Andre L Samson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2699758/publications.pdf

Version: 2024-02-01

40 papers 2,465 citations

236912 25 h-index 289230 40 g-index

46 all docs

46 docs citations

46 times ranked

3068 citing authors

#	Article	IF	CITATIONS
1	The web of death: the expanding complexity of necroptotic signaling. Trends in Cell Biology, 2023, 33, 162-174.	7.9	18
2	Ferroptosis mediates selective motor neuron death in amyotrophic lateral sclerosis. Cell Death and Differentiation, 2022, 29, 1187-1198.	11.2	63
3	Membrane permeabilization is mediated by distinct epitopes in mouse and human orthologs of the necroptosis effector, MLKL. Cell Death and Differentiation, 2022, 29, 1804-1815.	11.2	22
4	The Lck inhibitor, AMG-47a, blocks necroptosis and implicates RIPK1 in signalling downstream of MLKL. Cell Death and Disease, 2022, 13, 291.	6.3	10
5	Tankyrase-mediated ADP-ribosylation is a regulator of TNF-induced death. Science Advances, 2022, 8, eabh2332.	10.3	9
6	Ubiquitylation of RIPK3 beyond-the-RHIM can limit RIPK3 activity and cell death. IScience, 2022, 25, 104632.	4.1	3
7	Human RIPK3 C-lobe phosphorylation is essential for necroptotic signaling. Cell Death and Disease, 2022, 13, .	6.3	9
8	Development of a carotid artery thrombolysis stroke model in mice. Blood Advances, 2022, 6, 5449-5462.	5.2	3
9	Necroptosis is dispensable for the development of inflammation-associated or sporadic colon cancer in mice. Cell Death and Differentiation, 2021, 28, 1466-1476.	11.2	28
10	Location, location, location: A compartmentalized view of TNF-induced necroptotic signaling. Science Signaling, 2021, 14, .	3.6	53
11	A toolbox for imaging RIPK1, RIPK3, and MLKL in mouse and human cells. Cell Death and Differentiation, 2021, 28, 2126-2144.	11.2	37
12	Conformational interconversion of MLKL and disengagement from RIPK3 precede cell death by necroptosis. Nature Communications, 2021, 12, 2211.	12.8	56
13	Human RIPK3 maintains MLKL in an inactive conformation prior to cell death by necroptosis. Nature Communications, 2021, 12, 6783.	12.8	47
14	Necroptosis is dispensable for motor neuron degeneration in a mouse model of ALS. Cell Death and Differentiation, 2020, 27, 1728-1739.	11.2	56
15	TDP-43 Triggers Mitochondrial DNA Release via mPTP to Activate cGAS/STING in ALS. Cell, 2020, 183, 636-649.e18.	28.9	453
16	MLKL trafficking and accumulation at the plasma membrane control the kinetics and threshold for necroptosis. Nature Communications, 2020, 11, 3151.	12.8	194
17	Identification of MLKL membrane translocation as a checkpoint in necroptotic cell death using Monobodies. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 8468-8475.	7.1	64
18	Viral MLKL Homologs Subvert Necroptotic Cell Death by Sequestering Cellular RIPK3. Cell Reports, 2019, 28, 3309-3319.e5.	6.4	83

#	Article	IF	CITATIONS
19	VDAC2 enables BAX to mediate apoptosis and limit tumor development. Nature Communications, 2018, 9, 4976.	12.8	110
20	Endogenous fibrinolysis facilitates clot retraction in vivo. Blood, 2017, 130, 2453-2462.	1.4	56
21	Passenger mutations and aberrant gene expression in congenic tissue plasminogen activatorâ€deficient mouse strains. Journal of Thrombosis and Haemostasis, 2016, 14, 1618-1628.	3.8	11
22	Physicochemical properties that control protein aggregation also determine whether a protein is retained or released from necrotic cells. Open Biology, 2016, 6, 160098.	3.6	7
23	MouseMove: an open source program for semi-automated analysis of movement and cognitive testing in rodents. Scientific Reports, 2015, 5, 16171.	3.3	61
24	Dendritic Cell-Mediated Phagocytosis but Not Immune Activation Is Enhanced by Plasmin. PLoS ONE, 2015, 10, e0131216.	2.5	44
25	Activated platelets rescue apoptotic cells via paracrine activation of EGFR and DNA-dependent protein kinase. Cell Death and Disease, 2014, 5, e1410-e1410.	6.3	24
26	Oxidation of an Exposed Methionine Instigates the Aggregation of Glyceraldehyde-3-phosphate Dehydrogenase. Journal of Biological Chemistry, 2014, 289, 26922-26936.	3.4	41
27	Tissue-type plasminogen activator is an extracellular mediator of Purkinje cell damage and altered gait. Experimental Neurology, 2013, 249, 8-19.	4.1	12
28	The tissue-type plasminogen activator–plasminogen activator inhibitor 1 complex promotes neurovascular injury in brain trauma: evidence from mice and humans. Brain, 2012, 135, 3251-3264.	7.6	75
29	Neovascularization Is Attenuated With Aldosterone Synthase Inhibition in Rats With Retinopathy. Hypertension, 2012, 59, 607-613.	2.7	61
30	Nucleocytoplasmic Coagulation: An Injury-Induced Aggregation Event that Disulfide Crosslinks Proteins and Facilitates Their Removal by Plasmin. Cell Reports, 2012, 2, 889-901.	6.4	44
31	Compartment- and context-specific changes in tissue-type plasminogen activator (tPA) activity following brain injury and pharmacological stimulation. Laboratory Investigation, 2011, 91, 1079-1091.	3.7	39
32	Thrombin-induced activation of astrocytes in mixed rat hippocampal cultures is inhibited by soluble thrombomodulin. Brain Research, 2011, 1381, 38-51.	2.2	16
33	Novel Role of Platelets in Mediating Inflammatory Responses and Ventricular Rupture or Remodeling Following Myocardial Infarction. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 834-841.	2.4	101
34	A nonfibrin macromolecular cofactor for tPA-mediated plasmin generation following cellular injury. Blood, 2009, 114, 1937-1946.	1.4	46
35	Tissueâ€type plasminogen activator requires a coâ€receptor to enhance NMDA receptor function. Journal of Neurochemistry, 2008, 107, 1091-1101.	3.9	106
36	Low molecular weight contaminants in commercial preparations of plasmin and tâ€PA activate neurons. Journal of Thrombosis and Haemostasis, 2008, 6, 2218-2220.	3.8	8

#	Article	IF	CITATIONS
37	Two conserved regions within the tissue-type plasminogen activator gene promoter mediate regulation by brain-derived neurotrophic factor. FEBS Journal, 2007, 274, 2411-2423.	4.7	13
38	Tissue-Type Plasminogen Activator: A Multifaceted Modulator of Neurotransmission and Synaptic Plasticity. Neuron, 2006, 50, 673-678.	8.1	187
39	Oncostatin M is a neuroprotective cytokine that inhibits excitotoxic injury in vitro and in vivo. FASEB Journal, 2006, 20, 2369-2371.	0.5	41
40	Vampire Bat Salivary Plasminogen Activator (Desmoteplase). Stroke, 2003, 34, 537-543.	2.0	149