
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2700580/publications.pdf Version: 2024-02-01

SADAH R KUDTZ

#	Article	IF	CITATIONS
1	Seasonal challenges for a California renewable- energy-driven grid. IScience, 2022, 25, 103577.	4.1	13
2	Optimizing the Configuration of Photovoltaic Plants to Minimize the Need for Storage. IEEE Journal of Photovoltaics, 2022, 12, 860-870.	2.5	4
3	Evaluating emerging long-duration energy storage technologies. Renewable and Sustainable Energy Reviews, 2022, 159, 112240.	16.4	61
4	Geographical variability of summer- and winter-dominant onshore wind. Journal of Renewable and Sustainable Energy, 2022, 14, .	2.0	3
5	Thermal Impact of Rear Insulation, Light Trapping, and Parasitic Absorption in Solar Modules. IEEE Journal of Photovoltaics, 2022, 12, 1043-1050.	2.5	2
6	Seasonal Challenges for a Zero-Carbon Grid in California. , 2021, , .		3
7	Global Progress Toward Renewable Electricity: Tracking the Role of Solar. IEEE Journal of Photovoltaics, 2021, 11, 1335-1342.	2.5	39
8	Cross-sector storage and modeling needed for deep decarbonization. Joule, 2021, 5, 2529-2534.	24.0	14
9	Capacity Factor Analysis of U.S. PV System Reliability and Performance. IEEE Journal of Photovoltaics, 2020, 10, 818-823.	2.5	1
10	Historical Analysis of Champion Photovoltaic Module Efficiencies. IEEE Journal of Photovoltaics, 2018, 8, 363-372.	2.5	37
11	Robust PV Degradation Methodology and Application. IEEE Journal of Photovoltaics, 2018, 8, 525-531.	2.5	121
12	Silicon Heterojunction System Field Performance. IEEE Journal of Photovoltaics, 2018, 8, 177-182.	2.5	53
13	Terawatt-scale photovoltaics: Trajectories and challenges. Science, 2017, 356, 141-143.	12.6	303
14	Perovskite Photovoltaics: The Path to a Printable Terawatt-Scale Technology. ACS Energy Letters, 2017, 2, 2540-2544.	17.4	64
15	Defining Threshold Values of Encapsulant and Backsheet Adhesion for PV Module Reliability. IEEE Journal of Photovoltaics, 2017, 7, 1536-1540.	2.5	23
16	PV degradation curves: nonâ€linearities and failure modes. Progress in Photovoltaics: Research and Applications, 2017, 25, 583-591.	8.1	109
17	Analysis of initial performance of Solergy's HCPV/T system at Rome-Fiumicino International Airport. AIP Conference Proceedings, 2017, , .	0.4	1
18	Notice of Removal Damage in monolithic thin-film photovoltaic modules due to partial shade. , 2017, , .		1

#	Article	IF	CITATIONS
19	Notice of Removal Elucidating PID degradation mechanisms and in-situ dark I-V monitoring for modeling degradation rate in CdTe thin-film modules. , 2017, , .		0
20	Marrying Quality Assurance with Design Engineering – A Winning Partnership! But, a Cultural Divide?. , 2017, , .		0
21	Defining Threshold Values of Encapsulant and Backsheet Adhesion for PV Module Reliability. , 2017, , .		0
22	Simulated potential for enhanced performance of mechanically stacked hybrid III–V/Si tandem photovoltaic modules using DC–DC converters. Journal of Photonics for Energy, 2017, 7, 1.	1.3	12
23	A sideâ€byâ€side comparison of CPV module and system performance. Progress in Photovoltaics: Research and Applications, 2016, 24, 940-954.	8.1	3
24	Compendium of photovoltaic degradation rates. Progress in Photovoltaics: Research and Applications, 2016, 24, 978-989.	8.1	374
25	Development and first results of the width-tapered beam method for adhesion testing of photovoltaic material systems. , 2016, , .		19
26	Assessing the causes of encapsulant delamination in PV modules. , 2016, , .		23
27	Determining the effects of environment and atmospheric parameters on PV field performance. , 2016, , .		21
28	A scalable method for extracting soiling rates from PV production data. , 2016, , .		24
29	Damage in Monolithic Thin-Film Photovoltaic Modules Due to Partial Shade. IEEE Journal of Photovoltaics, 2016, 6, 1333-1338.	2.5	47
30	Multi angle laser light scattering evaluation of field exposed thermoplastic photovoltaic encapsulant materials. Energy Science and Engineering, 2016, 4, 40-51.	4.0	13
31	PV degradation methodology comparison $\hat{a} \in \mathbb{C}$ A basis for a standard. , 2016, , .		22
32	Elucidating PID Degradation Mechanisms and In Situ Dark I–V Monitoring for Modeling Degradation Rate in CdTe Thin-Film Modules. IEEE Journal of Photovoltaics, 2016, 6, 1635-1640.	2.5	28
33	Durability of polymeric encapsulation materials in a PMMA/glass concentrator photovoltaic system. Progress in Photovoltaics: Research and Applications, 2016, 24, 1385-1409.	8.1	11
34	The Influence of PV Module Materials and Design on Solder Joint Thermal Fatigue Durability. IEEE Journal of Photovoltaics, 2016, 6, 1407-1412.	2.5	34
35	Optically Enhanced Photon Recycling in Mechanically Stacked Multijunction Solar Cells. IEEE Journal of Photovoltaics, 2016, 6, 358-365.	2.5	33
36	Solar research not finished. Nature Photonics, 2016, 10, 141-142.	31.4	11

SARAH R KURTZ

#	Article	IF	CITATIONS
37	Field testing of thermoplastic encapsulants in highâ€temperature installations. Energy Science and Engineering, 2015, 3, 565-580.	4.0	29
38	Moving toward quantifying reliability - the next step in a rapidly maturing PV industry. , 2015, , .		6
39	Translating outdoor CPV <i>l–V</i> measurements to a CSTC power rating and the associated uncertainty. Progress in Photovoltaics: Research and Applications, 2015, 23, 1557-1571.	8.1	33
40	Thermal and electrical effects of partial shade in monolithic thin-film photovoltaic modules. , 2015, , .		4
41	Temperature-dependent light-stabilized states in thin-film PV modules. , 2015, , .		2
42	Real-Time Series Resistance Monitoring in PV Systems Without the Need for l–V Curves. IEEE Journal of Photovoltaics, 2015, 5, 1706-1709.	2.5	14
43	Field testing of flat-plate and concentrator photovoltaic systems at the Solar Technology Acceleration Center. , 2015, , .		2
44	Real-time series resistance monitoring in PV systems without the need for IV curves. , 2015, , .		4
45	Survey of potential-induced degradation in thin-film modules. Journal of Photonics for Energy, 2015, 5, 053083.	1.3	28
46	Implications of Redesigned, High-Radiative-Efficiency GalnP Junctions on III-V Multijunction Concentrator Solar Cells. IEEE Journal of Photovoltaics, 2015, 5, 418-424.	2.5	17
47	Validated Method for Repeatable Power Measurement of CIGS Modules Exhibiting Light-Induced Metastabilities. IEEE Journal of Photovoltaics, 2015, 5, 607-612.	2.5	8
48	Performance and Aging of a 20-Year-Old Silicon PV System. IEEE Journal of Photovoltaics, 2015, 5, 744-751.	2.5	59
49	Thermal and Electrical Effects of Partial Shade in Monolithic Thin-Film Photovoltaic Modules. IEEE Journal of Photovoltaics, 2015, 5, 1742-1747.	2.5	45
50	Performance Stabilization of CdTe PV Modules Using Bias and Light. IEEE Journal of Photovoltaics, 2015, 5, 344-349.	2.5	11
51	Key parameters in determining energy generated by CPV modules. Progress in Photovoltaics: Research and Applications, 2015, 23, 1250-1259.	8.1	35
52	CPV cell characterization following one-year exposure in Golden Colorado. AIP Conference Proceedings, 2014, , .	0.4	3
53	Direct analysis of the current-voltage curves of outdoor-degrading modules. , 2014, , .		0
54	Development of comparative tests of PV modules by the International PV Module QA Task Force. , 2014, , .		7

#	Article	IF	CITATIONS
55	Application of the terrestrial photovoltaic module accelerated test-to-failure protocol. , 2014, , .		8
56	The Dark Horse of Evaluating Long-Term Field Performance—Data Filtering. IEEE Journal of Photovoltaics, 2014, 4, 317-323.	2.5	58
57	PV system energy test. , 2014, , .		2
58	Photovoltaic Module Qualification Plus Testing. , 2014, , .		25
59	Three-prong path to comprehensive technical standards for photovoltaic reliability. , 2014, , .		5
60	Metastable changes to the temperature coefficients of thin-film photovoltaic modules. , 2014, , .		8
61	The ability of short term performance tests to reproduce the results of a one-year adjusted energy test for non-concentrating PV systems. , 2014, , .		1
62	Requirements for quality management system for PV module manufacturing. , 2014, , .		12
63	Performance stabilization of CdTe PV modules using bias and light. , 2014, , .		5
64	Measuring degradation rates of PV systems without irradiance data. Progress in Photovoltaics: Research and Applications, 2014, 22, 851-862.	8.1	12
65	Durability of polymeric encapsulation materials for concentrating photovoltaic systems. Progress in Photovoltaics: Research and Applications, 2013, 21, 631-651.	8.1	22
66	Thermal Study of Inverter Components. IEEE Journal of Photovoltaics, 2013, 3, 807-813.	2.5	21
67	Testing and Analysis for Lifetime Prediction of Crystalline Silicon PV Modules Undergoing Degradation by System Voltage Stress. IEEE Journal of Photovoltaics, 2013, 3, 246-253.	2.5	57
68	Effects of Internal Luminescence and Internal Optics on \$V_{f oc}\$ and \$J_{f sc}\$ of IIIV Solar Cells. IEEE Journal of Photovoltaics, 2013, 3, 1437-1442.	2.5	77
69	A framework for a comparative accelerated testing standard for PV modules. , 2013, , .		12
70	Acceleration factor determination for potential-induced degradation in crystalline silicon PV modules. , 2013, , .		15
71	Measuring IV Curves and Subcell Photocurrents in the Presence of Luminescent Coupling. IEEE Journal of Photovoltaics, 2013, 3, 879-887.	2.5	85
72	A great solar cell also needs to be a great LED: External fluorescence leads to new efficiency record. AIP Conference Proceedings, 2013, , .	0.4	11

SARAH R KURTZ

#	Article	IF	CITATIONS
73	Outdoor performance of a thin-film gallium-arsenide photovoltaic module. , 2013, , .		27
74	Experimental and modeling analysis of internal luminescence in III-V solar cells. AIP Conference Proceedings, 2013, , .	0.4	5
75	Optical cell temperature measurements of multiple CPV technologies in outdoor conditions. , 2013, , .		3
76	Measuring IV curves and subcell photocurrents in the presence of luminescent coupling. , 2013, , .		1
77	Thermal study of inverter components. , 2013, , .		0
78	Testing and analysis for lifetime prediction of crystalline silicon PV modules undergoing degradation by system voltage stress. , 2013, , .		1
79	How can we make PV modules safer?. , 2012, , .		26
80	Design of semiconductor-based back reflectors for high V <inf>oc</inf> monolithic multijunction solar cells. , 2012, , .		12
81	On the effect of ramp rate in damage accumulation of the CPV die-attach. , 2012, , .		4
82	Simulation and experiment of thermal fatigue in the CPV die attach. AIP Conference Proceedings, 2012, ,	0.4	8
83	Strong Internal and External Luminescence as Solar Cells Approach the Shockley–Queisser Limit. IEEE Journal of Photovoltaics, 2012, 2, 303-311.	2.5	826
84	Analysis of solar cell quality using voltage metrics. , 2012, , .		9
85	Comparative study of the performance of field-aged photovoltaic modules located in a hot and humid environment. , 2012, , .		7
86	Measuring IV curves and subcell photocurrents in the presence of luminescent coupling. , 2012, , .		4
87	Thermal study of inverter components. , 2012, , .		3
88	Testing and analysis for lifetime prediction of crystalline silicon PV modules undergoing degradation by system voltage stress. , 2012, , .		4
89	Using Phase Effects to Understand Measurements of the Quantum Efficiency and Related Luminescent Coupling in a Multijunction Solar Cell. IEEE Journal of Photovoltaics, 2012, 2, 424-433.	2.5	26
			_

90 Relative lifetime prediction for CPV die-attach layers. , 2012, , .

IF # ARTICLE CITATIONS Using accelerated testing to predict module reliability., 2011,,. Ensuring quality of PV modules., 2011, , . 92 9 Modeling Thermal Fatigue in CPV Cell Assemblies. IEEE Journal of Photovoltaics, 2011, 1, 242-247. 2.5 Evaluation of highâ€temperature exposure of photovoltaic modules. Progress in Photovoltaics: 94 8.1 119 Research and Applications, 2011, 19, 954-965. Reliability testing beyond Qualification as a key component in photovoltaic's progress toward grid 42 parity., 2011,,. 96 Quantifying the Thermal Fatigue of CPV Modules. AIP Conference Proceedings, 2010, , . 0.4 6 Cell-level thermal management issues in concentrator III–V multijunction solar cells., 2010, , . Multijunction solar cells for conversion of concentrated sunlight to electricity. Optics Express, 98 3.4 95 2010, 18, A73. Creep in photovoltaic modules: Examining the stability of polymeric materials and components. , 2010, , 26 100 Measuring degradation rates without irradiance data., 2010,,. 13 Multijunction solar cells for conversion of concentrated sunlight to electricity. Optics Express, 3.4 <u>2010, 18,</u> A73-8. 102 Evaluation of high-temperature exposure of rack-mounted photovoltaic modules., 2009, , . 45 A two junction, four terminal photovoltaic device for enhanced light to electric power conversion 33 using a low-cost dichroic mirror. Journal of Renewable and Sustainable Energy, 2009, 1, 013106. Fill factor as a probe of currentâ€matching for GaInP₂/GaAs tandem cells in a concentrator system during outdoor operation. Progress in Photovoltaics: Research and Applications, 2008, 16, 104 8.1 74 213-224. A comparison of theoretical efficiencies of multiâ di unction concentrator solar cells. Progress in 8.1 Photovoltaics: Research and Applications, 2008, 16, 537-546. Inverted GaInP / (In)GaAs / InGaAs triple-junction solar cells with low-stress metamorphic bottom 106 0.0 12 junctions. Conference Record of the IEEE Photovoltaic Specialists Conference, 2008, , . A direct comparison of inverted and non-inverted growths of GaInP solar cells. Conference Record of the IEEE Photovoltaic Specialists Conference, 2008, , . Effects of temperature, nitrogen ions, and antimony on wide depletion width GalnNAs. Journal of 108 1.3 20 Vacuum Science & Technology B, 2007, 25, 955.

SARAH R KURTZ

#	Article	IF	CITATIONS
109	High-efficiency GaInPâ^•GaAsâ^•InGaAs triple-junction solar cells grown inverted with a metamorphic bottom junction. Applied Physics Letters, 2007, 91, .	3.3	350
110	Dilute nitride GaInNAs and GaInNAsSb solar cells by molecular beam epitaxy. Journal of Applied Physics, 2007, 101, 114916.	2.5	192
111	Design and characterization of GaNâ^•InGaN solar cells. Applied Physics Letters, 2007, 91, .	3.3	522
112	50% Efficient Solar Cell Architectures and Designs. , 2006, , .		46
113	Design, Growth, Fabrication and Characterization of High-Band Gap InGaN/GaN Solar Cells. , 2006, , .		12
114	GaInNAsSb Solar Cells Grown by Molecular Beam Epitaxy. , 2006, , .		1
115	Effect of Sb on the Properties of GaInP Top Cells. , 2006, , .		11
116	Dlts Analysis of Radiation-Induced Defects in InGaAsN Solar Cell Structures. , 2006, , .		2
117	Monolithic, Ultra-Thin GaInP/GaAs/GaInAs Tandem Solar Cells. , 2006, , .		11
118	Characterization of a Dominant Electron Trap in GaNAs Using Deep-Level Transient Spectroscopy. Materials Research Society Symposia Proceedings, 2005, 891, 1.	0.1	0
119	Effects of epitaxial lift-off on interface recombination and laser cooling in GaInPâ^•GaAs heterostructures. Applied Physics Letters, 2005, 86, 081104.	3.3	48
120	Low-acceptor-concentration GalnNAs grown by molecular-beam epitaxy for high-current p-i-n solar cell applications. Journal of Applied Physics, 2005, 98, 094501.	2.5	59
121	Annealing-induced-type conversion of GalnNAs. Journal of Applied Physics, 2004, 95, 2505-2508.	2.5	23
122	Superior radiation resistance of In1â^'xGaxN alloys: Full-solar-spectrum photovoltaic material system. Journal of Applied Physics, 2003, 94, 6477-6482.	2.5	572
123	Band-gap bowing effects in BxGa1â^'xAs alloys. Journal of Applied Physics, 2003, 93, 2696-2699.	2.5	38
124	The Effects of Atmosphere, Temperature, and Bandgap on the Annealing of GaInNAs for Solar Cell Applications. Materials Research Society Symposia Proceedings, 2003, 799, 41.	0.1	0
125	Breakeven criteria for the GalnNAs junction in GaInP/GaAs/GaInNAs/Ge four-junction solar cells. Progress in Photovoltaics: Research and Applications, 2002, 10, 331-344.	8.1	76
126	Alternative boron precursors for BGaAs epitaxy. Journal of Electronic Materials, 2001, 30, 1387-1391.	2.2	14

#	Article	IF	CITATIONS
127	BGaInAs alloys lattice matched to GaAs. Applied Physics Letters, 2000, 76, 1443-1445.	3.3	94
128	Persistent photoconductivity in Galâ^'xInxNyAslâ^'y. Applied Physics Letters, 1999, 75, 1899-1901.	3.3	58
129	Effect of nitrogen on the band structure of GaInNAs alloys. Journal of Applied Physics, 1999, 86, 2349-2351.	2.5	153
130	Requirements for a 20%-efficient polycrystalline GaAs solar cell. , 1997, , .		19
131	Polycrystalline MBE-grown GaAs for solar cells. AIP Conference Proceedings, 1997, , .	0.4	1
132	Recent developments in terrestrial concentrator photovoltaics. AIP Conference Proceedings, 1997, , .	0.4	0
133	High-efficiency GaInP/GaAs tandem solar cells. Journal of Propulsion and Power, 1996, 12, 842-846.	2.2	4
134	Accelerated publication 30.2% efficient GaInP/GaAs monolithic twoâ€ŧerminal tandem concentrator cell. Progress in Photovoltaics: Research and Applications, 1995, 3, 47-50.	8.1	84
135	Determination of free carrier concentration innâ€GaInP alloy by Raman scattering. Journal of Applied Physics, 1995, 78, 2515-2519.	2.5	11
136	Lowâ€bandâ€gap Ga0.5In0.5P grown on (511)BGaAs substrates. Journal of Applied Physics, 1994, 75, 5110-511	3.2.5	20
137	29.5%â€efficient GalnP/GaAs tandem solar cells. Applied Physics Letters, 1994, 65, 989-991.	3.3	291
138	Photoluminescence, photoluminescence excitation, and resonant Raman spectroscopy of disordered and ordered Ga0.52In0.48P. Journal of Applied Physics, 1993, 73, 5163-5172.	2.5	81
139	Anomalous electroreflectance spectrum of spontaneously ordered Ga0.5In0.5P. Journal of Applied Physics, 1993, 74, 4130-4135.	2.5	34
140	Bandâ€gap narrowing in ordered Ga0.47In0.53As. Applied Physics Letters, 1993, 62, 1806-1808.	3.3	49
141	Competing Kinetic and Thermodynamic Processes in the Growth and Ordering of Ga _{0.5} In _{0.5} P. Materials Research Society Symposia Proceedings, 1993, 312, 83.	0.1	8
142	Optical Detection of Band Gap Variations Due to Ordering in Ga0.47In0.53As on InP. Materials Research Society Symposia Proceedings, 1992, 281, 67.	0.1	1