Nan Yan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2699815/publications.pdf

Version: 2024-02-01

214721 186209 6,467 49 28 47 citations h-index g-index papers 50 50 50 8836 citing authors docs citations times ranked all docs

#	Article	IF	Citations
1	No Longer A One-Trick Pony: STING Signaling Activity Beyond Interferon. Journal of Molecular Biology, 2022, 434, 167257.	2.0	13
2	Cytoplasmic RNA quality control failure engages mTORC1-mediated autoinflammatory disease. Journal of Clinical Investigation, 2022, 132, .	3.9	9
3	Targeting Bcl6 in the TREX1 D18N murine model ameliorates autoimmunity by modulating T follicular helper cells and Germinal center B cells. European Journal of Immunology, 2022, , .	1.6	5
4	Intracellular virus sensor MDA5 mutation develops autoimmune myocarditis and nephritis. Journal of Autoimmunity, 2022, 127, 102794.	3.0	2
5	STING controls energy stress-induced autophagy and energy metabolism via STX17. Journal of Cell Biology, 2022, 221, .	2.3	21
6	The mammalian SKIV2L RNA exosome is essential for early B cell development. Science Immunology, 2022, 7, .	5.6	8
7	Aicardi–GoutiÔres syndrome-like encephalitis in mutant mice with constitutively active MDA5. International Immunology, 2021, 33, 225-240.	1.8	8
8	A "KU―new sensor for cytosolic DNA in TÂcells. Immunity, 2021, 54, 603-605.	6.6	1
9	Tonic prime-boost of STING signalling mediates Niemann–Pick disease type C. Nature, 2021, 596, 570-575.	13.7	110
10	Homeostatic regulation of STING protein at the resting state by stabilizer TOLLIP. Nature Immunology, 2020, 21, 158-167.	7.0	71
11	Interferon-Independent Activities of Mammalian STING Mediate Antiviral Response and Tumor Immune Evasion. Immunity, 2020, 53, 115-126.e5.	6.6	179
12	Reactive oxygen species oxidize STING and suppress interferon production. ELife, 2020, 9, .	2.8	50
13	A bioactive mammalian disaccharide associated with autoimmunity activates STING-TBK1-dependent immune response. Nature Communications, 2019, 10, 2377.	5.8	20
14	STING-mediated disruption of calcium homeostasis chronically activates ER stress and primes T cell death. Journal of Experimental Medicine, 2019, 216, 867-883.	4.2	182
15	STIM1 moonlights as an anchor for STING. Nature Immunology, 2019, 20, 112-114.	7.0	12
16	Mammalian STT3A/B oligosaccharyltransferases segregate N-glycosylation at the translocon from lipid-linked oligosaccharide hydrolysis. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9557-9562.	3.3	26
17	Co-circulation dynamics and persistence of newly introduced clades of 2012 outbreak associated West Nile Virus in Texas, 2012–2015. Infection, Genetics and Evolution, 2018, 66, 13-17.	1.0	О
18	N-glycanase NGLY1 regulates mitochondrial homeostasis and inflammation through NRF1. Journal of Experimental Medicine, 2018, 215, 2600-2616.	4.2	95

#	Article	IF	Citations
19	Chronic innate immune activation of TBK1 suppresses mTORC1 activity and dysregulates cellular metabolism. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 746-751.	3.3	71
20	Immune Diseases Associated with TREX1 and STING Dysfunction. Journal of Interferon and Cytokine Research, 2017, 37, 198-206.	0.5	71
21	Mitotic Phosphorylation of TREX1 C Terminus Disrupts TREX1 Regulation of the Oligosaccharyltransferase Complex. Cell Reports, 2017, 18, 2600-2607.	2.9	21
22	DNase-active TREX1 frame-shift mutants induce serologic autoimmunity in mice. Journal of Autoimmunity, 2017, 81, 13-23.	3.0	27
23	Innate Immune Activation by cGMP-AMP Nanoparticles Leads to Potent and Long-Acting Antiretroviral Response against HIV-1. Journal of Immunology, 2017, 199, 3840-3848.	0.4	39
24	STING-associated vasculopathy develops independently of IRF3 in mice. Journal of Experimental Medicine, 2017, 214, 3279-3292.	4.2	155
25	Methods of Assessing STING Activation and Trafficking. Methods in Molecular Biology, 2017, 1656, 167-174.	0.4	7
26	Trafficking-Mediated STING Degradation Requires Sorting to Acidified Endolysosomes and Can Be Targeted to Enhance Anti-tumor Response. Cell Reports, 2017, 21, 3234-3242.	2.9	198
27	Therapeutic potential of targeting TBK1 in autoimmune diseases and interferonopathies. Pharmacological Research, 2016, 111, 336-342.	3.1	54
28	DNA polymerase- $\hat{l}\pm$ regulates the activation of type I interferons through cytosolic RNA:DNA synthesis. Nature Immunology, 2016, 17, 495-504.	7.0	123
29	RNase H2 catalytic core Aicardi-GoutiÓres syndrome–related mutant invokes cGAS–STING innate immune-sensing pathway in mice. Journal of Experimental Medicine, 2016, 213, 329-336.	4.2	185
30	Response to Comment on "Cutting Edge: Inhibiting TBK1 by Compound II Ameliorates Autoimmune Disease in Mice― Journal of Immunology, 2016, 196, 531-531.	0.4	1
31	STING Activation by Translocation from the ER Is Associated with Infection and Autoinflammatory Disease. Cell Host and Microbe, 2015, 18, 157-168.	5.1	424
32	Cutting Edge: Inhibiting TBK1 by Compound II Ameliorates Autoimmune Disease in Mice. Journal of Immunology, 2015, 195, 4573-4577.	0.4	61
33	Cytosolic Nuclease TREX1 Regulates Oligosaccharyltransferase Activity Independent of Nuclease Activity to Suppress Immune Activation. Immunity, 2015, 43, 463-474.	6.6	85
34	Safeguard against DNA sensing: the role of TREX1 in HIV-1 infection and autoimmune diseases. Frontiers in Microbiology, 2014, 5, 193.	1.5	23
35	Cyclic GMP-AMP Synthase Is an Innate Immune Sensor of HIV and Other Retroviruses. Science, 2013, 341, 903-906.	6.0	837
36	Trex1 regulates lysosomal biogenesis and interferon-independent activation of antiviral genes. Nature Immunology, 2013, 14, 61-71.	7.0	122

#	Article	lF	CITATIONS
37	SAMHD1 does it again, now in resting T cells. Nature Medicine, 2012, 18, 1611-1612.	15.2	6
38	Intrinsic antiviral immunity. Nature Immunology, 2012, 13, 214-222.	7.0	439
39	Gaining a foothold: how HIV avoids innate immune recognition. Current Opinion in Immunology, 2011, 23, 21-28.	2.4	28
40	HIV DNA is heavily uracilated, which protects it from autointegration. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 9244-9249.	3.3	60
41	The cytosolic exonuclease TREX1 inhibits the innate immune response to human immunodeficiency virus type 1. Nature Immunology, 2010, 11, 1005-1013.	7.0	455
42	BREs Mediate Both Repression and Activation of oskar mRNA Translation and Act In trans. Developmental Cell, 2010, 18, 496-502.	3.1	46
43	The SET Complex Acts as a Barrier to Autointegration of HIV-1. PLoS Pathogens, 2009, 5, e1000327.	2.1	82
44	miR-24 Inhibits Cell Proliferation by Targeting E2F2, MYC, and Other Cell-Cycle Genes via Binding to "Seedless―3′UTR MicroRNA Recognition Elements. Molecular Cell, 2009, 35, 610-625.	4.5	544
45	Identification and Characterization of PWWP Domain Residues Critical for LEDGF/p75 Chromatin Binding and Human Immunodeficiency Virus Type 1 Infectivity. Journal of Virology, 2008, 82, 11555-11567.	1.5	75
46	Identification of Host Proteins Required for HIV Infection Through a Functional Genomic Screen. Science, 2008, 319, 921-926.	6.0	1,310
47	A late phase of Oskar accumulation is crucial for posterior patterning of the Drosophila embryo, and is blocked by ectopic expression of Bruno. Differentiation, 2007, 75, 246-255.	1.0	31
48	Genetic Interactions of Drosophila melanogaster arrest Reveal Roles for Translational Repressor Bruno in Accumulation of Gurken and Activity of Delta. Genetics, 2004, 168, 1433-1442.	1.2	18
49	Localization-Dependent Oskar Protein Accumulation. Developmental Cell, 2004, 7, 125-131.	3.1	56