Jordi PuiggalÃ- i Bellalta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2701302/publications.pdf

Version: 2024-02-01

322 papers 6,612 citations

76196 40 h-index 61 g-index

328 all docs

328 docs citations

times ranked

328

6336 citing authors

#	Article	IF	CITATIONS
1	Electrospun scaffolds for wound healing applications from poly(4â€hydroxybutyrate): A biobased and biodegradable linear polymer with high elastomeric properties. Journal of Applied Polymer Science, 2022, 139, 51447.	1.3	3
2	Incorporation of Functionalized Calcium Phosphate Nanoparticles in Living Cells. Journal of Cluster Science, 2022, 33, 2781-2795.	1.7	3
3	Medicated Scaffolds Prepared with Hydroxyapatite/Streptomycin Nanoparticles Encapsulated into Polylactide Microfibers. International Journal of Molecular Sciences, 2022, 23, 1282.	1.8	7
4	Novel Biobased Epoxy Thermosets and Coatings from Poly(limonene carbonate) Oxide and Synthetic Hardeners. ACS Sustainable Chemistry and Engineering, 2022, 10, 2708-2719.	3.2	21
5	Drug-Biopolymer Dispersions: Morphology- and Temperature- Dependent (Anti)Plasticizer Effect of the Drug and Component-Specific Johari–Goldstein Relaxations. International Journal of Molecular Sciences, 2022, 23, 2456.	1.8	8
6	Antibacterial Hydrogels Derived from Poly(\hat{l}^3 -glutamic acid) Nanofibers. Gels, 2022, 8, 120.	2.1	8
7	Biobased Terpene Derivatives: Stiff and Biocompatible Compounds to Tune Biodegradability and Properties of Poly(butylene succinate). Polymers, 2022, 14, 161.	2.0	6
8	Micro―and Nanotexturization of Liquid Silicone Rubber Surfaces by Injection Molding Using Hybrid Polymer Inlays. Macromolecular Materials and Engineering, 2022, 307, 2100741.	1.7	2
9	Poly(butylene succinate) matrices obtained by thermally-induced phase separation: Pore shape and orientation affect drug release. Polymer, 2022, 252, 124916.	1.8	5
10	Self-assembly of supramolecular chemoenzymatic poly-l-phenylalanine. Polymer Chemistry, 2021, 12, 1199-1209.	1.9	8
11	Hydroxyapatite Based Polymer Composites for Regenerative Medicine Applications. , 2021, , 785-803.		0
12	Melt Electrospinning of Polymers: Blends, Nanocomposites, Additives and Applications. Applied Sciences (Switzerland), 2021, 11, 1808.	1.3	33
13	Recent Progress on Biodegradable Tissue Engineering Scaffolds Prepared by Thermally-Induced Phase Separation (TIPS). International Journal of Molecular Sciences, 2021, 22, 3504.	1.8	50
14	Optimization of permanently polarized hydroxyapatite catalyst. Implications for the electrophotosynthesis of amino acids by nitrogen and carbon fixation. Journal of Catalysis, 2021, 397, 98-107.	3.1	10
15	A pHâ€√riggered Polymer Degradation or Drug Delivery System by Lightâ€Mediated Cis / Trans Isomerization of o â€Hydroxy Cinnamates. Macromolecular Rapid Communications, 2021, 42, 2100213.	2.0	7
16	Aliphatic polyamides (nylons): Interplay between hydrogen bonds and crystalline structures, polymorphic transitions and crystallization. Polymer Crystallization, 2021, 4, e10199.	0.5	9
17	Nanoparticle-driven self-assembling injectable hydrogels provide a multi-factorial approach for chronic wound treatment. Acta Biomaterialia, 2021, 134, 131-143.	4.1	42
18	Recycled Porcine Bone Powder as Filler in Thermoplastic Composite Materials Enriched with Chitosan for a Bone Scaffold Application. Polymers, 2021, 13, 2751.	2.0	3

#	Article	IF	Citations
19	Chloramphenicol loaded polylactide melt electrospun scaffolds for biomedical applications. International Journal of Pharmaceutics, 2021, 606, 120897.	2.6	4
20	Hydrolytic and enzymatic degradation of biobased poly(4-hydroxybutyrate) films. Selective etching of spherulites. Polymer Degradation and Stability, 2021, 183, 109451.	2.7	11
21	Permanently polarized hydroxyapatite for selective electrothermal catalytic conversion of carbon dioxide into ethanol. Chemical Communications, 2021, 57, 5163-5166.	2.2	14
22	Controlled Anisotropic Growth of Hydroxyapatite by Additive-Free Hydrothermal Synthesis. Crystal Growth and Design, 2021, 21, 748-756.	1.4	18
23	Efficient Oneâ€Pot Preparation of Thermoresponsive Polyurethanes with Lower Critical Solution Temperatures. ChemPlusChem, 2021, 86, 1570-1576.	1.3	2
24	Poly(aspartic acid) Biohydrogel as the Base of a New Hybrid Conducting Material. International Journal of Molecular Sciences, 2021, 22, 13165.	1.8	3
25	Crystallization kinetics of chain extended poly(L-lactide)s having different molecular structures. Materials Chemistry and Physics, 2020, 240, 122217.	2.0	8
26	Improvement of Biodegradability and Biocompatibility of Electrospun Scaffolds of Poly(butylene) Tj ETQq0 0 0 rg	zBT_lOverl	ock 10 Tf 50 4
27	Biohydrogel from unsaturated polyesteramide: Synthesis, properties and utilization as electrolytic medium for electrochemical supercapacitors. Polymer Testing, 2020, 82, 106300.	2.3	9
28	Effect of curcumin on thermal degradation of poly(glycolic acid) and poly(Îμ-caprolactone) blends. Thermochimica Acta, 2020, 693, 178764.	1.2	7
29	Biomimetic Hybrid Systems for Tissue Engineering. Biomimetics, 2020, 5, 49.	1.5	18
30	Breaking-down the catalyst used for the electrophotosynthesis of amino acids by nitrogen and carbon fixation. Journal of Catalysis, 2020, 389, 646-656.	3.1	12
31	Nanofeatures affect the thermal transitions of polymer thin films: a microcantilever-based investigation. Materials Advances, 2020, 1, 2084-2094.	2.6	4
32	Doped photo-crosslinked polyesteramide hydrogels as solid electrolytes for supercapacitors. Soft Matter, 2020, 16, 8033-8046.	1.2	10
33	Microstructural Changes during Degradation of Biobased Poly(4-hydroxybutyrate) Sutures. Polymers, 2020, 12, 2024.	2.0	2
34	Smart design for a flexible, functionalized and electroresponsive hybrid platform based on poly(3,4-ethylenedioxythiophene) derivatives to improve cell viability. Journal of Materials Chemistry B, 2020, 8, 8864-8877.	2.9	14
35	Development of an antimicrobial and antioxidant hydrogel/nano-electrospun wound dressing. RSC Advances, 2020, 10, 30508-30518.	1.7	12
36	Poly(hydroxybutyrate-co-hydroxyvalerate) Porous Matrices from Thermally Induced Phase Separation. Polymers, 2020, 12, 2787.	2.0	6

#	Article	IF	Citations
37	Heterochirality Restricts the Self-Assembly of Phenylalanine Dipeptides Capped with Highly Aromatic Groups. Journal of Physical Chemistry B, 2020, 124, 5913-5918.	1.2	11
38	Biodegradable Polylactide Scaffolds with Pharmacological Activity by Means of Ultrasound Micromolding Technology. Applied Sciences (Switzerland), 2020, 10, 3106.	1.3	6
39	Biphasic polylactide/polyamide 6,10 blends: Influence of composition on polyamide structure and polyester crystallization. Polymer, 2020, 202, 122676.	1.8	11
40	Analysis of nitrogen fixation by a catalyst capable of transforming N2, CO2 and CH4 into amino acids under mild reactions conditions. Applied Catalysis A: General, 2020, 596, 117526.	2.2	9
41	Poly(gallic acid)-coated polycaprolactone inhibits oxidative stress in epithelial cells. Materials Science and Engineering C, 2020, 115, 111154.	3.8	11
42	Hydrogels and bionanocomposites from peptide self-assembly. EXPRESS Polymer Letters, 2020, 14, 205-205.	1.1	0
43	Phase-selective conductivity enhancement and cooperativity length in PLLA/TPU nanocomposite blends with carboxylated carbon nanotubes. Polymer, 2020, 191, 122279.	1.8	8
44	Thermoresponsive Shapeâ€Memory Hydrogel Actuators Made by Phototriggered Click Chemistry. Advanced Functional Materials, 2020, 30, 2001683.	7.8	29
45	Artificial Polymers made of α-amino Acids - Poly(Amino Acid)s, Pseudo-Poly(Amino Acid)s, Poly(Depsipeptide)s, and Pseudo-Proteins. Current Pharmaceutical Design, 2020, 26, 566-593.	0.9	13
46	Isothermal Crystallization Kinetics of Poly(4-hydroxybutyrate) Biopolymer. Materials, 2019, 12, 2488.	1.3	10
47	Biominerals Formed by DNA and Calcium Oxalate or Hydroxyapatite: A Comparative Study. Langmuir, 2019, 35, 11912-11922.	1.6	4
48	Reactive melt processing of poly (L-lactide) in the presence of thermoplastic polyurethane and carboxylated carbon nanotubes. Journal of Materials Science, 2019, 54, 14961-14974.	1.7	12
49	Electrically Polarized Hydroxyapatite: Influence of the Polarization Process on the Microstructure and Properties. Langmuir, 2019, 35, 14782-14790.	1.6	18
50	Incorporation of Chloramphenicol Loaded Hydroxyapatite Nanoparticles into Polylactide. International Journal of Molecular Sciences, 2019, 20, 5056.	1.8	11
51	Non-Isothermal Crystallization Kinetics of Poly(4-Hydroxybutyrate) Biopolymer. Molecules, 2019, 24, 2840.	1.7	14
52	Amorphous binary dispersions of chloramphenicol in enantiomeric pure and racemic poly-lactic acid: Morphology, molecular relaxations, and controlled drug release. International Journal of Pharmaceutics, 2019, 568, 118565.	2.6	13
53	Library of Cationic Polymers Composed of Polyamines and Arginine as Gene Transfection Agents. ACS Omega, 2019, 4, 2090-2101.	1.6	22
54	Influence of the atmosphere conditions in the structure, properties and solubility of fluorine-substituted hydroxyapatites. Materials Chemistry and Physics, 2019, 226, 279-289.	2.0	8

#	Article	IF	CITATIONS
55	Scaffolds for Sustained Release of Ambroxol Hydrochloride, a Pharmacological Chaperone That Increases the Activity of Misfolded βâ€Glucocerebrosidase. Macromolecular Bioscience, 2019, 19, 1900130.	2.1	4
56	Amyloid fibrils from organic solutions of an amphiphilic dipeptide. Chemical Communications, 2019, 55, 8556-8559.	2.2	5
57	Preparation of Medicated Polylactide Micropieces by Means of Ultrasonic Technology. Applied Sciences (Switzerland), 2019, 9, 2360.	1.3	10
58	Peptide Self-Assembly into Hydrogels for Biomedical Applications Related to Hydroxyapatite. Gels, 2019, 5, 14.	2.1	42
59	Crystalline Structures and Structural Transitions of Copolyamides Derived from 1,4-Diaminobutane and Different Ratios of Glutaric and Azelaic Acids. Polymers, 2019, 11, 572.	2.0	5
60	Electrospun Conducting and Biocompatible Uniaxial and Core–Shell Fibers Having Poly(lactic acid), Poly(ethylene glycol), and Polyaniline for Cardiac Tissue Engineering. ACS Omega, 2019, 4, 3660-3672.	1.6	74
61	Segmental relaxation and partial crystallization of chainâ€extended Poly(<scp>l</scp> â€lactic acid) reinforced with carboxylated carbon nanotube. Journal of Polymer Science, Part B: Polymer Physics, 2019, 57, 222-233.	2.4	13
62	Nanocomposites based on chain extended poly(<scp>l</scp> -lactic acid)/carboxylated carbon nanotubes: Crystallization kinetics and lamellar morphology. Journal of Composite Materials, 2019, 53, 2131-2147.	1.2	9
63	Other Miscellaneous Materials and Their Nanocomposites. , 2019, , 353-398.		2
64	Nucleating and retarding effects of nanohydroxyapatite on the crystallization of poly(butylene) Tj ETQq0 0 0 rgB Calorimetry, 2019, 137, 421-435.	T /Overloc 2.0	ck 10 Tf 50 38 6
65	Dualâ€Functionalization Device for Therapy through Dopamine Release and Monitoring. Macromolecular Bioscience, 2018, 18, e1800014.	2.1	14
66	Hydroxyapatite with Permanent Electrical Polarization: Preparation, Characterization, and Response against Inorganic Adsorbates. ChemPhysChem, 2018, 19, 1746-1755.	1.0	21
67	Rigid amorphous phase and constrained polymer chains in poly(Lâ€lactide) nanocomposites with carboxylated carbon nanotubes prepared via reactive melt mixing. Polymer Composites, 2018, 39, E1280.	2.3	14
68	Sustainable synthesis of amino acids by catalytic fixation of molecular dinitrogen and carbon dioxide. Green Chemistry, 2018, 20, 685-693.	4.6	26
69	Grafting of Hydroxyapatite for Biomedical Applications. , 2018, , 45-80.		8
70	Flexible Electrodes for Supercapacitors Based on the Supramolecular Assembly of Biohydrogel and Conducting Polymer. Journal of Physical Chemistry C, 2018, 122, 1078-1090.	1.5	47
71	Tunable Drug Loading and Reinforcement of Polycaprolactone Films by Means of Electrospun Nanofibers of Glycolide Segmented Copolymers. Macromolecular Materials and Engineering, 2018, 303, 1700401.	1.7	3
72	Comparison of nanocrystals and nanofibers produced from shrimp shell α-chitin: From energy production to material cytotoxicity and Pickering emulsion properties. Carbohydrate Polymers, 2018, 196, 385-397.	5.1	95

#	Article	IF	Citations
73	Prototyping flexible supercapacitors produced with biohydrogel. Materials Today Communications, 2018, 16, 60-70.	0.9	11
74	Cooperative rearranging region and dynamical heterogeneity of nanocomposites in poly(l-lactide) and functionalized carbon nanotubes systems. Thermochimica Acta, 2018, 667, 35-41.	1.2	10
75	2. Close Contacts at the interface: Experimental-computational synergies for solving complexity problems. , 2018, , 53-80.		O
76	New amino acid based biodegradable poly(ester amide)s <i>via</i> bis-azlactone chemistry. Journal of Macromolecular Science - Pure and Applied Chemistry, 2018, 55, 677-690.	1.2	3
77	Amyloid-like Fibrils from a Diphenylalanine Capped with an Aromatic Fluorenyl. Langmuir, 2018, 34, 15551-15559.	1.6	10
78	Close contacts at the interface: Experimental-computational synergies for solving complexity problems. ChemistrySelect, 2018, 3, .	0.7	1
79	Potential of ultrasound technology for the preparation of microdevices. EXPRESS Polymer Letters, 2018, 12, 284-284.	1.1	1
80	Simulation basis for a techno-economic evaluation of chitin nanomaterials production process using Aspen Plus \hat{A}^{\otimes} software. Data in Brief, 2018, 20, 1556-1560.	0.5	7
81	Bio-based aliphatic polyesters from dicarboxylic acids and related sugar and amino acid derivatives. , 2018, , 317-349.		2
82	Tuning the Kinetic Stability of the Amorphous Phase of the Chloramphenicol Antibiotic. Molecular Pharmaceutics, 2018, 15, 5615-5624.	2.3	10
83	Scaffolds with Tunable Properties Constituted by Electrospun Nanofibers of Polyglycolide and Poly(εâ€caprolactone). Macromolecular Materials and Engineering, 2018, 303, 1800100.	1.7	9
84	Loading of Antibiotic into Biocoated Hydroxyapatite Nanoparticles: Smart Antitumor Platforms with Regulated Release. ACS Biomaterials Science and Engineering, 2018, 4, 3234-3245.	2.6	22
85	Hybrid Polypeptide/Polylactide Copolymers with Short Phenylalanine Blocks. Macromolecular Chemistry and Physics, 2018, 219, 1800168.	1.1	9
86	Isomeric cationic ionenes as n-dopant agents of poly(3,4-ethylenedioxythiophene) for <i>in situ</i> gelation. Soft Matter, 2018, 14, 6374-6385.	1.2	8
87	Antimicrobial Activity of Poly(ester urea) Electrospun Fibers Loaded with Bacteriophages. Fibers, 2018, 6, 33.	1.8	19
88	Thermally Induced Structural Transitions of Nylon 4 9 as a New Example of Even–Odd Polyamides. Polymers, 2018, 10, 198.	2.0	7
89	Improving Opinion Analysis Through Statistical Disclosure Control in eVoting Scenarios. Lecture Notes in Computer Science, 2018, , 45-59.	1.0	0
90	Incorporation of chloramphenicol and captopril into poly(GL)â€ <i>b</i> â€poly(GL) monofilar surgical suture of Applied Polymer Science, 2017, 134, .	s ıJø urnal	0

#	Article	IF	Citations
91	Poly- \hat{l}^3 -glutamic Acid Hydrogels as Electrolyte for Poly(3,4-ethylenedioxythiophene)-Based Supercapacitors. Journal of Physical Chemistry C, 2017, 121, 3182-3193.	1.5	26
92	Surface Mediated Hierarchical Assemblies of Highly Hydrophobic Phenylalanineâ€Based Peptides. ChemistrySelect, 2017, 2, 1133-1139.	0.7	7
93	Biodegradable nanofibrous scaffolds as smart delivery vehicles for amino acids. Journal of Applied Polymer Science, 2017, 134, .	1.3	4
94	Thermal degradation of random copolyesters based on 1,4-butanediol, terepthalic acid and different aliphatic dicarboxylic acids. Thermochimica Acta, 2017, 654, 101-111.	1.2	4
95	Effect of Solvent Choice on the Selfâ€Assembly Properties of a Diphenylalanine Amphiphile Stabilized by an Ion Pair. ChemPhysChem, 2017, 18, 1888-1896.	1.0	17
96	Diversity and Hierarchy in Supramolecular Assemblies of Triphenylalanine: From Laminated Helical Ribbons to Toroids. Langmuir, 2017, 33, 4036-4048.	1.6	31
97	Crystal polymorphism of polylactides and poly(Pro- alt -CO): The metastable beta and gamma phases. Formation of homochiral PLLA phases in the PLLA/PDLA blends. Polymer, 2017, 115, 204-210.	1.8	24
98	Growth of epithelial cells on films of enzymatically synthesized poly(gallic acid) crosslinked to carboxymethylcellulose. RSC Advances, 2017, 7, 17660-17669.	1.7	9
99	Preparation of random poly(butylene alkylate-co-terephthalate)s with different methylene group contents: crystallization and degradation kinetics. Journal of Polymer Research, 2017, 24, 1.	1.2	1
100	Verifiability Experiences in Government Online Voting Systems. Lecture Notes in Computer Science, 2017, , 248-263.	1.0	6
101	Self-assembly of diphenylalanine with preclick components as capping groups. Physical Chemistry Chemical Physics, 2017, 19, 27038-27051.	1.3	8
102	Biodegradability and biocompatibility of copoly(butylene sebacate-co-terephthalate)s. Polymer Degradation and Stability, 2017, 135, 18-30.	2.7	21
103	Incorporation of biguanide compounds into poly(GL)-b-poly(GL-co-TMC-co-CL)-b-poly(GL) monofilament surgical sutures. Materials Science and Engineering C, 2017, 71, 629-640.	3.8	10
104	Preparation of Nanocomposites of Poly(ε-caprolactone) and Multi-Walled Carbon Nanotubes by Ultrasound Micro-Molding. Influence of Nanotubes on Melting and Crystallization. Polymers, 2017, 9, 322.	2.0	19
105	Hydrogels for Biomedical Applications: Cellulose, Chitosan, and Protein/Peptide Derivatives. Gels, 2017, 3, 27.	2.1	155
106	Biodegradable and Biocompatible Systems Based on Hydroxyapatite Nanoparticles. Applied Sciences (Switzerland), 2017, 7, 60.	1.3	81
107	Antimicrobial Electrospun Fibers of Polyester Loaded with Engineered Cyclic Gramicidin Analogues. Fibers, 2017, 5, 34.	1.8	3
108	Bionanocomposites., 2017,, 239-272.		5

#	Article	IF	Citations
109	Poly($\hat{l}\mu$ -caprolactone) films reinforced with chlorhexidine loaded electrospun polylactide microfibers. EXPRESS Polymer Letters, 2017, 11, 674-689.	1.1	13
110	Effect of Hydroxyapatite Nanoparticles on the Degradability of Random Poly(butylene) Tj ETQq0 0 0 rgBT /Overloc 2016, 8, 253.	k 10 Tf 50 2.0	707 Td (ter 11
111	Study of Non-Isothermal Crystallization of Polydioxanone and Analysis of Morphological Changes Occurring during Heating and Cooling Processes. Polymers, 2016, 8, 351.	2.0	18
112	Multifunctional ternary drugâ€loaded electrospun scaffolds. Journal of Applied Polymer Science, 2016, 133, .	1.3	10
113	A multi-step template-assisted approach for the formation of conducting polymer nanotubes onto conducting polymer films. Polymer Chemistry, 2016, 7, 3540-3550.	1.9	9
114	Hierarchical self-assembly of di-, tri- and tetraphenylalanine peptides capped with two fluorenyl functionalities: from polymorphs to dendrites. Soft Matter, 2016, 12, 5475-5488.	1.2	26
115	Effects of hydroxyapatite (0001) Ca ²⁺ /Mg ²⁺ substitution on adsorbed <scp>d</scp> -ribose ring puckering. RSC Advances, 2016, 6, 69634-69640.	1.7	3
116	Temperatureâ€induced structural changes in evenâ€odd nylons with long polymethylene segments. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 2494-2506.	2.4	10
117	Electrospray loading and release of hydrophobic gramicidin in polyester microparticles. RSC Advances, 2016, 6, 73045-73055.	1.7	6
118	Distributed Immutabilization of Secure Logs. Lecture Notes in Computer Science, 2016, , 122-137.	1.0	30
119	Synthesis of poly(ester amide)s composed of lactic acid and glycolic acid units by the bulk polycondensation of metal halide salts. Journal of Applied Polymer Science, 2016, 133, .	1.3	0
120	Dissolving Hydroxyolite: A DNA Molecule into Its Hydroxyapatite Mold. Chemistry - A European Journal, 2016, 22, 6631-6636.	1.7	13
121	Study on the crystallization of poly(alkylene dicarboxylate)s derived from 1,9-nonanediol and mixtures with different ratios of azelaic acid and pimelic acid units. Journal of Polymer Research, 2016, 23, 1.	1.2	5
122	Semiconducting, biodegradable and bioactive fibers for drug delivery. EXPRESS Polymer Letters, 2016, 10, 628-646.	1.1	15
123	Smart systems related to polypeptide sequences. AIMS Materials Science, 2016, 3, 289-323.	0.7	6
124	Electrospun biodegradable polymers loaded with bactericide agents. AIMS Molecular Science, 2016, 3, 52-87.	0.3	32
125	Development of antimicrobial polymers by incorporation of bacteriophages. EXPRESS Polymer Letters, 2016, 10, 273-273.	1.1	O
126	Surviving Mass Extinctions through Biomineralized DNA. Chemistry - A European Journal, 2015, 21, 18892-18898.	1.7	6

#	Article	IF	CITATIONS
127	Nucleation, Crystallization, and Thermal Fractionation of Poly (Îμ-Caprolactone)-Grafted-Lignin: Effects of Grafted Chains Length and Lignin Content. Journal of Polymer Science, Part B: Polymer Physics, 2015, 53, 1736-1750.	2.4	38
128	Selfâ€Assembly of Tetraphenylalanine Peptides. Chemistry - A European Journal, 2015, 21, 16895-16905.	1.7	45
129	Synergistic Approach to Elucidate the Incorporation of Magnesium Ions into Hydroxyapatite. Chemistry - A European Journal, 2015, 21, 2537-2546.	1.7	24
130	Electrospun Scaffolds from Low Molecular Weight Poly(ester amide)s Based on Glycolic Acid, Adipic Acid and Odd or Even Diamines. Fibers, 2015, 3, 151-172.	1.8	1
131	Dispersion of Functionalized Silica Micro- and Nanoparticles into Poly(nonamethylene Azelate) by Ultrasonic Micro-Molding. Applied Sciences (Switzerland), 2015, 5, 1252-1271.	1.3	11
132	Influence of pH on Morphology and Structure during Hydrolytic Degradation of the Segmented GL-b-[GL-co-TMC-co-CL]-b-GL Copolymer. Fibers, 2015, 3, 348-372.	1.8	8
133	Preferential Incorporation of Azelaic Acid Units into the Crystalline Phase of the Copoly(Alkylene) Tj ETQq1 1 0.784 Polymers, 2015, 7, 1871-1894.		Overlock 1 4
134	Insulating and semiconducting polymeric free-standing nanomembranes with biomedical applications. Journal of Materials Chemistry B, 2015, 3, 5904-5932.	2.9	48
135	An experimental-computer modeling study of inorganic phosphates surface adsorption on hydroxyapatite particles. Dalton Transactions, 2015, 44, 9980-9991.	1.6	15
136	Polybiguanide (PHMB) loaded in PLA scaffolds displaying high hydrophobic, biocompatibility and antibacterial properties. Materials Science and Engineering C, 2015, 50, 74-84.	3.8	86
137	Biocompatibility and drug release behavior of scaffolds prepared by coaxial electrospinning of poly(butylene succinate) and polyethylene glycol. Materials Science and Engineering C, 2015, 49, 472-484.	3.8	104
138	Electrospun fibrous mats from a l-phenylalanine based poly(ester amide): Drug delivery and accelerated degradation by loading enzymes. Polymer Degradation and Stability, 2015, 119, 275-287.	2.7	16
139	Self-assembly of semicrystalline PE-b-PS diblock copolymers within AAO nanoporous templates. Polymer, 2015, 70, 282-289.	1.8	13
140	Amino acid-based poly(ester amide) nanofibers for tailored enzymatic degradation prepared by miniemulsion-electrospinning. RSC Advances, 2015, 5, 55006-55014.	1.7	20
141	Study on the crystallization of multiarm stars with a poly(ethyleneimine) core and poly(lµ-caprolactone) arms of different length. Thermochimica Acta, 2015, 607, 39-52.	1.2	7
142	Document Analysis Techniques for Automatic Electoral Document Processing: A Survey. Lecture Notes in Computer Science, 2015, , 129-141.	1.0	1
143	Electrospun scaffolds of polylactide with a different enantiomeric content and loaded with anti-inflammatory and antibacterial drugs. Macromolecular Research, 2015, 23, 636-648.	1.0	11
144	Reversible changes induced by temperature in the spherulitic birefringence of nylon 6 9. Polymer, 2015, 76, 34-45.	1.8	14

#	Article	IF	CITATIONS
145	Electrosprayed poly(butylene succinate) microspheres loaded with indole derivatives: A system with anticancer activity. European Polymer Journal, 2015, 71, 196-209.	2.6	15
146	2015 Neuchâtel's Cast-as-Intended Verification Mechanism. Lecture Notes in Computer Science, 2015, , 3-18.	1.0	23
147	Spherulitic morphologies of the triblock Poly(GL)-b-poly(GL-co-TMC-co-CL)-b-poly(GL) copolymer: Isothermal and non-isothermal crystallization studies. European Polymer Journal, 2015, 73, 222-236.	2.6	4
148	Microfibres of conducting polythiophene and biodegradable poly(ester urea) for scaffolds. Polymer Chemistry, 2015, 6, 925-937.	1.9	20
149	New poly(ester urea) derived from l-leucine: Electrospun scaffolds loaded with antibacterial drugs and enzymes. Materials Science and Engineering C, 2015, 46, 450-462.	3.8	23
150	Synthesis, Properties and Applications of Biodegradable Polymers Derived from Diols and Dicarboxylic Acids: From Polyesters to Poly(ester amide)s. International Journal of Molecular Sciences, 2014, 15, 7064-7123.	1.8	191
151	Scaffolds constituted by mixed polylactide and poly(ethylene glycol) electrospun microfibers. Journal of Polymer Research, 2014, 21, 1.	1.2	6
152	Scaffolds with tuneable hydrophilicity from electrospun microfibers of polylactide and poly(ethylene glycol) mixtures: morphology, drug release behavior, and biocompatibility. Journal of Polymer Research, 2014, 21, 1.	1.2	19
153	Micro-molding with ultrasonic vibration energy: New method to disperse nanoclays in polymer matrices. Ultrasonics Sonochemistry, 2014, 21, 1557-1569.	3.8	54
154	Inhibition of radical-induced oxidative DNA damage by antioxidants loaded in electrospun polylactide nanofibers. Macromolecular Research, 2014, 22, 388-396.	1.0	11
155	Study on the crystallization of poly(butylene azelate-co-butylene succinate) copolymers. Thermochimica Acta, 2014, 575, 45-54.	1.2	41
156	Poly(butylene azelate-co-butylene succinate) copolymers: Crystalline morphologies and degradation. Polymer Degradation and Stability, 2014, 99, 80-91.	2.7	28
157	DNA adsorbed on hydroxyapatite surfaces. Journal of Materials Chemistry B, 2014, 2, 6953-6966.	2.9	41
158	Preparation of micro-molded exfoliated clay nanocomposites by means of ultrasonic technology. Journal of Polymer Research, 2014, 21, 1.	1.2	14
159	Mineralization of DNA into nanoparticles of hydroxyapatite. Dalton Transactions, 2014, 43, 317-327.	1.6	39
160	Poly(Ester Amide)s. , 2014, , 145-166.		11
161	Hybrid nanofibers from biodegradable polylactide and polythiophene for scaffolds. RSC Advances, 2014, 4, 15245.	1.7	19
162	Molecular characterization of l-phenylalanine terminated poly(l-lactide) conjugates. RSC Advances, 2014, 4, 23231.	1.7	11

#	Article	IF	CITATIONS
163	Thermoplastic Polyurethane:Polythiophene Nanomembranes for Biomedical and Biotechnological Applications. ACS Applied Materials & Samp; Interfaces, 2014, 6, 9719-9732.	4.0	45
164	Restricted Puckering of Mineralized RNA-Like Riboses. Journal of Physical Chemistry B, 2014, 118, 5075-5081.	1.2	5
165	Nucleation and Antinucleation Effects of Functionalized Carbon Nanotubes on Cyclic and Linear Poly(Îμ-caprolactones). Macromolecules, 2014, 47, 3553-3566.	2.2	70
166	Isothermal and non-isothermal crystallization kinetics of a polyglycolide copolymer having a tricomponent middle soft segment. Thermochimica Acta, 2014, 585, 71-80.	1.2	14
167	Effects of ultrasonic vibration on the micro-molding processing of polylactide. Ultrasonics Sonochemistry, 2014, 21, 376-386.	3.8	66
168	Anhydric maleic functionalization and polyethylene glycol grafting of lactide-co-trimethylene carbonate copolymers. Materials Science and Engineering C, 2014, 42, 517-528.	3.8	2
169	Synthesis and Properties of Poly(l-lactide)-b-poly (l-phenylalanine) Hybrid Copolymers. International Journal of Molecular Sciences, 2014, 15, 13247-13266.	1.8	9
170	Synthesis and characterization of poly(ester amides)s with a variable ratio of branched odd diamide units. Journal of Applied Polymer Science, 2014, 131, .	1.3	7
171	Modeling biominerals formed by apatites and DNA. Biointerphases, 2013, 8, 10.	0.6	28
172	Structural transitions of nylon 47 and clay influence on its crystallization behavior. European Polymer Journal, 2013, 49, 1354-1364.	2.6	13
173	Sensitive thermal transitions of nanoscale polymer samples using the bimetallic effect: Application to ultra-thin polythiophene. Review of Scientific Instruments, 2013, 84, 053904.	0.6	11
174	Bioactive nanomembranes of semiconductor polythiophene and thermoplastic polyurethane: thermal, nanostructural and nanomechanical properties. Polymer Chemistry, 2013, 4, 568-583.	1.9	29
175	Study on the hydrolytic degradation of glycolide/trimethylene carbonate copolymers having different microstructure and composition. Polymer Degradation and Stability, 2013, 98, 133-143.	2.7	11
176	Polylactide nanofibers loaded with vitamin B6 and polyphenols as bioactive platform for tissue engineering. Macromolecular Research, 2013, 21, 775-787.	1.0	41
177	New insights on the crystallization and melting of cyclic PCL chains on the basis ofÂa modified Thomson–Gibbs equation. Polymer, 2013, 54, 846-859.	1.8	82
178	Hybrid Block Copolymers Constituted by Peptides and Synthetic Polymers: An Overview of Synthetic Approaches, Supramolecular Behavior and Potential Applications. Polymers, 2013, 5, 188-224.	2.0	35
179	Study on the hydrolytic degradation of the segmented GL-b-[GL-co-TMC-co-CL]-b-GL copolymer with application as monofilar surgical suture. Polymer Degradation and Stability, 2013, 98, 2709-2721.	2.7	7
180	Nanospheres and nanocapsules of amphiphilic copolymers constituted by methoxypolyethylene glycol cyanoacrylate and hexadecyl cyanoacrylate units. EXPRESS Polymer Letters, 2013, 7, 2-20.	1.1	13

#	Article	IF	CITATIONS
181	Influence of microstructure on the crystallization of segmented copolymers constituted by glycolide and trimethylene carbonate units. EXPRESS Polymer Letters, 2013, 7, 186-198.	1.1	5
182	Nanomembranes and Nanofibers from Biodegradable Conducting Polymers. Polymers, 2013, 5, 1115-1157.	2.0	90
183	Biodegradable polyesters reinforced with triclosan loaded polylactide micro/nanofibers: Properties, release and biocompatibility. EXPRESS Polymer Letters, 2012, 6, 266-282.	1.1	30
184	Conformational Exploration of Two Peptides and Their Hybrid Polymer Conjugates: Potentialities As Self-Aggregating Materials. Journal of Physical Chemistry B, 2012, 116, 13941-13952.	1.2	7
185	New Sulfonated Polystyrene and Styrene–Ethylene/Butylene–Styrene Block Copolymers for Applications in Electrodialysis. Journal of Physical Chemistry B, 2012, 116, 11767-11779.	1.2	63
186	Biodegradable free-standing nanomembranes of conducting polymer:polyester blends as bioactive platforms for tissue engineering. Journal of Materials Chemistry, 2012, 22, 585-594.	6.7	42
187	Thermal degradation studies of poly(trimethylene carbonate) blends with either polylactide or polycaprolactone. Thermochimica Acta, 2012, 550, 65-75.	1.2	39
188	Copolymerization of potassium chloroacetate and potassium <i>N</i> hloroacetylâ€6â€aminohexanoate. Journal of Applied Polymer Science, 2012, 126, 1425-1436.	1.3	3
189	Electrospun nanofibers of a degradable poly(ester amide). Scaffolds loaded with antimicrobial agents. Journal of Polymer Research, 2012, 19, 1.	1.2	23
190	Synthesis of glycolide/trimethylene carbonate copolymers: Influence of microstructure on properties. European Polymer Journal, 2012, 48, 60-73.	2.6	19
191	Thermal degradation studies on homopolymers and copolymers based on trimethylene carbonate and glycolide units. Thermochimica Acta, 2012, 528, 23-31.	1.2	12
192	Single crystals morphology of biodegradable double crystalline PLLA-b-PCL diblock copolymers. Polymer, 2011, 52, 5166-5177.	1.8	42
193	Electrospinning of polylactide and polycaprolactone mixtures for preparation of materials with tunable drug release properties. Journal of Polymer Research, 2011, 18, 1903-1917.	1.2	66
194	Crystallization studies on a clay nanocomposite prepared from a degradable poly(ester amide) constituted by glycolic acid and 6â€aminohexanoic acid. Polymer Engineering and Science, 2011, 51, 1650-1661.	1.5	5
195	Nonisothermal crystallization behavior of a biodegradable segmented copolymer constituted by glycolide and trimethylene carbonate units. Journal of Applied Polymer Science, 2011, 119, 1548-1559.	1.3	5
196	Preparation and release study of ibuprofenâ€loaded porous matrices of a biodegradable poly(ester) Tj ETQq0 0 0) rgBJ /Ove	erlock 10 Tf 50
197	Thermal stability studies on clay nanocomposites prepared from a degradable poly(ester amide) constituted by glycolic acid and 6-aminohexanoic acid. Thermochimica Acta, 2011, 512, 142-149.	1.2	8
198	Poly(ester amide) nanocomposites by in situ polymerization: Kinetic studies on polycondensation and crystallization. EXPRESS Polymer Letters, 2011, 5, 717-731.	1.1	3

#	Article	IF	CITATIONS
199	Degradable Poly(ester amide)s for Biomedical Applications. Polymers, 2011, 3, 65-99.	2.0	176
200	Simple and efficient hash-based verifiable mixing for remote electronic voting. Computer Communications, 2010, 33, 667-675.	3.1	17
201	Influence of degradation on the crystallization behaviour of a biodegradable segmented copolymer constituted by glycolide and trimethylene carbonate units. Polymer Degradation and Stability, 2010, 95, 2376-2387.	2.7	6
202	Isothermal crystallization study on a biodegradable segmented copolymer constituted by glycolide and trimethylene carbonate units. Journal of Applied Polymer Science, 2010, 116, 577-589.	1.3	9
203	Brill transition and melt crystallization of nylon 56: An odd–even polyamide with two hydrogen-bonding directions. Polymer, 2010, 51, 5788-5798.	1.8	83
204	Study on the brill transition and melt crystallization of nylon 65: A polymer able to adopt a structure with two hydrogen-bonding directions. European Polymer Journal, 2010, 46, 2063-2077.	2.6	15
205	Conducting poly(3,4-ethylenedioxythiophene)-montmorillonite exfoliated nanocomposites. European Polymer Journal, 2010, 46, 977-983.	2.6	23
206	Crystallization behavior of clay nanocomposites prepared from a degradable alternating copolyester constituted by glycolic acid and 6â€hydroxyhexanoic acid. Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 33-46.	2.4	2
207	Incorporation of triclosan into polydioxanone monofilaments and evaluation of the corresponding release. Journal of Applied Polymer Science, 2009, 114, 3440-3451.	1.3	11
208	Poly(ester amide)/clay nanocomposites prepared by ⟨i⟩in situ⟨/i⟩ polymerization of the sodium salt of ⟨i⟩N⟨/i⟩ hloroacetylâ€6â€aminohexanoic acid. Journal of Polymer Science Part A, 2009, 47, 3616-3629.	2.5	14
209	Sequence analysis of glycolide and <i>p</i> â€dioxanone copolymers. Journal of Polymer Science Part A, 2009, 47, 6758-6770.	2.5	5
210	Crystalline structure of sequential poly(ester amide)s derived from glycolic acid, 1,6â€hexanediamine, and even aliphatic dicarboxylic acids. Journal of Polymer Science, Part B: Polymer Physics, 2009, 47, 194-206.	2.4	11
211	Degradable polyoctamethylene suberate/clay nanocomposites. Crystallization studies by DSC and simultaneous SAXS/WAXD synchrotron radiation. European Polymer Journal, 2009, 45, 398-409.	2.6	13
212	Enzymatic degradation of poly(octamethylene suberate) lamellar crystals. Polymer Degradation and Stability, 2009, 94, 1941-1947.	2.7	4
213	New voter verification scheme using pre-encrypted ballots. Computer Communications, 2009, 32, 1219-1227.	3.1	8
214	Synthesis of poly(ester amide)s with lateral groups from a bulk polycondensation reaction with formation of sodium chloride salts. Journal of Polymer Science Part A, 2008, 46, 661-667.	2.5	17
215	Nonisothermal crystallization studies on poly(4â€hydroxybutyric acidâ€ <i>alt</i> â€glycolic acid). Journal of Polymer Science, Part B: Polymer Physics, 2008, 46, 121-133.	2.4	7
216	Study of clay nanocomposites of the biodegradable polyhexamethylene succinate. Application of isoconversional analysis to nonisothermal crystallization. Journal of Polymer Science, Part B: Polymer Physics, 2008, 46, 2234-2248.	2.4	15

#	Article	IF	CITATIONS
217	Polycondensation of Metal Salts of 6â€(2â€Chloroacetate)hexanoic Acid: A New Method to Synthesize Alternating Copolyesters Constituted by Glycolic Acid Units. Macromolecular Chemistry and Physics, 2008, 209, 393-403.	1.1	2
218	Microspheres of new alternating copolyesters derived from glycolic acid units for controlled drug release. Journal of Applied Polymer Science, 2008, 110, 2127-2138.	1.3	2
219	Single crystal morphology and structural data of a series of polyesters derived from 1,8-octanediol. European Polymer Journal, 2008, 44, 2295-2307.	2.6	21
220	LACDIF, a new electron diffraction technique obtained with the LACBED configuration and a Cs corrector: Comparison with electron precession. Ultramicroscopy, 2008, 108, 100-115.	0.8	26
221	Comparative thermal degradation studies on glycolide/trimethylene carbonate and lactide/trimethylene carbonate copolymers. Journal of Applied Polymer Science, 2007, 104, 3539-3553.	1.3	12
222	Morphology and structure of poly(p-dioxanone). European Polymer Journal, 2007, 43, 4662-4674.	2.6	20
223	The hydrolytic degradation of a segmented glycolide–trimethylene carbonate copolymer (Maxonâ,,¢). Polymer Degradation and Stability, 2007, 92, 975-985.	2.7	22
224	Crystalline structure of poly(hexamethylene succinate) and single crystal degradation studies. Polymer, 2007, 48, 5088-5097.	1.8	41
225	Isothermal crystallization of poly(glycolic acid-alt-6-hydroxyhexanoic acid) studied by DSC and real time synchrotron SAXS/WAXD. Polymer, 2007, 48, 6018-6028.	1.8	10
226	Alternating poly(ester amide)s of glycolic acid and ï‰-amino acids: Crystalline morphology and main crystallographic data. Journal of Polymer Science, Part B: Polymer Physics, 2007, 45, 815-825.	2.4	11
227	Isothermal crystallization kinetics and spherulitic morphology of poly(4â€hydroxybutyric) Tj ETQq1 1 0.784314 r	gBT∤Over 2.4	loçk 10 Tf 50
228	Remote Voting Schemes: A Comparative Analysis. , 2007, , 16-28.		5
229	Microspheres from new biodegradable poly(ester amide)s with different ratios of L- and D-alanine for controlled drug delivery. Journal of Microencapsulation, 2006, 23, 686-697.	1.2	26
230	Crystalline Structure of Poly(hexamethylene adipate). Study on the Morphology and the Enzymatic Degradation of Single Crystals. Biomacromolecules, 2006, 7, 799-808.	2.6	33
231	Morpholine-2,5-dione. Acta Crystallographica Section C: Crystal Structure Communications, 2006, 62, o262-o264.	0.4	3
232	6-(2-Chloroacetamido)hexanoic acid. Acta Crystallographica Section C: Crystal Structure Communications, 2006, 62, o498-o500.	0.4	0
233	Copolymerization of glycolide and trimethylene carbonate. Journal of Polymer Science Part A, 2006, 44, 993-1013.	2.5	44
234	Synthesis of poly(glycolic acid-alt-12-aminododecanoic acid): The thermal polymerization kinetics of sodiumN-chloroacetyl-12-aminododecanoate. Journal of Polymer Science Part A, 2006, 44, 1199-1213.	2.5	4

#	Article	IF	CITATIONS
235	Crystallization kinetics of poly(glycolic acid-alt-6-aminohexanoic acid). European Polymer Journal, 2006, 42, 1595-1608.	2.6	19
236	Thermal stability and degradation studies of alternating poly(ester amide)s derived from glycolic acid and ï‰-amino acids. Journal of Applied Polymer Science, 2006, 102, 5545-5558.	1.3	20
237	Triclosan Release from Coated Polyglycolide Threads. Macromolecular Bioscience, 2006, 6, 58-69.	2.1	51
238	Loading and Release of Ibuprofen in Multi- and Monofilament Surgical Sutures. Macromolecular Bioscience, 2006, 6, 767-775.	2.1	54
239	Poly[(4-hydroxybutyric acid)-alt-(glycolic acid)]: Synthesis by Thermal Polycondensation of Metal Salts of 4-Chlorobutyric Acid Carboxymethyl Ester. Macromolecular Chemistry and Physics, 2006, 207, 90-103.	1.1	8
240	Synthesis, characterization and degradation studies on the series of sequential poly(ester amide)s derived from glycolic acid, 1,6-hexanediamine and aliphatic dicarboxylic acids. Polymer Degradation and Stability, 2005, 89, 21-32.	2.7	24
241	N,N′-Butane-1,4-diylbis(bromoacetamide). Acta Crystallographica Section C: Crystal Structure Communications, 2005, 61, o345-o347.	0.4	2
242	Butane-1,4-diyl bis(bromoacetate). Acta Crystallographica Section E: Structure Reports Online, 2005, 61, o1028-o1031.	0.2	0
243	Synthetic polymers containing \hat{l}_{\pm} -amino acids: from polyamides to poly(ester amide)s. Journal of Peptide Science, 2005, 11, 247-249.	0.8	11
244	Kinetic studies on the thermal polymerization of N-chloroacetyl-11-aminoundecanoate potassium salt. Journal of Polymer Science Part A, 2005, 43, 1166-1176.	2.5	22
245	Structural Data on Regular Poly(ester amide)s Derived from Even Diols, Glycine, and Terephthalic Acid. Crystal Growth and Design, 2005, 5, 1099-1107.	1.4	13
246	Molecular packing and crystalline morphologies of biodegradable poly(alkylene dicarboxylate)s derived from 1,6-hexanediol. Polymer, 2004, 45, 8845-8861.	1.8	30
247	Butane-1,4-diyl bis(chloroacetate). Acta Crystallographica Section C: Crystal Structure Communications, 2004, 60, 0847-0849.	0.4	0
248	Synthesis and Characterization of Poly(glycolic acid-alt-6-aminohexanoic acid) and Poly(glycolic) Tj ETQq0 0 0 rg	3T/Overlo	ck_10 Tf 50 2
249	New Method of Synthesis of Poly(ester amide)s Derived from the Incorporation of Glycolic Acid Residues into Aliphatic Polyamides. Macromolecular Rapid Communications, 2004, 25, 812-817.	2.0	39
250	Poly(ester amide)s derived from 1,4-butanediol, adipic acid and 6-aminohexanoic acid. Polymer Degradation and Stability, 2004, 85, 595-604.	2.7	12
251	Molecular Packing of Polyesters Derived from 1,4-Butanediol and Even Aliphatic Dicarboxylic Acids. Macromolecules, 2004, 37, 5300-5309.	2.2	39
252	Synthesis of Poly(ester amide)s Derived from Glycolic Acid and the Amino Acids:β-Alanine or 4-Aminobutyric Acid. Macromolecular Chemistry and Physics, 2003, 204, 2078-2089.	1.1	22

#	Article	IF	Citations
253	Crystallization kinetics of poly(hexamethylene succinate). European Polymer Journal, 2003, 39, 1575-1583.	2.6	22
254	Poly(ester amide)s derived from 1,4-butanediol, adipic acid and 6-aminohexanoic acid. Part II: composition changes and fillers. Polymer, 2003, 44, 6139-6152.	1.8	37
255	N-Chloroacetyl-Î ² -alanine. Acta Crystallographica Section C: Crystal Structure Communications, 2003, 59, o24-o26.	0.4	2
256	Crystallization kinetics of PGBG4: A sequential poly(ester amide) derived from glycine, 1,4-butanediol, and adipic acid. Journal of Polymer Science, Part B: Polymer Physics, 2003, 41, 903-912.	2.4	5
257	Synthesis and Characterization of a New Degradable Poly(ester amide) Derived from 6-Amino-1-hexanol and Glutaric Acid. Macromolecules, 2003, 36, 9784-9796.	2.2	35
258	On the Crystalline Structures of Poly(tetramethylene adipate). Macromolecules, 2003, 36, 698-705.	2.2	67
259	Crystalline Structure of Poly(decamethylene sebacate). Repercussions on Lamellar Folding Surfaces. Macromolecules, 2002, 35, 3630-3635.	2.2	18
260	On the Crystalline Structure of Even Polyoxalamides. Macromolecules, 2002, 35, 8781-8787.	2.2	16
261	Study on the Degradability of Poly(ester amide)s Related to Nylons and Polyesters 6,10 or 12,10. Macromolecular Chemistry and Physics, 2002, 203, 48-58.	1.1	40
262	Characterization and degradation behavior of poly(butylene adipate-co-terephthalate)s. Journal of Polymer Science Part A, 2002, 40, 4141-4157.	2.5	176
263	Spherulites from polyamides with a structure characterized by three hydrogen-bond directions. Journal of Polymer Science, Part B: Polymer Physics, 2002, 40, 1719-1726.	2.4	2
264	Structural Versatility of Oxalamide-Based Compounds:Â A Computational Study on the Isomerization of the Oxalamide Group and the Structural Preferences of the Polyoxalamides. Journal of Organic Chemistry, 2001, 66, 8076-8085.	1.7	14
265	Crystal Structure of the α-Form of Poly(l-lactide). Macromolecules, 2001, 34, 4795-4801.	2.2	191
266	N,N \hat{a} \in ² -Bis(methoxycarbonylmethyl)terephthalamide. Acta Crystallographica Section C: Crystal Structure Communications, 2001, 57, 172-173.	0.4	4
267	DimethylN,N′-oxalamidodiethanoate. Acta Crystallographica Section C: Crystal Structure Communications, 2001, 57, 932-933.	0.4	3
268	Poly(ester amide)s derived from glycine, even-numbered diols, and dicarboxylic acids: Considerations on the packing. Journal of Polymer Science, Part B: Polymer Physics, 2001, 39, 1036-1045.	2.4	12
269	Synthesis, Structure and Crystal Morphology of Nylon 2/16. Macromolecular Chemistry and Physics, 2001, 202, 2606-2613.	1.1	3
270	Structure of Poly(amino-s-triazine)s with Long Methylene Segments. Macromolecular Chemistry and Physics, 2001, 202, 3316-3322.	1.1	7

#	Article	IF	CITATIONS
271	Structure of poly(hexamethylene sebacate). Polymer, 2001, 42, 5695-5699.	1.8	27
272	Study on the degradability of poly(ester amide)s derived from the \hat{l}_{\pm} -amino acids glycine, and ?-alanine containing a variable amide/ester ratio. Polymer, 2001, 42, 7923-7932.	1.8	58
273	Conformational preferences of the 1,2-hydrazine dicarboxylic acid dimethyl ester. A comparison with the hydrazide analogue. Computational and Theoretical Chemistry, 2001, 541, 179-183.	1.5	2
274	Conformational preferences of model aliphatic diamides: Effect of the methyl side group on the polymethylene segment. Macromolecular Theory and Simulations, 2000, 9, 242-248.	0.6	2
275	Crystal structure of N, Nâ \in 2-dipropylsuberamide and N, Nâ \in 2-dipropylse bacamide as a packing model of the α-form of even-even nylons. Macromolecular Chemistry and Physics, 2000, 201, 1726-1731.	1.1	6
276	A sheet structure in an alternate copolymer of 4-aminobutyric acid and \hat{l}_{\pm} -isobutyl- l -glutamate. Polymer, 2000, 41, 5437-5441.	1.8	1
277	Studies on the degradability of a poly(ester amide) derived from l-alanine, 1,12-dodecanediol and 1,12-dodecanedioic acid. Polymer, 2000, 41, 5967-5970.	1.8	47
278	Packing of Sequential Poly(ester amide)s Derived from Diols, Dicarboxylic Acids, and Amino Acids. Macromolecules, 2000, 33, 9090-9097.	2.2	25
279	Incorporation of glycine residues in even–even polyamides. Part II: Nylons 6,10 and 12,10. Polymer, 1999, 40, 2429-2438.	1.8	9
280	Crystallographic structures on the sequential copolymer of Îμ-caprolactam and pyrrolidinone (nylon) Tj ETQq0 0	0 rgBT /Ov	verlock 10 Tf 5
281	Structure of odd–even nylons derived from 2-methylpentamethylenediamine. Effect of the side methyl group. Polymer, 1999, 40, 6887-6892.	1.8	6
282	A model compound for poly(ester amide)s: diethyl-3,9-diaza-4,8-dioxoundecanedioate. Journal of Chemical Crystallography, 1999, 29, 1049-1052.	0.5	0
283	Comparative studies on the degradability of poly(ester amide)s derived fromL- andL,D-alanine. Journal of Applied Polymer Science, 1999, 74, 2312-2320.	1.3	44
284	On the crystal structure of odd-even nylons: Polymorphism of nylon 5,10., 1999, 37, 2383-2395.		33
285	Preferences of the Oxalamide and Hydrazide Moieties in Vacuum and Aqueous Solution. A Comparison with the Amide Functionality. Journal of Organic Chemistry, 1999, 64, 351-358.	1.7	16
286	Structural data on the packing of poly(ester amide)s derived from glycine, hexanediol, and odd-numbered dicarboxylic acids. Journal of Polymer Science, Part B: Polymer Physics, 1999, 37, 2521-2533.	2.4	30
287	Title is missing!. Journal of Chemical Crystallography, 1998, 28, 605-610.	0.5	2
288	An experimental Ramachandran plot for retropeptide derivatives: Conformational features of derivatives of GEM-diamino and malonyl amino acids., 1998, 45, 149-155.		4

#	Article	IF	Citations
289	A quantum mechanical study of the folding of methylene units in compounds with several glutaramide units: nylon 1,5. Macromolecular Theory and Simulations, 1998, 7, 367-372.	0.6	1
290	On the conformational preferences of nylons-n: Analysis of the intramolecular interactions in even nylons-n. Macromolecular Theory and Simulations, 1998, 7, 659-664.	0.6	7
291	Study of diethyl 3,12-diaza-4,11-dioxotetradecanedioate as a model compound of poly(ester amide)s derived from glycine. Macromolecular Chemistry and Physics, 1998, 199, 1167-1171.	1.1	5
292	Incorporation of glycine residues in even–even nylons disrupts their characteristic all-trans conformation. Polymer, 1998, 39, 5553-5560.	1.8	5
293	Crystallographic and Quantum Mechanical Results on Î [NHCO] Aliphatic Diamides. The Number of Methylenes Strongly Influences Their Structural and Conformational Properties. Macromolecules, 1998, 31, 408-416.	2.2	11
294	Crystal Structures of Nylon 5,6. A Model with Two Hydrogen Bond Directions for Nylons Derived from Odd Diamines. Macromolecules, 1998, 31, 8540-8548.	2.2	64
295	Structure and Morphology of Odd Polyoxamides [Nylon 9,2]. A New Example of Hydrogen-Bonding Interactions in Two Different Directions. Macromolecules, 1998, 31, 3912-3924.	2.2	49
296	Effect of the Folding of Methylene Units in the Conformational Preferences of Small Diesters. Journal of Organic Chemistry, 1997, 62, 3076-3080.	1.7	17
297	Conformational Preferences of the Asparagine Residue. Gas-Phase, Aqueous Solution, and Chloroform Solution Calculations on the Model Dipeptide. Journal of Physical Chemistry B, 1997, 101, 3441-3446.	1.2	32
298	Free energies of solvation in aqueous and organic solutions for solutes with amide, keto and ester functional groups. Chemical Physics, 1997, 222, 9-15.	0.9	6
299	On the Crystal Structure of Nylon 55. Macromolecules, 1996, 29, 5406-5415.	2.2	21
300	Synthesis and structural study of a new biodegradable copolymer of nylon-11 and l-alanine. Polymer, 1996, 37, 4175-4181.	1.8	19
301	Chain conformation in polyretropeptides. II. Quantum mechanical and empirical force field calculations on 2,5,9,11-Tetraoxo-3,6,8,12-tetraza-tridecane, a model compound for the terpolymer of glycine and its retropeptides. Journal of Polymer Science, Part B: Polymer Physics, 1996, 34, 1327-1338.	2.4	7
302	Towards the Understanding of the Folding of Methylene Units in the Glutamine Residue. Journal of Peptide Science, 1996, 2, 364-370.	0.8	7
303	Comparison between Diketones and Diamides:Â Effects of Carbonyl Groups on the Conformational Preferences of Small Aliphatic Segments. The Journal of Physical Chemistry, 1996, 100, 16131-16136.	2.9	21
304	Study of 1,4-bis(propylaminomalonylamino)butane as a model compound for nylons n,3. Macromolecular Chemistry and Physics, 1995, 196, 2361-2370.	1.1	13
305	Incorporation of diacids into the polyglycine II structure: Model studies. Biopolymers, 1995, 36, 711-722.	1.2	39
306	Synthesis and characterization of glycine copolymers of nylons 6 and 12. Journal of Polymer Science Part A, 1995, 33, 727-741.	2.5	7

#	Article	IF	CITATIONS
307	Structural data and thermal studies on nylon-12,10. Journal of Polymer Science, Part B: Polymer Physics, 1995, 33, 2065-2073.	2.4	34
308	Conformational analysis of succinamide analogs. Journal of Organic Chemistry, 1995, 60, 6135-6140.	1.7	43
309	Nylon 65 has a Unique Structure with Two Directions of Hydrogen Bonds. Macromolecules, 1995, 28, 8742-8750.	2.2	50
310	Retromodified Residues: Small Peptides and Polymers. Interactions, Force-Field Parametrization and Conformational Analyses. Journal of Organic Chemistry, 1995, 60, 910-924.	1.7	54
311	Folding of Methylene Groups in Linear Glutaramide Analogs. Journal of the American Chemical Society, 1995, 117, 7307-7310.	6.6	39
312	Glycine residues induce a helical structure in polyamides. Polymer, 1994, 35, 1291-1297.	1.8	34
313	Synthesis and Structure of Nylons 1,n. Macromolecules, 1994, 27, 4284-4297.	2.2	23
314	Conformations of Nylons 1,n According to the Number of Methylene Carbons. Macromolecules, 1994, 27, 4298-4303.	2.2	17
315	Crystal structure of a helical oligopeptide model of polyglycine II and of other polyamides: Acetyl-(glycyl-β-alanyl)2-NHpropyl. Biopolymers, 1992, 32, 643-648.	1.2	30
316	Preliminary study of the crystal structure of nylon $2/11$. Journal of Polymer Science, Part B: Polymer Physics, 1989, 27, 1563-1567.	2.4	10
317	Helical and sheet structures in the nylon 4 derivatives poly (α-benzyl-L-glutamate) and poly-(α-methyl-L-glutamate). Makromolekulare Chemie Macromolecular Symposia, 1988, 20-21, 167-182.	0.6	12
318	Morphology and crystalline structure of nylon-2/6. Polymer, 1987, 28, 209-212.	1.8	29
319	Synthesis and structural data of nylon 1,4. Journal of Polymer Science Part A, 1987, 25, 1445-1448.	2.5	5
320	Crystal structure of nylons 2/3/3 and 1,3. Journal of Polymer Science, Part B: Polymer Physics, 1987, 25, 513-523.	2.4	20
321	Crystals of polyglycine in the \hat{l}^2 form. Journal of Molecular Biology, 1983, 167, 223-225.	2.0	17
322	Use of poly(limonene-8,9-oxide carbonate) as a bio-based prepolymer for epoxy thermoset production \hat{A} .		0