Yuri Malyukin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2699547/publications.pdf

Version: 2024-02-01

103	1,086 citations	18	525886 27
papers	citations	h-index	g-index
105 all docs	105 docs citations	105 times ranked	1019 citing authors

#	Article	IF	CITATIONS
1	Optical Spectroscopy on Individualamphi-PIC J-Aggregates. Nano Letters, 2005, 5, 2635-2640.	4.5	70
2	Anomalous Surfactant-Induced Enhancement of Luminescence Quantum Yield of Cyanine Dye J-Aggregates. Journal of Physical Chemistry C, 2008, 112, 14762-14768.	1.5	56
3	Mechanism of energy transfer in Sr2CeO4:Eu3+ phosphor. Optical Materials, 2009, 31, 1808-1810.	1.7	43
4	The influence of agglomeration of nanoparticles on their superoxide dismutase-mimetic activity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 409, 176-182.	2.3	42
5	Features of exciton dynamics in molecular nanoclusters (<i>)J</i>)-aggregates): Exciton self-trapping (Review Article). Low Temperature Physics, 2016, 42, 429-440.	0.2	31
6	Pseudoisocyanine J-Aggregate to Optical Waveguiding Crystallite Transition:Â Microscopic and Microspectroscopic Exploration. Journal of Physical Chemistry B, 2006, 110, 17772-17775.	1.2	30
7	Control of Exciton Migration Efficiency in Disordered <i>J</i> -Aggregates. Journal of Physical Chemistry C, 2010, 114, 1299-1305.	1.5	29
8	Oscillations of Cerium Oxidation State Driven by Oxygen Diffusion in Colloidal Nanoceria (CeO2Ââ^'Âx). Nanoscale Research Letters, 2017, 12, 566.	3.1	29
9	Dark Reactive Oxygen Species Generation in ReVO ₄ :Eu ³⁺ (Re = Gd, Y) Nanoparticles in Aqueous Solutions. Journal of Physical Chemistry C, 2020, 124, 3843-3850.	1.5	29
10	Two mechanisms of 1D2 fluorescence quenching of Pr3+-doped Y2SiO5 crystal. Physica Status Solidi (B): Basic Research, 2003, 240, 655-662.	0.7	28
11	Specificity of Cyanine Dye L-21 Aggregation in Solutions with Nucleic Acids. Journal of Fluorescence, 2007, 17, 370-376.	1.3	27
12	Reactive oxygen species generation in aqueous solutions containing GdVO4:Eu3+ nanoparticles and their complexes with methylene blue. Nanoscale Research Letters, 2018, 13, 100.	3.1	27
13	Coherent Mechanism of Exciton Transport in Disordered J-Aggregates. Journal of Physical Chemistry C, 2009, 113, 12883-12887.	1.5	23
14	Exciton Dynamics and Self-Trapping of Carbocyanine J-Aggregates in Polymer Films. Journal of Physical Chemistry C, 2019, 123, 9428-9444.	1.5	23
15	Mechanism and Dynamics of Fast Redox Cycling in Cerium Oxide Nanoparticles at High Oxidant Concentration. Journal of Physical Chemistry C, 2021, 125, 4743-4749.	1.5	22
16	Squaraine Dye as an Exciton Trap for Cyanine J-Aggregates in a Solution. Journal of Physical Chemistry C, 2008, 112, 20458-20462.	1.5	21
17	Insight into the mechanism of the photoluminescence of carbon nanoparticles derived from cryogenic studies. Nanoscale, 2018, 10, 9320-9328.	2.8	21
18	Limitations of Self-Regenerative Antioxidant Ability of Nanoceria Imposed by Oxygen Diffusion. Journal of Physical Chemistry C, 2018, 122, 16406-16411.	1.5	20

#	Article	IF	CITATIONS
19	Defect and intrinsic luminescence of CeO ₂ nanocrystals. Physica Status Solidi (B): Basic Research, 2017, 254, 1600488.	0.7	19
20	Janus-Faced Redox Activity of LnVO $<$ sub $>4sub>:Eu<sup>3+sup> (Ln = Gd, Y, and La) Nanoparticles. Journal of Physical Chemistry C, 2019, 123, 15323-15329.$	1.5	19
21	Characteristics of nLnvo4:Eu3+ (Ln = La, Gd, Y, Sm) sols with nanoparticles of different shapes and sizes. Journal of Applied Spectroscopy, 2012, 79, 726-730.	0.3	18
22	Strong difference between optical properties and morphologies for J-Aggregates of similar cyanine dyes. Dyes and Pigments, 2018, 152, 49-53.	2.0	18
23	Hydrogen peroxide sensing using Ce3+ luminescence of cerium oxide (CeO2-x) nanoparticles. Optical Materials, 2018, 85, 303-307.	1.7	18
24	Optical spectroscopy of disorder in molecular chains (J-aggregates). Low Temperature Physics, 1998, 24, 879-886.	0.2	17
25	Size and shape influence of luminescent orthovanadate nanoparticles on their accumulation in nuclear compartments of rat hepatocytes. Materials Science and Engineering C, 2013, 33, 2708-2712.	3.8	17
26	Synthesis and characterization of mesoporous CaCO3@PSS microspheres as a depot system for sustained Methylene Blue delivering. Microporous and Mesoporous Materials, 2016, 236, 120-128.	2,2	17
27	Coexistence of free and self-trapped excitons in disordered J-aggregates. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 3386-3393.	0.8	15
28	Hydrophobicity effect on interactions between organic molecules in nanocages of surfactant micelle. Journal of Applied Spectroscopy, 2008, 75, 658-663.	0.3	14
29	Chemiluminescent Diagnostics of Free-Radical Processes in an Abiotic System and in Liver Cells in the Presence of Nanoparticles Based on Rare-Earth Elements nReVO4:Eu3+ (Re = Gd, Y, La) and CeO2. Journal of Applied Spectroscopy, 2014, 81, 827-833.	0.3	14
30	Spectroscopic study of ordered hybrid complexes formation between dye aggregates and ReVO4:Eu3+ (Re=Y, Gd, La) nanoparticles. Journal of Molecular Liquids, 2014, 199, 244-250.	2.3	14
31	J-type aggregation of squaraine dye Sq-2Me in surfactant solutions. Journal of Molecular Liquids, 2012, 165, 113-118.	2.3	13
32	Low-temperature spectroscopy of optical centers in cerium-yttrium (Ce1-xYxO2-x/2) and cerium-zirconium (Ce1-xZrxO2) oxides. Low Temperature Physics, 2017, 43, 636-640.	0.2	12
33	Molecular Arrangement in Cyanine Dye J-Aggregates Formed on CeO ₂ Nanoparticles. Journal of Physical Chemistry C, 2018, 122, 20996-21003.	1.5	12
34	Low-temperature spectroscopy of nonequivalent Pr3+ optical centers in a Y2SiO5 crystal. Low Temperature Physics, 1998, 24, 432-436.	0.2	11
35	Strong quenching of Y2SiO5:Pr3+ nanocrystal luminescence by praseodymium nonuniform distribution. Physica Status Solidi (B): Basic Research, 2007, 244, 3325-3332.	0.7	11
36	Catalytic Decomposition of Hypochlorite Anions by Ceria Nanoparticles Visualized by Spectroscopic Techniques. Journal of Physical Chemistry C, 2019, 123, 20675-20681.	1.5	11

3

#	Article	IF	Citations
37	The nature and mechanism of charging of electron traps in Lu2SiO5:Ce3+ crystals. Journal of Experimental and Theoretical Physics, 2004, 99, 386-393.	0.2	10
38	Switching the type of redox activity of colloidal nanoceria by Re3+ (ReÂ=ÂY, Eu, Tb) doping. Chemical Physics Letters, 2021, 767, 138363.	1.2	10
39	Improving of LSO(Ce) Scintillator Properties by Co-Doping. IEEE Transactions on Nuclear Science, 2013, 60, 1427-1431.	1.2	9
40	Effects of orthovanadate-based nanoparticles of various sizes on the aggregation behavior of polymethine dyes in aqueous solutions. Chemical Physics Letters, 2015, 621, 46-51.	1.2	9
41	Interaction of Pr3+ optical centers in the Y2SiO5 crystal. Low Temperature Physics, 2002, 28, 54-57.	0.2	8
42	Effect of coactivation with Dy3+ and Yb3+ ions on the efficiency of energy storage in Lu2SiO5:Ce3+ crystals. Technical Physics Letters, 2009, 35, 154-157.	0.2	8
43	Manifestation of Exciton-Lattice Interaction in J-Aggregates. Molecular Crystals and Liquid Crystals, 2011, 535, 57-63.	0.4	8
44	Light-triggered redox activity of GdYVO4:Eu3+ nanoparticles. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 242, 118741.	2.0	8
45	Exciton Trapping Mechanism in Quasi-1D Molecular Chains (J-aggregates). Molecular Crystals and Liquid Crystals, 1998, 324, 267-273.	0.3	7
46	Excitation localization effects in nanoscale molecular clusters (J-aggregates). Low Temperature Physics, 2011, 37, 157-162.	0.2	7
47	Exciton transport in amphi-PIC J-aggregates formed in polymer films. Optical Materials, 2012, 34, 2091-2094.	1.7	7
48	Optical Absorption Spectroscopy of Strongly Disordered J-Aggregates: Control of Off-Diagonal Disorder. Molecular Crystals and Liquid Crystals, 2000, 348, 15-26.	0.3	6
49	Manifestation of quasi-symmetry of the cation sites of Gd2SiO5, Y2SiO5, and Lu2SiO5 in the spectra of the impurity ion Pr3+. Low Temperature Physics, 2001, 27, 574-578.	0.2	6
50	Concentration quenching anomalies of activated Y2SiO5:Pr3+ nanocrystal luminescence. Laser Physics, 2007, 17, 491-495.	0.6	6
51	Effect of hydrophobicity of cationic carbocyanine dyes DiOC n on their binding to anionic surfactant micelles. Journal of Applied Spectroscopy, 2010, 77, 183-188.	0.3	6
52			

4

#	Article	IF	CITATIONS
55	Echo spectroscopy of two-level systems in a Y2SiO5: Pr3+ crystal. Journal of Experimental and Theoretical Physics, 1999, 88, 385-391.	0.2	5
56	The nature of activation centers in Y2SiO5:Pr3+, Gd2SiO5:Pr3+, and Lu2SiO5:Pr3+ crystals. Journal of Experimental and Theoretical Physics, 2001, 93, 372-379.	0.2	5
57	Microscopic nature of Pr3+ optical centers in Y2SiO5, Lu2SiO5, and Gd2SiO5 crystals. Low Temperature Physics, 2002, 28, 774-779.	0.2	5
58	Accumulation of oxacarbocyanine dyes with different alkyl chain length in bone marrow cells and hepatocytes. Biophysics (Russian Federation), 2007, 52, 406-411.	0.2	5
59	Spectroscopic study of interactions between dye molecules in micelle and liposome nanovolumes. Journal of Applied Spectroscopy, 2013, 79, 914-921.	0.3	5
60	Aggregative stability of colloidal ReVO4:Eu3+ (Re=La, Gd, Y) nanoparticles with different particle sizes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 457, 495-501.	2.3	5
61	Radioprotective Effect of CeO2 and GdEuVO4 Nanoparticles in "In Vivo―Experiments. NATO Science for Peace and Security Series A: Chemistry and Biology, 2015, , 193-197.	0.5	5
62	Processes of excitation energy transport in EuPO4 and EuP3O9 nanocrystals. Low Temperature Physics, 2017, 43, 1009-1012.	0.2	5
63	Plasmon-Induced Suppression of Exciton Self-Trapping in Polymer-Bound Pseudoisocyanine J-Aggregates. Journal of Physical Chemistry C, 2020, 124, 10167-10174.	1.5	5
64	Selective spectroscopy of Pr3+ impurity ions in Y2SiO5, Gd2SiO5, and Lu2SiO5 crystals. Low Temperature Physics, 2000, 26, 894-898.	0.2	4
65	Influence of Dye Hydrophobicity on the Efficiency of Fluorescence Resonance Energy Transfer Between Dyes in Surfactant Micelles. Molecular Crystals and Liquid Crystals, 2011, 535, 204-211.	0.4	4
66	Luminescent and scintillation properties of composites based on sol-gel SiO2 matrices and organic scintillators. Technical Physics Letters, 2014, 40, 953-956.	0.2	4
67	Different Roles of Ce3+ Optical Centers in Oxyorthosilicate Nanocrystals at X-ray and UV Excitation. Crystals, 2019, 9, 114.	1.0	4
68	X-ray Induced Hydroxyl Radical Generation by GdYVO4:Eu3+ Nanoparticles in Aqueous Solution: Main Mechanisms. Crystals, 2020, 10, 370.	1.0	4
69	Time-resolved luminescent spectra of J-aggregates with exciton traps. Low Temperature Physics, 1997, 23, 351-353.	0.2	3
70	Enhanced electronic excitation energy transfer between dye molecules incorporated in nano-scale media with apparent fractal dimensionality. Applied Physics A: Materials Science and Processing, 2014, 116, 2131-2138.	1.1	3
71	Modification of the luminescent characteristics belonging to the molecule that interacts with the exciton states of the <i>J</i> -aggregate. Low Temperature Physics, 2017, 43, 416-420.	0.2	3
72	Processes of energy migration in mixed europium–lanthanum magnesium borate nanocrystals. Spectroscopy Letters, 2017, 50, 399-403.	0.5	3

#	Article	IF	CITATIONS
73	Excimer Emission of Acridine Orange Adsorbed on Gadolinium-Yttrium Orthovanadate Nanoparticles. Journal of Fluorescence, 2018, 28, 943-949.	1.3	3
74	Unusual enhancement of dye luminescence by exciton resonance of J-Aggregates. Optical Materials, 2019, 96, 109263.	1.7	3
75	Anomalous enhancement of radioluminescence in Lu2-xYxSiO5:Ce3+ and ZnxMg1-xWO4 mixed oxide nanocrystals. Optical Materials, 2019, 98, 109455.	1.7	3
76	Nano-scale liposomal container with a \hat{A} «signal system \hat{A} » for substances delivering in living cells. Biopolymers and Cell, 2011, 27, 47-52.	0.1	3
77	Dynamics of dye release from nanocarriers of different types in model cell membranes and living cells. Biopolymers and Cell, 2014, 30, 314-320.	0.1	3
78	Effect of inorganic nanoparticles and organic complexes on their basis on free-radical processes in some model systems. Biopolymers and Cell, 2015, 31, 138-145.	0.1	3
79	Features of the luminescence kinetics of Pr3+ ions in the Y2SiO5 crystal. Low Temperature Physics, 2000, 26, 363-366.	0.2	2
80	Anomalies in the concentration quenching of luminescence in doped Y2SiO5:Pr3+ nanocrystals. JETP Letters, 2006, 84, 180-184.	0.4	2
81	Study of exciton transport in luminescent molecular nanoclusters using energy traps. Theoretical and Experimental Chemistry, 2009, 45, 58-62.	0.2	2
82	Manipulation by optical properties of luminescent ordered organic nanoclusters via exciton-phonon coupling. Journal of Physics: Conference Series, 2012, 345, 012047.	0.3	2
83	Newly synthesized carbocyanine fluorescent probes, their characteristics and behavior in proliferating cultures. Biopolymers and Cell, 2009, 25, 484-490.	0.1	2
84	<title>Peculiarities of photon echo registration in a Y<formula><inf><roman>2</roman></inf></formula>:P crystal</title> ., 1997, 3239, 325.	r <formula< td=""><td>><sup><rom< td=""></rom<></td></formula<>	>< s up> <rom< td=""></rom<>
85	New channels of photon echo relaxation in Y2SiO5:Pr3+ and LaF3:Pr3+ crystals. Low Temperature Physics, 1997, 23, 746-749.	0.2	1
86	Features of low-temperature exciton dynamics inJ-aggregates with topological disorder. Low Temperature Physics, 2003, 29, 679-681.	0.2	1
87	Nonradiative energy transfer in carbocyanine dye compositions inside surfactant micelles. Journal of Applied Spectroscopy, 2006, 73, 164-170.	0.3	1
88	Energy migration processes in phosphate nanocrystals: Size and dimensionality dependence. Low Temperature Physics, 2018, 44, 438-443.	0.2	1
89	Spectral-luminescent properties of derivatives of squaraine probes at interaction with the isolated rat liver cells. Biopolymers and Cell, 2012, 28, 229-233.	0.1	1
90	Exciton autolocalization in quino-2-monomethine cyanineJ-aggregates. Journal of Applied Spectroscopy, 1995, 62, 489-492.	0.3	0

#	Article	IF	CITATIONS
91	Structure and spectroluminescence properties of derivatives of 1,8-naphthoylene-1',2-benzimidazole with substituents of various electronic types. Chemistry of Heterocyclic Compounds, 1995, 31, 557-562.	0.6	0
92	<title>New channel of photon echo signal relaxation in
LaF<formula><inf><roman>3</roman></inf></formula>:Pr<formula><sup><roman>3+</roman></sup></formula
crystal</title> ., 1997,,.	a>	0
93	Echo spectroscopy of TLS of multiwell adiabatic potential for Pr3+activator centers in Y 2 SiO 5., 2002,,.		0
94	<pre><title>Investigation of interaction of optical centers Pr<formula><sup><roman>3+</roman></sup></formula> in a Y<formula><inf><roman>2</roman></inf></formula>SiO<formula><inf><roman>5</roman></inf></formula>:P crystal</title>., 2004, 5402, 341.</pre>	r <formula:< td=""><td>·^{<rom< td=""></rom<>}</td></formula:<>	· ^{<rom< td=""></rom<>}
95	Estimation of luminescent properties of the derivatives of polymethine probes on their interaction with cells of different types. Biophysics (Russian Federation), 2011, 56, 250-256.	0.2	0
96	A study of the effect of adrenaline on the transmembrane potential of the plasma membrane of hepatocytes from rats of different age using fluorescent probes. Biophysics (Russian Federation), 2011, 56, 452-456.	0.2	0
97	Primary cell culture from pig neonatal thyroid gland: Growth, folliculogenesis, and hormone activity. Cell and Tissue Biology, 2013, 7, 512-521.	0.2	0
98	Temperature-dependent segregation of Pr3+ impurity ions in Y2SiO5:Pr3+ and YPO4:Pr3+ nanocrystals. Journal of Experimental and Theoretical Physics, 2013, 116, 579-586.	0.2	0
99	Development of Nanocomposite Alpha-Detectors Based on Silica Matrices and Organic Scintillators. NATO Science for Peace and Security Series A: Chemistry and Biology, 2015, , 415-419.	0.5	0
100	Kinetic and Thermodynamic Stability of Organic and Inorganic Nanocarriers. Journal of Applied Spectroscopy, 2015, 82, 200-207.	0.3	0
101	Influence of Zr-doping on the luminescence properties of ceria nanocrystals. , 2016, , .		0
102	AMPHI-PIC J-Aggregates: Degree of Disordering and of Thermal Relaxation of Photoproduced Excitons. Journal of Computational and Theoretical Nanoscience, 2005, 2, 443-447.	0.4	0
103	Plasmon-Enhanced Fluorescence of Carbocyanine J-Aggregates in Layered Polymer Films. , 2020, , .		0