, A79.	5.1	93

7

#	Article	IF	Citations
109	Weak lensing magnification of SpARCS galaxy clusters. Astronomy and Astrophysics, 2017, 608, A141.	5.1	9
110	Weak-lensing-inferred scaling relations of galaxy clusters in the RCS2: mass-richness, mass-concentration, mass-bias, and more. Astronomy and Astrophysics, 2016, 586, A43.	5.1	28
111	The abundance and spatial distribution of ultra-diffuse galaxies in nearby galaxy clusters. Astronomy and Astrophysics, 2016, 590, A20.	5.1	130
112	COSMOLOGICAL CONSTRAINTS FROM GALAXY CLUSTERS IN THE 2500 SQUARE-DEGREE SPT-SZ SURVEY. Astrophysical Journal, 2016, 832, 95.	4.5	179
113	Mission-level performance verification approach for the Euclid space mission. Proceedings of SPIE, 2016, , .	0.8	5
114	VIS: the visible imager for <i>Euclid</i> . Proceedings of SPIE, 2016, , .	0.8	23
115	SPT-GMOS: A GEMINI/GMOS-SOUTH SPECTROSCOPIC SURVEY OF GALAXY CLUSTERS IN THE SPT-SZ SURVEY. Astrophysical Journal, Supplement Series, 2016, 227, 3.	7.7	36
116	Dependence of GAMA galaxy halo masses on the cosmic web environment from 100 deg ² of KiDS weak lensing data. Monthly Notices of the Royal Astronomical Society, 2016, 462, 4451-4463.	4.4	29
117	Evidence for a change in the dominant satellite galaxy quenching mechanism at $\langle i \rangle z \langle i \rangle \hat{A} = \hat{A}1$. Monthly Notices of the Royal Astronomical Society, 2016, 456, 4364-4376.	4.4	98
118	The evolution in the stellar mass of brightest cluster galaxies over the past 10 billion years. Monthly Notices of the Royal Astronomical Society, 2016, 460, 2862-2874.	4.4	34
119	On scale-dependent cosmic shear systematic effects. Monthly Notices of the Royal Astronomical Society, 2016, 455, 3319-3332.	4.4	13
120	The stellar-to-halo mass relation of GAMA galaxies from 100Âdeg ² of KiDS weak lensing data. Monthly Notices of the Royal Astronomical Society, 2016, 459, 3251-3270.	4.4	81
121	The regulation of star formation in cool-core clusters: imprints on the stellar populations of brightest cluster galaxies. Monthly Notices of the Royal Astronomical Society, 2016, 456, 1565-1578.	4.4	31
122	Detection of enhancement in number densities of background galaxies due to magnification by massive galaxy clusters. Monthly Notices of the Royal Astronomical Society, 2016, 457, 3050-3065.	4.4	26
123	A direct measurement of tomographic lensing power spectra from CFHTLenS. Monthly Notices of the Royal Astronomical Society, 2016, 456, 1508-1527.	4.4	34
124	MAPPING THE GALAXY COLOR–REDSHIFT RELATION: OPTIMAL PHOTOMETRIC REDSHIFT CALIBRATION STRATEGIES FOR COSMOLOGY SURVEYS. Astrophysical Journal, 2015, 813, 53.	4.5	124
125	A MULTI-WAVELENGTH MASS ANALYSIS OF RCS2 J232727.6-020437, A â^1/43 × 10 ¹⁵ <i>M</i> _⊙ GALAXY CLUSTER AT <i>z</i> =0.7. Astrophysical Journal, 2015, 814, 21.	4.5	19
126	The first and second data releases of the Kilo-Degree Survey. Astronomy and Astrophysics, 2015, 582, A62.	5.1	218

#	Article	IF	Citations
127	A skewer survey of the Galactic halo from deep CFHT and INT images. Astronomy and Astrophysics, 2015, 579, A38.	5.1	28
128	CFHTLenS: weak lensing calibrated scaling relations for low-mass clusters of galaxies. Monthly Notices of the Royal Astronomical Society, 2015, 451, 1460-1481.	4.4	52
129	The rise and fall of star formation in z $\hat{a}^{1/4}$ 0.2 merging galaxy clusters. Monthly Notices of the Royal Astronomical Society, 2015, 450, 646-665.	4.4	56
130	The galaxy–halo connection from a joint lensing, clustering and abundance analysis in the CFHTLenS/VIPERS field. Monthly Notices of the Royal Astronomical Society, 2015, 449, 1352-1379.	4.4	120
131	CFHTLenS: a Gaussian likelihood is a sufficient approximation for a cosmological analysis of third-order cosmic shear statistics. Monthly Notices of the Royal Astronomical Society, 2015, 449, 1505-1525.	4.4	16
132	Galaxy Alignments: An Overview. Space Science Reviews, 2015, 193, 1-65.	8.1	188
133	Evolution of the luminosity-to-halo mass relation of LRGs from a combined analysis of SDSS-DR10+RCS2. Astronomy and Astrophysics, 2015, 579, A26.	5.1	18
134	Intrinsic alignments of galaxies in the EAGLE and cosmo-OWLS simulations. Monthly Notices of the Royal Astronomical Society, 2015, 454, 3328-3340.	4.4	66
135	Optical and Sunyaev–Zel'dovich observations of a new sample of distant rich galaxy clusters in the ROSAT All Sky. Monthly Notices of the Royal Astronomical Society, 2015, 450, 4248-4276.	4.4	17
136	The Canadian Cluster Comparison Project: detailed study of systematics and updated weak lensing massesã~ Monthly Notices of the Royal Astronomical Society, 2015, 449, 685-714.	4.4	300
137	GALAXY CLUSTERS DISCOVERED VIA THE SUNYAEV-ZEL'DOVICH EFFECT IN THE 2500-SQUARE-DEGREE SPT-SZ SURVEY. Astrophysical Journal, Supplement Series, 2015, 216, 27.	7.7	464
138	Dark matter halo properties of GAMA galaxy groups from 100 square degrees of KiDS weak lensing data. Monthly Notices of the Royal Astronomical Society, 2015, 452, 3529-3550.	4.4	119
139	Galaxy Alignments: Observations and Impact on Cosmology. Space Science Reviews, 2015, 193, 139-211.	8.1	119
140	Gravitational lensing analysis of the Kilo-Degree Survey. Monthly Notices of the Royal Astronomical Society, 2015, 454, 3500-3532.	4.4	292
141	The masses of satellites in GAMA galaxy groups from 100 square degrees of KiDS weak lensing data. Monthly Notices of the Royal Astronomical Society, 2015, 454, 3938-3951.	4.4	46
142	<i>MC</i> ² : CONSTRAINING THE DARK MATTER DISTRIBUTION OF THE VIOLENT MERGING GALAXY CLUSTER CIZA J2242.8+5301 BY PIERCING THROUGH THE MILKY WAY. Astrophysical Journal, 2015, 802, 46.	4.5	49
143	CFHTLenS: weak lensing constraints on the ellipticity of galaxy-scale matter haloes and the galaxy-halo misalignment. Monthly Notices of the Royal Astronomical Society, 2015, 454, 1432-1452.	4.4	22
144	CFHTLenS: co-evolution of galaxies and their dark matter haloes. Monthly Notices of the Royal Astronomical Society, 2015, 447, 298-314.	4.4	130

9

#	Article	IF	Citations
145	A MEASUREMENT OF GRAVITATIONAL LENSING OF THE COSMIC MICROWAVE BACKGROUND BY GALAXY CLUSTERS USING DATA FROM THE SOUTH POLE TELESCOPE. Astrophysical Journal, 2015, 806, 247.	4.5	66
146	Statistical uncertainties and systematic errors in weak lensing mass estimates of galaxy clusters. Monthly Notices of the Royal Astronomical Society, 2015, 453, 3108-3120.	4.4	18
147	CFHTLenS: a weak lensing shear analysis of the 3D-Matched-Filter galaxy clusters. Monthly Notices of the Royal Astronomical Society, 2015, 447, 1304-1318.	4.4	27
148	Constraints on the alignment of galaxies in galaxy clusters from ~14 000 spectroscopic members. Astronomy and Astrophysics, 2015, 575, A48.	5.1	85
149	Evidence for the inside-out growth of the stellar mass distribution in galaxy clusters since <i>z</i> ~ <i>1</i> . Astronomy and Astrophysics, 2015, 577, A19.	5.1	49
150	Finding halo streams with a pencil-beam survey. Astronomy and Astrophysics, 2014, 564, A18.	5.1	19
151	THE PHASE SPACE AND STELLAR POPULATIONS OF CLUSTER GALAXIES AT <i>z</i> \hat{a}^{1} 1: SIMULTANEOUS CONSTRAINTS ON THE LOCATION AND TIMESCALE OF SATELLITE QUENCHING. Astrophysical Journal, 2014, 796, 65.	4.5	140
152	VIS: the visible imager for Euclid. , 2014, , .		10
153	Cycling of the powerful AGN in MS 0735.6+7421 and the duty cycle of radio AGN in clusters. Monthly Notices of the Royal Astronomical Society, 2014, 442, 3192-3205.	4.4	61
154	CFHTLenS: cosmological constraints from a combination of cosmic shear two-point and three-point correlations. Monthly Notices of the Royal Astronomical Society, 2014, 441, 2725-2743.	4.4	139
155	CFHTLenS: the relation between galaxy dark matter haloes and baryons from weak gravitational lensing. Monthly Notices of the Royal Astronomical Society, 2014, 437, 2111-2136.	4.4	157
156	SCALING RELATIONS AND X-RAY PROPERTIES OF MODERATE-LUMINOSITY GALAXY CLUSTERS FROM 0.3 < <i>z</i> <<0.6 WITH <i>XMM-NEWTON</i> . Astrophysical Journal, 2014, 794, 48.	4.5	14
157	<i>HUBBLE SPACE TELESCOPE</i> /i>/ADVANCED CAMERA FOR SURVEYS CONFIRMATION OF THE DARK SUBSTRUCTURE IN A520. Astrophysical Journal, 2014, 783, 78.	4.5	64
158	Describing galaxy weak lensing measurements from tenths to tens of Mpc and up to z \hat{a}^4 0.6 with a single model. Monthly Notices of the Royal Astronomical Society, 2014, 437, 377-390.	4.4	16
159	The clustering of baryonic matter. II: halo model and hydrodynamic simulations. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 028-028.	5.4	11
160	Galaxy masses. Reviews of Modern Physics, 2014, 86, 47-119.	45.6	226
161	3D cosmic shear: cosmology from CFHTLenS. Monthly Notices of the Royal Astronomical Society, 2014, 442, 1326-1349.	4.4	105
162	A census of stellar mass in ten massive haloes at <i>z</i> ~ 1 from the GCLASS Survey. Astronomy and Astrophysics, 2014, 561, A79.	5.1	61

#	Article	IF	Citations
163	Euclid space mission: a cosmological challenge for the next 15 years. Proceedings of the International Astronomical Union, 2014, 10, 375-378.	0.0	21
164	Masses of Galaxy Clusters from Gravitational Lensing. Space Science Reviews, 2013, 177, 75-118.	8.1	127
165	Scaling Relations for Galaxy Clusters: Properties and Evolution. Space Science Reviews, 2013, 177, 247-282.	8.1	98
166	On the shear estimation bias induced by the spatial variation of colour across galaxy profiles. Monthly Notices of the Royal Astronomical Society, 2013, 432, 2385-2401.	4.4	36
167	Bayesian galaxy shape measurement for weak lensing surveys – III. Application to the Canada–France–Hawaii Telescope Lensing Survey. Monthly Notices of the Royal Astronomical Society, 2013, 429, 2858-2880.	4.4	347
168	CFHTLenS: higher order galaxy–mass correlations probed by galaxy–galaxy–galaxy lensing. Monthly Notices of the Royal Astronomical Society, 2013, 430, 2476-2498.	4.4	23
169	CFHTLenS: mapping the large-scale structure with gravitational lensing. Monthly Notices of the Royal Astronomical Society, 2013, 433, 3373-3388.	4.4	111
170	CFHTLenS: testing the laws of gravity with tomographic weak lensing and redshift-space distortions. Monthly Notices of the Royal Astronomical Society, 2013, 429, 2249-2263.	4.4	149
171	CFHTLenS: the environmental dependence of galaxy halo masses from weak lensing. Monthly Notices of the Royal Astronomical Society, 2013, 431, 1439-1452.	4.4	39
172	Cosmology and Fundamental Physics with the Euclid Satellite. Living Reviews in Relativity, 2013, 16, 6.	26.7	683
173	Origins of weak lensing systematics, and requirements on future instrumentation (or knowledge of) Tj ETQq1 1	0.784314	rgBT/Overlo
174	Effect of baryonic feedback on two- and three-point shear statistics: prospects for detection and improved modelling. Monthly Notices of the Royal Astronomical Society, 2013, 434, 148-162.	4.4	94
175	Defining a weak lensing experiment in space. Monthly Notices of the Royal Astronomical Society, 2013, 431, 3103-3126.	4.4	74
176	CFHTLenS: combined probe cosmological model comparison using 2D weak gravitational lensing. Monthly Notices of the Royal Astronomical Society, 2013, 430, 2200-2220.	4.4	303
177	Intrinsic galaxy shapes and alignments $\hat{a} \in \mathbb{C}$ I. Measuring and modelling COSMOS intrinsic galaxy ellipticities. Monthly Notices of the Royal Astronomical Society, 2013, 431, 477-492.	4.4	64
178	CFHTLenS tomographic weak lensing cosmological parameter constraints: Mitigating the impact of intrinsic galaxy alignments. Monthly Notices of the Royal Astronomical Society, 2013, 432, 2433-2453.	4.4	506
179	CFHTLenS: the Canada–France–Hawaii Telescope Lensing Survey – imaging data and catalogue products. Monthly Notices of the Royal Astronomical Society, 2013, 433, 2545-2563.	4.4	332
180	CFHTLenS tomographic weak lensing: quantifying accurate redshift distributions. Monthly Notices of the Royal Astronomical Society, 2013, 431, 1547-1564.	4.4	111

#	Article	IF	CITATIONS
181	DISCOVERY OF A RICH CLUSTER AT <i>>z</i> >= 1.63 USING THE REST-FRAME 1.6 μm "STELLAR BUMP SEQUEN METHOD. Astrophysical Journal, 2013, 767, 39.	CEậ€• 4.5	87
182	JOINT ANALYSIS OF CLUSTER OBSERVATIONS. II. CHANDRA/XMM-NEWTON X-RAY AND WEAK LENSING SCALING RELATIONS FOR A SAMPLE OF 50 RICH CLUSTERS OF GALAXIES. Astrophysical Journal, 2013, 767, 116.	4.5	197
183	WEAK LENSING CALIBRATED <i> M < /i> <i> T < /i > SCALING RELATION OF GALAXY GROUPS IN THE COSMOS FIELD. Astrophysical Journal, 2013, 778, 74.</i></i>	4.5	34
184	SEARCH FOR RAYLEIGH SCATTERING IN THE ATMOSPHERE OF GJ1214b. Astrophysical Journal, 2013, 771, 109.	4.5	43
185	Intrinsic galaxy shapes and alignments – II. Modelling the intrinsic alignment contamination of weak lensing surveys. Monthly Notices of the Royal Astronomical Society, 2013, 436, 819-838.	4.4	60
186	The environmental dependence of the stellar mass function at <i>z</i> - 1. Astronomy and Astrophysics, 2013, 557, A15.	5.1	100
187	Stellar mass versus velocity dispersion as tracers of the lensing signal around bulge-dominated galaxies. Astronomy and Astrophysics, 2013, 549, A7.	5.1	11
188	On combining galaxy clustering and weak lensing to unveil galaxy biasing via the halo model. Monthly Notices of the Royal Astronomical Society, 2012, 426, 566-587.	4.4	48
189	THE ENVIRONMENTAL DEPENDENCE OF THE INCIDENCE OF GALACTIC TIDAL FEATURES. Astronomical Journal, 2012, 144, 128.	4.7	23
190	THE NEXT GENERATION VIRGO CLUSTER SURVEY (NGVS). I. INTRODUCTION TO THE SURVEY*. Astrophysical Journal, Supplement Series, 2012, 200, 4.	7.7	306
191	VIS: the visible imager for Euclid. Proceedings of SPIE, 2012, , .	0.8	11
192	THE TYPE II SUPERNOVA RATE IN <i>>z < /i>> $\hat{a}^{1}/4$ 0.1 GALAXY CLUSTERS FROM THE MULTI-EPOCH NEARBY CLUSTER SURVEY. Astrophysical Journal, 2012, 753, 68.</i>	4.5	19
193	A STUDY OF THE DARK CORE IN A520 WITH THE <i> HUBBLE SPACE TELESCOPE </i> : THE MYSTERY DEEPENS. Astrophysical Journal, 2012, 747, 96.	4.5	79
194	THE MULTI-EPOCH NEARBY CLUSTER SURVEY: TYPE Ia SUPERNOVA RATE MEASUREMENT IN $\langle i \rangle z \langle i \rangle \hat{a}^1 /\!\!/ 0.1$ CLUSTERS AND THE LATE-TIME DELAY TIME DISTRIBUTION. Astrophysical Journal, 2012, 746, 163.	4.5	41
195	<i>Euclid</i> mission: building of a reference survey. Proceedings of SPIE, 2012, , .	0.8	35
196	THE <i>>HUBBLE SPACE TELESCOPE</i> >CLUSTER SUPERNOVA SURVEY. V. IMPROVING THE DARK-ENERGY CONSTRAINTS ABOVE <i>z</i> > 1 AND BUILDING AN EARLY-TYPE-HOSTED SUPERNOVA SAMPLE. Astrophysical Journal, 2012, 746, 85.	4.5	1,382
197	ORIGIN: metal creation and evolution from the cosmic dawn. Experimental Astronomy, 2012, 34, 519-549.	3.7	6
198	CFHTLenS: the Canada–France–Hawaii Telescope Lensing Survey. Monthly Notices of the Royal Astronomical Society, 2012, 427, 146-166.	4.4	596

#	Article	IF	Citations
199	Evidence for significant growth in the stellar mass of brightest cluster galaxies over the past 10 billion years. Monthly Notices of the Royal Astronomical Society, 2012, 427, 550-568.	4.4	155
200	The Canadian Cluster Comparison Project: weak lensing masses and SZ scaling relations. Monthly Notices of the Royal Astronomical Society, 2012, 427, 1298-1311.	4.4	120
201	WEAK-LENSING MASS MEASUREMENTS OF FIVE GALAXY CLUSTERS IN THE SOUTH POLE TELESCOPE SURVEY USING MAGELLAN/MEGACAM. Astrophysical Journal, 2012, 758, 68.	4.5	42
202	Constraints on the shapes of galaxy dark matter haloes from weak gravitational lensing. Astronomy and Astrophysics, 2012, 545, A71.	5.1	55
203	Submillimetre source counts in the fields of high-redshift galaxy clusters. Monthly Notices of the Royal Astronomical Society, 2012, 419, 1983-2013.	4.4	11
204	The impact of high spatial frequency atmospheric distortions on weak-lensing measurements. Monthly Notices of the Royal Astronomical Society, 2012, , no-no.	4.4	15
205	CFHTLenS: improving the quality of photometric redshifts with precision photometryâ [*] Monthly Notices of the Royal Astronomical Society, 2012, 421, 2355-2367.	4.4	248
206	Evolution of the red sequence giant to dwarf ratio in galaxy clusters out to $\langle i \rangle z \langle i \rangle \hat{a}^1/4 = 0.5$. Monthly Notices of the Royal Astronomical Society, 2012, 425, 204-221.	4.4	21
207	A Giant Metrewave Radio Telescope/Chandra view of IRAS 09104+4109: a type 2 QSO in a cooling flow. Monthly Notices of the Royal Astronomical Society, 2012, 424, 2971-2993.	4.4	40
208	THE GEMINI CLUSTER ASTROPHYSICS SPECTROSCOPIC SURVEY (GCLASS): THE ROLE OF ENVIRONMENT AND SELF-REGULATION IN GALAXY EVOLUTION AT <i>z</i> z	4.5	270
209	SCALING RELATIONS AND OVERABUNDANCE OF MASSIVE CLUSTERS AT <i>z</i> 剳 1 FROM WEAK-LENSING STUDIES WITH THE <i>HUBBLE SPACE TELESCOPE</i> . Astrophysical Journal, 2011, 737, 59.	4. 5	104
210	THE MASS- <i>L_x</i> PRELATION FOR MODERATE LUMINOSITY X-RAY CLUSTERS. Astrophysical Journal, 2011, 726, 48.	4. 5	40
211	LENSING MAGNIFICATION: A NOVEL METHOD TO WEIGH HIGH-REDSHIFT CLUSTERS AND ITS APPLICATION TO SpARCS. Astrophysical Journal Letters, 2011, 733, L30.	8.3	41
212	INTRACLUSTER SUPERNOVAE IN THE MULTI-EPOCH NEARBY CLUSTER SURVEY. Astrophysical Journal, 2011, 729, 142.	4.5	49
213	A DEEP VIEW OF THE MONOCEROS RING IN THE ANTICENTER DIRECTION: CLUES OF ITS EXTRA-GALACTIC ORIGIN. Astrophysical Journal Letters, 2011, 730, L6.	8.3	29
214	Galaxy-galaxy lensing constraints on the relation between baryons and dark matter in galaxies in the Red Sequence Cluster Survey 2. Astronomy and Astrophysics, 2011, 534, A14.	5.1	69
215	Effects of distant large-scale structure on the precision of weak lensing mass measurements. Monthly Notices of the Royal Astronomical Society, 2011, 412, 2095-2103.	4.4	83
216	Quantifying the effect of baryon physics on weak lensing tomography. Monthly Notices of the Royal Astronomical Society, 2011, 417, 2020-2035.	4.4	253

#	Article	lF	CITATIONS
217	Evidence of the accelerated expansion of the Universe from weak lensing tomography with COSMOS. Astronomy and Astrophysics, 2010, 516, A63.	5.1	292
218	SPECTROSCOPIC CONFIRMATION OF THREE RED-SEQUENCE SELECTED GALAXY CLUSTERS AT <i>>z</i> = 0.87, 1.16, AND 1.21 FROM THE SPARCS SURVEY. Astrophysical Journal, 2010, 711, 1185-1197.	4.5	71
219	STRUCTURE FORMATION BY FIFTH FORCE: POWER SPECTRUM FROM N -BODY SIMULATIONS. Astrophysical Journal Letters, 2010, 712, L179-L183.	8.3	28
220	Large-scale structure and dynamics of the most X-ray luminous galaxy cluster known - RX J1347â^1145. Monthly Notices of the Royal Astronomical Society, 2010, 403, 1787-1800.	4.4	21
221	An environmental Butcher-Oemler effect in intermediate-redshift X-ray clustersa~ Monthly Notices of the Royal Astronomical Society, 2010, 406, 368-381.	4.4	22
222	Substructure lensing in galaxy clusters as a constraint on low-mass sterile neutrinos in tensor-vector-scalar theory: The straight arc of Abell 2390. Physical Review D, 2010, 82, .	4.7	11
223	THE X-RAY CLUSTER NORMALIZATION OF THE MATTER POWER SPECTRUM. Astrophysical Journal, 2009, 691, 1307-1321.	4.5	130
224	SPECTROSCOPIC CONFIRMATION OF TWO MASSIVE RED-SEQUENCE-SELECTED GALAXY CLUSTERS AT <i>>z</i> \$\frac{1}{2}\$ i>\$\frac{2}{3}\$ is THE Sparcs-North Cluster Survey. Astrophysical Journal, 2009, 698, 1934-1942.	¹ / ₄ .5	130
225	SPECTROSCOPIC CONFIRMATION OF A MASSIVE RED-SEQUENCE-SELECTED GALAXY CLUSTER AT <i>> z</i> = 1.34 IN THE SpARCS-SOUTH CLUSTER SURVEY. Astrophysical Journal, 2009, 698, 1943-1950.	4.5	141
226	AN INTENSIVE <i> HUBBLE SPACE TELESCOPE </i> > SURVEY FOR <i> z </i> & gt; 1 TYPE Ia SUPERNOVAE BY TARGETING GALAXY CLUSTERS. Astronomical Journal, 2009, 138, 1271-1283.	4.7	60
227	The relation between stellar mass and weak lensing signal around galaxies: implications for modified Newtonian dynamics. Monthly Notices of the Royal Astronomical Society, 2009, 393, 885-893.	4.4	24
228	Evidence for recent star formation in BCGs: a correspondence between blue cores and UV excess. Monthly Notices of the Royal Astronomical Society, 2009, 395, 462-471.	4.4	56
229	Sérsiclets - a matched filter extension of Shapelets for weak lensing studies. Monthly Notices of the Royal Astronomical Society, 2009, 396, 1211-1216.	4.4	18
230	Handbook for the GREATO8 Challenge: An image analysis competition for cosmological lensing. Annals of Applied Statistics, 2009, 3, .	1.1	93
231	Evidence for non-hydrostatic gas from the cluster X-ray to lensing mass ratio. Monthly Notices of the Royal Astronomical Society, 2008, 384, 1567-1574.	4.4	140
232	Resurrecting the red from the dead: optical properties of BCGs in X-ray luminous clustersa˜ Monthly Notices of the Royal Astronomical Society, 2008, 389, 1637-1654.	4.4	128
233	Weak Gravitational Lensing and Its Cosmological Applications. Annual Review of Nuclear and Particle Science, 2008, 58, 99-123.	10.2	332
234	<i>Chandra</i> Xâ€Ray Observations of the 0.6 < <i>z</i> < 1.1 Redâ€Sequence Cluster Survey Sample. Astrophysical Journal, 2008, 680, 1022-1041.	4.5	49

#	Article	IF	Citations
235	First detection of galaxy-galaxy-galaxy lensing in RCS. Astronomy and Astrophysics, 2008, 479, 655-667.	5.1	17
236	Very weak lensing in the CFHTLS wide: cosmology from cosmic shear in the linear regime. Astronomy and Astrophysics, 2008, 479, 9-25.	5.1	358
237	documentclass{aastex} usepackage{amsbsy} usepackage{amsfonts} usepackage{amssymb} usepackage{bm} usepackage{mathrsfs} usepackage{pifont} usepackage{stmaryrd} usepackage{textcomp} usepackage{portland,xspace} usepackage{amsmath,amsxtra} usepackage[OT2,OT1]{fontenc} ewcommandcyr{ enewcommandmdefault{wncyr} enewcommandsfdefault{wncys} enewcommandsfdefault{wncys} enewcommandsfdefault{wncys} enewcommandsfdefault{wncys}		
	enewcommandsfdefault{wncyss} enewcommandencodingdefault{OT2} ormalfont selectfont}		

#	Article	IF	Citations
253	An Algorithm to Detect Blends with Eclipsing Binaries in Planet Transit Searches. Astrophysical Journal, 2005, 626, 1070-1078.	4.5	10
254	Submillimeter Imaging of RCS J022434â^'0002.5: Intense Activity in a Highâ€Redshift Cluster?. Astrophysical Journal, 2005, 631, 187-196.	4.5	17
255	Weak lensing study of low mass groups: implications for Ω _{<i>m</i>} . Symposium - International Astronomical Union, 2005, 201, 340-343.	0.1	0
256	Dealing with systematics in cosmic shear studies: New results from the VIRMOS-Descart survey. Astronomy and Astrophysics, 2005, 429, 75-84.	5.1	113
257	Mapping the Dark Matter Using Weak Lensing. Symposium - International Astronomical Union, 2005, 216, 140-151.	0.1	0
258	Properties of galaxy dark matter halos from weak lensing. Symposium - International Astronomical Union, 2004, 220, 439-445.	0.1	3
259	The effect of imperfect models of point spread function anisotropy on cosmic shear measurements. Monthly Notices of the Royal Astronomical Society, 2004, 347, 1337-1344.	4.4	76
260	Properties of Galaxy Dark Matter Halos from Weak Lensing. Astrophysical Journal, 2004, 606, 67-77.	4.5	292
261	Large-Scale Systematic Signals in Weak Lensing Surveys. Astrophysical Journal, 2004, 613, L1-L4.	4.5	24
262	A submm survey of high-redshift galaxy clusters: a submm Butcher-Oemler effect?. Proceedings of the International Astronomical Union, 2004, 2004, .	0.0	0
263	How well can we determine cluster mass profiles from weak lensing?. Monthly Notices of the Royal Astronomical Society, 2003, 339, 1155-1162.	4.4	164
264	Lensing by galaxies in CNOC2 fields. Monthly Notices of the Royal Astronomical Society, 2003, 340, 609-622.	4.4	52
265	Joint Cosmic Microwave Background and Weak Lensing Analysis: Constraints on Cosmological Parameters. Physical Review Letters, 2003, 90, 221303.	7.8	94
266	The Incidence of Strongâ€Lensing Clusters in the Redâ€Sequence Cluster Survey. Astrophysical Journal, 2003, 593, 48-55.	4.5	106
267	Constraints on Ωmand σ8from Weak Lensing in Redâ€Sequence Cluster Survey Fields. Astrophysical Journal, 2002, 577, 595-603.	4.5	158
268	U-, B- and r-band luminosity functions of galaxies in the Coma cluster. Monthly Notices of the Royal Astronomical Society, 2002, 329, 385-397.	4.4	62
269	HSTlarge-field weak lensing analysis of MS 2053â°'04: study of the mass distribution and mass-to-light ratio of X-ray luminous clusters at 0.22 <z<0.83. 2002,="" 333,="" 911-922.<="" astronomical="" monthly="" notices="" of="" royal="" society,="" td="" the=""><td>4.4</td><td>49</td></z<0.83.>	4.4	49
270	Current status of weak gravitational lensing. New Astronomy Reviews, 2002, 46, 767-781.	12.8	60

#	Article	IF	CITATIONS
271	A Measurement of Weak Lensing by Largeâ€Scale Structure in Redâ€Sequence Cluster Survey Fields. Astrophysical Journal, 2002, 572, 55-65.	4.5	101
272	Weak Lensing Study of Galaxy Biasing. Astrophysical Journal, 2002, 577, 604-614.	4.5	99
273	On the apparent coupling of neutral hydrogen and dark matter in spiral galaxies. Monthly Notices of the Royal Astronomical Society, 2001, 323, 453-459.	4.4	60
274	The effect of distant large scale structure on weak lensing mass estimates. Astronomy and Astrophysics, 2001, 370, 743-753.	5.1	99
275	Weak-Lensing Study of Low-Mass Galaxy Groups: Implications for Ω[TINF][ITAL]m[/ITAL][/TINF]. Astrophysical Journal, 2001, 548, L5-L8.	4.5	68
276	Measurement of the Bias Parameter from Weak Lensing. Astrophysical Journal, 2001, 558, L11-L14.	4.5	47
277	Hubble Space TelescopeWeak‣ensing Study of thez=0.83 Cluster MS 1054â^'03. Astrophysical Journal, 2000, 532, 88-108.	4.5	166
278	Weak Lensing Analysis of Cl 1358+62 UsingHubble Space TelescopeObservations. Astrophysical Journal, 1998, 504, 636-660.	4.5	249
279	A Search for Optical Afterglow from GRB 970828. Astrophysical Journal, 1998, 493, L27-L30.	4.5	100
280	Calibration of weak-lensing shear in the Kilo-Degree Survey. Monthly Notices of the Royal Astronomical Society, 0, , stx200.	4.4	66
281	Forecasting the potential of weak lensing magnification to enhance LSST large-scale structure analyses. Monthly Notices of the Royal Astronomical Society. O	4.4	5