K Gopakumar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2700608/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Very High Resolution 30-Sided Space Vector Generation From a Single DC-Link for Induction Motor Drives. IEEE Transactions on Industrial Electronics, 2022, 69, 160-168.	5.2	7
2	A Single DC-Link Multilevel 42-Sided Polygonal Voltage Space Vector Generation With Lower Order Harmonic Suppression Using Switched-Capacitor Filter. IEEE Transactions on Industrial Electronics, 2022, 69, 12369-12378.	5.2	0
3	A Multilevel Inverter With Inherent Common Coupling Point Voltage Balancing of Stacked Capacitors Across a Single DC-Link for Induction Motor Drives. IEEE Transactions on Industrial Electronics, 2022, 69, 12496-12505.	5.2	4
4	A Ten-Level Inverter Fed Drive Scheme with Extended Linear Modulation Range. IEEE Transactions on Industrial Electronics, 2022, 69, 12261-12269.	5.2	2
5	A Multilevel Inverter for Instantaneous Voltage Balancing of Single Sourced Stacked DC-Link Capacitors for an Induction Motor Load. IEEE Transactions on Power Electronics, 2022, 37, 10633-10641.	5.4	7
6	A General Multilevel Polygonal Space Vector Generation Scheme With Reduced Switching for the Inverter and Harmonic Suppression Using a Switched-Capacitive Filter for the Full Modulation Range. IEEE Transactions on Power Electronics, 2022, 37, 8167-8176.	5.4	7
7	A Fault-Tolerant 24-Sided Voltage Space Vector Structure for Open-End Winding Induction Motor Drive. IEEE Transactions on Power Electronics, 2022, 37, 10738-10746.	5.4	4
8	A Fault-Tolerant Inverter Circuit to Generate Thirteen-Level 24-Sided Voltage Space Vector Structure for Open-End Winding Induction Motor Drive. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2022, 10, 7539-7548.	3.7	6
9	Variable Speed Induction Motor Drive Scheme with Very Dense 18-sided Voltage Space Vector Structure. , 2022, , .		0
10	A Cascaded Nine-Level Inverter Topology With T-Type and H-Bridge With Increased DC-Bus Utilization. IEEE Transactions on Power Electronics, 2021, 36, 285-294.	5.4	28
11	A Fault-Tolerant Five-Level Inverter Topology With Reduced Component Count for OEIM Drives. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9, 961-969.	3.7	24
12	Suppression of Lower Order Harmonics for the Full Modulation Range for a Two-Level Inverter-Fed IM Drive With a Switched-Capacitive Filter Technique Forming a 42-Sided Voltage Space Vector Structure. IEEE Transactions on Industrial Electronics, 2021, 68, 6701-6709.	5.2	6
13	Hybrid SHM-PWM for Common-Mode Voltage Reduction in Three-Phase Three-Level NPC Inverter. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9, 4826-4838.	3.7	13
14	A Multilevel 30-Sided Space Vector Structure With Congruent Triangles and Timing Calculation Using Only Sampled Reference Voltages. IEEE Transactions on Industrial Electronics, 2021, 68, 7884-7894.	5.2	4
15	A Dense Multilevel 30-Sided Space Vector Generation Using a Single DC Link for an Induction Motor Drive. IEEE Transactions on Power Electronics, 2021, 36, 11681-11690.	5.4	4
16	Suppression of lower order harmonics by Switched-Capacitive filtering using Polygonal Space Vector Structures and Capacitor Sizing for Induction Motor Drive Applications. , 2021, , .		1
17	A 24-sided Polygonal Voltage Space Vector Structure for IM drive with Open end winding Configuration. , 2021, , .		4
18	Suppression of Lower Order Harmonics using a 21-Concentric 42-sided polygonal Space Vector Structure for Induction Motor Drive Applications. , 2021, , .		0

K Gopakumar

#	Article	IF	CITATIONS
19	Minimization of Switched Capacitor Voltage Ripple in a Multilevel Dodecagonal Voltage Space Vector Structure for Drives. IEEE Transactions on Industrial Electronics, 2020, 67, 126-135.	5.2	6
20	A 5-Level Inverter Scheme Using Single DC Link With Reduced Number of Floating Capacitors and Switches for Open-End IM Drives. IEEE Transactions on Industrial Electronics, 2020, 67, 960-968.	5.2	38
21	A Switched Capacitive Filter-Based Harmonic Elimination Technique by Generating a 30-Sided Voltage Space Vector Structure for IM Drive. IEEE Transactions on Power Electronics, 2020, 35, 2402-2410.	5.4	11
22	A Nine Level Inverter Topology with Linear Operation at Over-modulation Region. , 2020, , .		3
23	Generation of 42-sided polygonal Voltage Space Vector Structure for suppression of lower order harmonics in IM Drive Applications. , 2020, , .		4
24	A Novel DC to AC Converter Topology based on Magnetic Flux Rate Switching. , 2020, , .		3
25	A Fifteen Concentric 30-sided Polygonal Space Vector Structure Using a Single DC-link for OEIM drive. , 2020, , .		0
26	Remote Micro-Grid Synchronization Without Measurements at the Point of Common Coupling. IEEE Access, 2020, 8, 212753-212764.	2.6	19
27	A Multilevel 30-sided Space Vector Structure Generation for an Induction Motor Drive Using a Single DC-link. , 2020, , .		0
28	Extending the Linear Modulation Range to Full Base Speed Independent of Load Power Factor for a Multilevel Inverter Fed IM Drive. IEEE Transactions on Industrial Electronics, 2020, 67, 9143-9152.	5.2	10
29	A Novel approach for the analysis of Harmonic Suppression in higher-sided polygonal SV structures. , 2020, , .		3
30	Instantaneous Balancing of Neutral-Point Voltages for Stacked DC-Link Capacitors of a Multilevel Inverter for Dual-Inverter-Fed Induction Motor Drives. IEEE Transactions on Power Electronics, 2019, 34, 2505-2514.	5.4	25
31	A 30-sided polygonal space vector structure with modular low voltage capacitor fed cascaded H bridge for IM drive. , 2019, , .		0
32	A Hybrid 7-Level Inverter Using Low-Voltage Devices and Operation With Single DC-Link. IEEE Transactions on Power Electronics, 2019, 34, 9844-9853.	5.4	59
33	A Twelve Concentric Multilevel Twenty-Four Sided Polygonal Voltage Space Vector Structure for Variable Speed Drives. IEEE Transactions on Power Electronics, 2019, 34, 9906-9915.	5.4	8
34	Multilevel 24-Sided Polygonal Voltage-Space-Vector Structure Generation for an IM Drive Using a Single DC Source. IEEE Transactions on Industrial Electronics, 2019, 66, 1023-1031.	5.2	16
35	Generation of High-Resolution 12-Sided Voltage Space Vector Structure Using Low-Voltage Stacked and Cascaded Basic Inverter Cells. IEEE Transactions on Power Electronics, 2018, 33, 7349-7358.	5.4	16
36	A Two-Phase Five-Level Converter With Least Number of Power Switches Requiring Only a Single DC Source. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2018, 6, 1942-1952.	3.7	18

#	Article	IF	CITATIONS
37	A New Two-Phase Five-Level Converter for Three-Phase Isolated Grid-Tied Systems With Inherent Capacitor Balancing and Reduced Component Count. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2018, 6, 1325-1335.	3.7	15
38	A Low-Order Harmonic Elimination Scheme for Induction Motor Drives Using a Multilevel Octadecagonal Space Vector Structure With a Single DC Source. IEEE Transactions on Power Electronics, 2018, 33, 2430-2437.	5.4	15
39	A Very High Resolution Stacked Multilevel Inverter Topology for Adjustable Speed Drives. IEEE Transactions on Industrial Electronics, 2018, 65, 2049-2056.	5.2	37
40	A Hybrid Seven Level Inverter Topology Formed by Cascading T-Type and Active Neutral Point Clamped Inverter for Induction Motor Drives. , 2018, , .		5
41	Cascaded Active Neutral Point Clamped and Flying Capacitor Inverter Topology for Induction Motor Drives Applications. , 2018, , .		2
42	A Novel Least Component Count Single DC-link Fed Generalized Multilevel Inverter Configuration for Three-phase High Power Isolated Grid Connected Systems. , 2018, , .		1
43	17â€level inverter with low component count for openâ€end induction motor drives. IET Power Electronics, 2018, 11, 922-929.	1.5	19
44	Fast Capacitor Balancing Scheme for Low Voltage Cascaded H-bridges in Multilevel Dodecagonal Space Vector Structure. , 2018, , .		1
45	Fifth- and Seventh-Order Harmonic Elimination With Multilevel Dodecagonal Voltage Space Vector Structure for IM Drive Using a Single DC Source for the Full Speed Range. IEEE Transactions on Power Electronics, 2017, 32, 60-68.	5.4	25
46	Generation of Higher Number of Voltage Levels by Stacking Inverters of Lower Multilevel Structures With Low Voltage Devices for Drives. IEEE Transactions on Power Electronics, 2017, 32, 52-59.	5.4	96
47	A Harmonic Suppression Scheme for Full Speed Range of a Two-Level Inverter Fed Induction Motor Drive Using Switched Capacitive Filter. IEEE Transactions on Power Electronics, 2017, 32, 2064-2071.	5.4	26
48	A 24-Sided Voltage Space Vector Based IM Drive with Low-Order Harmonic Elimination for the Full Speed Range. IEEE Transactions on Industrial Electronics, 2017, 64, 8437-8445.	5.2	22
49	Novel Symmetric Six-Phase Induction Motor Drive Using Stacked Multilevel Inverters With a Single DC Link and Neutral Point Voltage Balancing. IEEE Transactions on Industrial Electronics, 2017, 64, 2663-2670.	5.2	33
50	Multilevel dodecagonal space vector generation using stacked inverter cells for IM drives. , 2017, , .		0
51	Low Switch Count Nine-Level Inverter Topology for Open-End Induction Motor Drives. IEEE Transactions on Industrial Electronics, 2017, 64, 1009-1017.	5.2	23
52	Extending the Linear Modulation Range to the Full Base Speed Using a Single DC-Link Multilevel Inverter With Capacitor-Fed H-Bridges for IM Drives. IEEE Transactions on Power Electronics, 2017, 32, 5450-5458.	5.4	27
53	An induction motor drive scheme generating twenty-four sided voltage space vector structure with linear modulation range near to base speed. , 2017, , .		1
54	Carrier based modulation technique for space vector PWM of dodecagonal voltage SV structures. , 2017, , .		2

#	Article	IF	CITATIONS
55	Reduced switch count seventeen level inverter topology for open-end induction motor drives. , 2016, ,		0
56	A new nine level stacked inverter topology for a symmetric six phase induction motor with low voltage devices and using a single DC link. , 2016, , .		0
57	Elimination of dead-time transients in a three-level flying capacitor inverter using a state machine for switching state sequence selection. , 2016, , .		2
58	Extended Linear Modulation Operation of a Common-Mode-Voltage-Eliminated Cascaded Multilevel Inverter With a Single DC Supply. IEEE Transactions on Industrial Electronics, 2016, 63, 7372-7380.	5.2	8
59	Timing Calculations for a General N-Level Dodecagonal Space Vector Structure Using Only Reference Phase Voltages. IEEE Transactions on Industrial Electronics, 2016, 63, 1395-1403.	5.2	15
60	Reduced commonâ€mode voltage operation of a new sevenâ€level hybrid multilevel inverter topology with a single DC voltage source. IET Power Electronics, 2016, 9, 519-528.	1.5	34
61	Multilevel Dodecagonal Voltage Space Vector Structure Generation for Open-End Winding IM Using a Single DC Source. IEEE Transactions on Industrial Electronics, 2016, 63, 2757-2765.	5.2	23
62	A Predictive Capacitor Voltage Control of a Hybrid Cascaded Multilevel Inverter With a Single DC-Link and Reduced Common-Mode Voltage Operation. IEEE Transactions on Industrial Electronics, 2016, 63, 5285-5292.	5.2	11
63	A Voltage Space Vector Diagram Formed by Nineteen Concentric Dodecagons for Medium-Voltage Induction Motor Drive. IEEE Transactions on Industrial Electronics, 2015, 62, 6748-6755.	5.2	19
64	Timing calculations for three level dodecagonal space vector structure from reference phase voltages. , 2015, , .		2
65	Nine level inverter for open end induction motor with eight switches per phase. , 2015, , .		3
66	A hybrid multilevel inverter scheme for induction motor drives and grid-tied applications using a single DC-link. , 2015, , .		8
67	Low-Order Harmonic Suppression for Open-End Winding IM With Dodecagonal Space Vector Using a Single DC-Link Supply. IEEE Transactions on Industrial Electronics, 2015, 62, 5340-5347.	5.2	50
68	A hybrid seven level inverter topology with a single DC supply and reduced switch count. , 2015, , .		8
69	Medium-Voltage Drive for Induction Machine With Multilevel Dodecagonal Voltage Space Vectors With Symmetric Triangles. IEEE Transactions on Industrial Electronics, 2015, 62, 79-87.	5.2	44
70	Seventeen-Level Inverter Formed by Cascading Flying Capacitor and Floating Capacitor H-Bridges. IEEE Transactions on Power Electronics, 2015, 30, 3471-3478.	5.4	140
71	A 19 level dodecagonal voltage space vector structure for medium voltage IM drive. , 2014, , .		1
72	A 5th and 7th order harmonic suppression scheme using capacitive filtering for 2-level VSI fed IM drive. , 2014, , .		4

#	Article	IF	CITATIONS
73	A Three-Level Common-Mode Voltage Eliminated Inverter With Single DC Supply Using Flying Capacitor Inverter and Cascaded H-Bridge. IEEE Transactions on Power Electronics, 2014, 29, 1402-1409.	5.4	36
74	A Medium-Voltage Inverter-Fed IM Drive Using Multilevel 12-Sided Polygonal Vectors, With Nearly Constant Switching Frequency Current Hysteresis Controller. IEEE Transactions on Industrial Electronics, 2014, 61, 1700-1709.	5.2	27
75	An open-end winding IM drive with multilevel 12-sided polygonal vectors with symmetric triangles. , 2014, , .		6
76	A Harmonic Suppression Scheme for Open-End Winding Split-Phase IM Drive Using Capacitive Filters for the Full Speed Range. IEEE Transactions on Industrial Electronics, 2014, 61, 5213-5221.	5.2	31
77	A Nine-Level Inverter Topology for Medium-Voltage Induction Motor Drive With Open-End Stator Winding. IEEE Transactions on Industrial Electronics, 2013, 60, 3627-3636.	5.2	120
78	Medium Voltage Drive for Induction Motors Using Multilevel Octadecagonal Voltage Space Vectors. IEEE Transactions on Power Electronics, 2013, 28, 3573-3580.	5.4	21
79	A Space-Vector-Based Hysteresis Current Controller for a General \$n\$-Level Inverter-Fed Drive With Nearly Constant Switching Frequency Control. IEEE Transactions on Industrial Electronics, 2013, 60, 1989-1998.	5.2	62
80	A Hybrid Multilevel Inverter System Based on Dodecagonal Space Vectors for Medium Voltage IM Drives. IEEE Transactions on Power Electronics, 2013, 28, 3723-3732.	5.4	30
81	A Multilevel Inverter Scheme With Dodecagonal Voltage Space Vectors Based on Flying Capacitor Topology for Induction Motor Drives. IEEE Transactions on Power Electronics, 2013, 28, 516-525.	5.4	78
82	Nearly Constant Switching Frequency Hysteresis Current Controller with Fast Online Computation of Boundary for a 2-Level Induction Motor Drive. EPE Journal (European Power Electronics and Drives) Tj ETQq0 C	0.00gBT /O	ve r lock 10 T
83	A Nearly Constant Switching Frequency Current Error Space Vector Based Hysteresis Controller for an IM Drive with 12-Sided Polygonal Voltage Space Vectors. EPE Journal (European Power Electronics) Tj ETQq1 I	l 00784314	4 ngBT /Over
84	A seventeen-level inverter with a single DC-link for motor drives. , 2013, , .		3
85	Multilevel dodecagonal voltage space vector generation using flying capacitor topology for induction motor drives. , 2012, , .		1
86	Fast Direct Torque Control of an Open-End Induction Motor Drive Using 12-Sided Polygonal Voltage Space Vectors. IEEE Transactions on Power Electronics, 2012, 27, 400-410.	5.4	66
87	Online Computation of Hysteresis Boundary for Constant Switching Frequency Current-Error Space-Vector-Based Hysteresis Controller for VSI-Fed IM Drives. IEEE Transactions on Power Electronics, 2012, 27, 1521-1529.	5.4	60
88	Multilevel octadecagonal space vector generation for induction motor drives by cascading asymmetric three level inverters. , 2012, , .		1
89	A Five-Level Inverter Topology with Single-DC Supply by Cascading a Flying Capacitor Inverter and an H-Bridge. IEEE Transactions on Power Electronics, 2012, 27, 3505-3512.	5.4	166
90	A Hybrid Five-Level Inverter With Common-Mode Voltage Elimination Having Single Voltage Source for IM Drive Applications. IEEE Transactions on Industry Applications, 2012, 48, 2037-2047.	3.3	43

K Gopakumar

#	Article	IF	CITATIONS
91	A Seven-Level Inverter Topology for Induction Motor Drive Using Two-Level Inverters and Floating Capacitor Fed H-Bridges. IEEE Transactions on Power Electronics, 2011, 26, 1733-1740.	5.4	52
92	An asymmetric cascaded H-Bridge inverters for generating 12-sided polygonal space vector diagrams for Motor drives. EPE Journal (European Power Electronics and Drives Journal), 2011, 21, 21-28.	0.7	5
93	A Hybrid Multilevel Inverter Topology for an Open-End Winding Induction-Motor Drive Using Two-Level Inverters in Series With a Capacitor-Fed H-Bridge Cell. IEEE Transactions on Industrial Electronics, 2010, 57, 3707-3714.	5.2	100
94	A Survey on Cascaded Multilevel Inverters. IEEE Transactions on Industrial Electronics, 2010, 57, 2197-2206.	5.2	1,888
95	Five-level inverter scheme for an open-end winding induction machine with less number of switches. IET Power Electronics, 2010, 3, 637.	1.5	25
96	Recent Advances and Industrial Applications of Multilevel Converters. IEEE Transactions on Industrial Electronics, 2010, 57, 2553-2580.	5.2	3,160
97	A Five-Level Inverter Scheme for a Four-Pole Induction Motor Drive by Feeding the Identical Voltage-Profile Windings From Both Sides. IEEE Transactions on Industrial Electronics, 2010, 57, 2776-2784.	5.2	49
98	A Voltage Space Vector Diagram Formed by Six Concentric Dodecagons for Induction Motor Drives. IEEE Transactions on Power Electronics, 2010, 25, 1480-1487.	5.4	30
99	A hybrid seven-level inverter for IM drive. , 2010, , .		0
100	A simple five-level inverter topology for induction motor drive using conventional two-level inverters and flying capacitor technique. , 2009, , .		6
101	A Pulsewidth Modulated Control of Induction Motor Drive Using Multilevel 12-Sided Polygonal Voltage Space Vectors. IEEE Transactions on Industrial Electronics, 2009, 56, 2441-2449.	5.2	31
102	A Dual Seven-Level Inverter Supply for an Open-End Winding Induction Motor Drive. IEEE Transactions on Industrial Electronics, 2009, 56, 1665-1673.	5.2	94
103	A Combination of Hexagonal and 12-Sided Polygonal Voltage Space Vector PWM Control for IM Drives Using Cascaded Two-Level Inverters. IEEE Transactions on Industrial Electronics, 2009, 56, 1657-1664.	5.2	39
104	Eighteen-sided polygonal voltage space-vector-based PWM control for an induction motor drive. IET Electric Power Applications, 2008, 2, 56-63.	1.1	19
105	A Multilevel inverter with hexagonal and 12-sided polygonal space vector structure for induction motor drive. , 2008, , .		3
106	Five-Level Inverter Topology for Induction Motor Drives with Common-Mode Voltage Elimination in Complete Modulation Range. EPE Journal (European Power Electronics and Drives Journal), 2007, 17, 11-23.	0.7	3
107	Novel Current Error Space Phasor Based Hysteresis Controller Using Parabolic Bands for Control of Switching Frequency Variations. IEEE Transactions on Industrial Electronics, 2007, 54, 2648-2656.	5.2	64
108	A Reduced-Switch-Count Five-Level Inverter With Common-Mode Voltage Elimination for an Open-End Winding Induction Motor Drive. IEEE Transactions on Industrial Electronics, 2007, 54, 2344-2351.	5.2	114

#	Article	IF	CITATIONS
109	Twelve-Sided Polygonal Voltage Space Vector Based Multilevel Inverter for an Induction Motor Drive With Common-Mode Voltage Elimination. IEEE Transactions on Industrial Electronics, 2007, 54, 2761-2768.	5.2	67
110	Three-Level Inverter Fed Open- end Winding IM Drive with Common Mode Voltage Elimination and Reduced Power Device Count. , 2007, , .		1
111	Synchronised carrier-based SVPWM signal generation scheme for the entire modulation range extending up to six-step mode using the sampled amplitudes of reference phase voltages. IET Electric Power Applications, 2007, 1, 407.	1.1	34
112	A Dual Five-Level Inverter-Fed Induction Motor Drive With Common-Mode Voltage Elimination and DC-Link Capacitor Voltage Balancing Using Only the Switching-State Redundancy—Part II. IEEE Transactions on Industrial Electronics, 2007, 54, 2609-2617.	5.2	39
113	A Dual Five-Level Inverter-Fed Induction Motor Drive With Common-Mode Voltage Elimination and DC-Link Capacitor Voltage Balancing Using Only the Switching-State Redundancy—Part I. IEEE Transactions on Industrial Electronics, 2007, 54, 2600-2608.	5.2	53
114	Switching Frequency Variation Control in Hysteresis PWM Controller for IM Drives Using Variable Parabolic Bands for Current Error Space Phasor. , 2006, , .		3
115	Elimination of Common Mode Voltage and Fifth and Seventh Harmonics in a Multilevel Inverter fed IM Drive using 12-Sided Polygonal Voltage Space Phasor. , 2006, , .		0
116	Three-Level Inverter Scheme With Common Mode Voltage Elimination and DC Link Capacitor Voltage Balancing for an Open-End Winding Induction Motor Drive. IEEE Transactions on Power Electronics, 2006, 21, 1676-1683.	5.4	95
117	Ceneration of Parabolic Trajectories for Current Error Space Phasor similar to an SVPWM Controller for Control of Switching Frequency Variation in Current Hysteresis PWM Controlled IM Drives. , 2006, , .		3
118	Space vector PWM signal generation for multilevel inverters using only the sampled amplitudes of reference phase voltages. IET Electric Power Applications, 2005, 152, 297.	1.4	169
119	A Multilevel Inverter System for an Induction Motor With Open-End Windings. IEEE Transactions on Industrial Electronics, 2005, 52, 824-836.	5.2	169
120	Independent Field-Oriented Control of Two Split-Phase Induction Motors From a Single Six-Phase Inverter. IEEE Transactions on Industrial Electronics, 2005, 52, 1372-1382.	5.2	84
121	A Dual Two-Level Inverter Scheme With Common Mode Voltage Elimination for an Induction Motor Drive. IEEE Transactions on Power Electronics, 2004, 19, 794-805.	5.4	402
122	A harmonic elimination and suppression scheme for an open-end winding induction motor drive. IEEE Transactions on Industrial Electronics, 2003, 50, 1187-1198.	5.2	130
123	A Space Vector Based PWM Method Using Only the Instantaneous Amplitudes of Reference Phase Voltages for Three Level Inverters. EPE Journal (European Power Electronics and Drives Journal), 2003, 13, 35-45.	0.7	25
124	A High Resolution Multilevel Voltage Space Phasor Generation for an Open-end Winding Induction Motor Drive. EPE Journal (European Power Electronics and Drives Journal), 2003, 13, 29-37.	0.7	19
125	Multi Level Voltage Space Phasor Generation for an Open-End Winding Induction Motor Drive Using a Dual Inverter Scheme with Asymmetrical DC-Link Voltages. EPE Journal (European Power Electronics) Tj ETQq1	1 0.70874314	4 rg B T /Overla
126	Split-phase induction motor operation from PWM voltage source inverter. IEEE Transactions on Industry Applications, 1993, 29, 927-932.	3.3	213

A multi axis space phasor based current hysteresis controller for PWM inverters. , 0, , .	14
A multilevel inverter system for an induction motor with open-end windings. , 0, , .	13
A new five-level inverter system for an induction motor with open-end windings. , 0, , .	9
A five-level inverter voltage space phasor generation for an open-end winding induction motor drive. , 0, , .	17
PWM signal generation for dual inverter fed open-end winding induction motor drive using only the instantaneous reference phase amplitudes. , 0, , .	20